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Abstract

The etiology of the vast majority of Parkinson’s disease (PD) cases is unknown. It is generally accepted that there is an
interaction between exposures to environmental agents with underlying genetic sensitivity. Recent epidemiological studies
have shown that people living in agricultural communities have an increased risk of PD. Within these communities, paraquat
(PQ) is one of the most utilized herbicides. PQ acts as a direct redox cycling agent to induce formation of free radicals and
when administered to mice induces the cardinal symptoms of parkinsonism, including loss of TH+-positive dopaminergic
(DA) neurons in the ventral midbrain’s substantia nigra pars compacta (SNpc). Here we show that PQ-induced SNpc neuron
loss is highly dependent on genetic background: C57BL/6J mice rapidly lose ,50% of their SNpc DA neurons, whereas
inbred Swiss-Webster (SWR/J) mice do not show any significant loss. We intercrossed these two strains to map quantitative
trait loci (QTLs) that underlie PQ-induced SNpc neuron loss. Using genome-wide linkage analysis we detected two
significant QTLs. The first is located on chromosome 5 (Chr 5) centered near D5Mit338, whereas the second is on Chr 14
centered near D14Mit206. These two QTLs map to different loci than a previously identified QTL (Mptp1) that controls a
significant portion of strain sensitivity to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), suggesting that the
mechanism of action of these two parkinsonian neurotoxins are different.
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Introduction

Parkinson’s disease (PD) is the third most common neurode-

generative disorder, affecting approximately two percent of the

adult population older than 55 years. The underlying cause for the

vast majority of PD cases is unknown. Controversy still exists as to

how much of the disease results from strictly genetic factors,

environmental factors, or an interaction of both [1,2,3]. Empirical

evidence suggests that less than 10% of all diagnosed Parkinsonism

has a strict familial etiology [4]. One mechanism related to

environmental exposure that has been proposed in PD’s etiology is

the abnormal handling of free radical species; whether by excessive

generation of these species or inability to handle their detoxifica-

tion [5,6]. Several animal models of PD that utilize xenobiotics

have been developed; each mimicking aspects of parkinsonism.

These include administration of 1-methyl-4-phenyl-1,2,3,6-tetra-

hydropyridine (MPTP), rotenone or 1,19 di methyl-4,49-bipyr-

idium dichloride (paraquat, PQ). Each of these toxins generates

free radicals, although the mechanism(s) by which this occurs is

different. MPTP and rotenone generate oxidative stress through

generation of free radicals after blockade of complex 1 in the

mitochondrial electron transport chain [7]. Paraquat also

generates free radicals, but through direct redox cycling [8,9].

Only specific strains of mice are sensitive to the administration

of MPTP [10,11,12]. The differential effects of xenobiotics on

CNS, including environmental and chemical toxins such as MPTP

and PQ, are likely influenced by the interaction of multiple gene

products. The cumulative phenotypes that arise from both

environmental factors and polygenic interactions among gene

variants are termed quantitative traits. Chromosomal regions that

harbor crucial gene variants that modulate risk are called

quantitative trait loci (QTLs) [13]. The premise behind QTL

mapping is that if numerous genetic markers are examined, only

those that cosegregate with a particular phenotype variant, for

example, high or low susceptibility, will be linked to the gene variants

that underlie that trait [14]. Previously, we have shown that the

effects of MPTP on SNpc neuron loss are strain specific. The very

well characterized C57BL/6J strain is highly sensitive to this

compound whereas the common Swiss–Webster inbred strain

(SWR/J) is resistant. Through a genome-wide analysis of C57BL/

6J6SWR backcross progeny we mapped a QTL for MPTP-induced

SNpc neuron loss named Mptp1 near the distal end of Chr 1 between

D1Mit113 and D1Mit293. This locus accounts for the majority of the

strain sensitivity to MPTP [15]. In order to determine if genes

involved in controlling DA neuron loss are similar in MPTP and PQ-

induced neurodegeneration, we identified QTLs for PQ loss again

exploiting the same strain difference. Our findings suggest that there

are also marked strain-specific effects of PQ on SNpc dopaminergic

neuron number loss, and that the genetic influence underlying PQ-

induced neurons loss are different than those seen with MPTP.
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Materials and Methods

All of the experimental procedures in the animals were

performed in accordance with the NIH Guide for the Care and

Use of Laboratory Animals and all protocols, were approved by

the St Jude Children’s Research Hospital IACUC (protocol 270).

Experiments were carried out in accordance with The Code of

Ethics of the World Medical Association (Declaration of Helsinki)

for animal experiments.

Male and female C57BL/6J and SWR/J mice were purchased

from the Jackson Laboratory (Bar Harbor, ME). F1 crosses were

generated by mating male C57BL/6J with female SWR/J and

female C57BL/6J with male SWR/J stock. F1 hybrids were

backcrossed to SWR/J to generate a set of 61 backcross (N2)

progeny that were used to map QTLs. All animals were housed

within the vivarium at St. Jude Children’s Research Hospital and

were maintained on a 12:12 hour light:dark cycle with ad libitum

food and water.

Paraquat treatment
1,19 di methyl-4,49-bipyridium dichloride (paraquat, PQ)

(catalog 36541 Sigma-St. Louis, MO) was dissolved in sterile

saline to a final concentration of 20 mg/ml. Each animal was

given a total of 60 mg/kg of PQ, using a dosage regimen of

10 mg/kg62 per week for 3 weeks. All mice that survived the

injection protocol were sacrificed one week after the final PQ

administration.

Histology
Mice were anesthetized with an overdose of Avertin. Following

induction of deep anesthesia determined by loss of deep tendon

and corneal reflexes, animals were transcardially perfused with

physiologic saline followed by 3% paraformaldehyde in 1X

phosphate-buffered saline (PBS), pH 7.4. Brains were removed

from the calvaria and post-fixed overnight in fresh fixative,

dehydrated through a graded series of ethanols, defatted in mixed

xylenes and embedded in Paraplast-X-tra (Fisher Scientific,

Pittsburgh, PA). Brains were subsequently blocked and serially

sectioned at 10 microns in the coronal plane. All sections from the

rostral hippocampus to the cerebellar-midbrain junction was saved

and mounted onto Superfrost-Plus slides (Fisher Scientific).

Standard immunhistochemical techniques using a polyclonal

antibody directed against tyrosine hydroxylase (TH) (1:250 in

blocking buffer; Pel Freez, Rogers, AR) were to identify

dopaminergic neurons in the SNpc as previously described [15].

Slides were then counterstained with Neutral Red, dehydrated

through a graded series of alcohol, mounted in Permount and

coverslipped.

DA Cell Quantification and Analysis
Dopaminergic neurons in the SNpc were quantified using

stereological methods described previously [16]. Statistical anal-

yses were done using Student’s t-test (GraphPad Prism V, La Jolla,

CA).

Microsatellite markers
To identify and map QTLs, we used a set of polymorphic MIT

microsatellite markers (Table 1) that previously have been shown

to differentiate C57BL/6J from SWR/J [15]. DNA samples from

each mouse were amplified using PCR thermal cycling parameters

described in detail at www.nervenet.org/papers/PCR.html. We

used a touchdown PCR protocol to improve the specificity of

annealing. The products were all run on Metaphor agarose,

photographed, and scored manually. Data were entered into a

relational database (FileMaker Pro).

Calculating linkage between loci
We compared the distribution pattern of phenotypes of the mice

(high or low SNpc number following PQ treatment) with the

distribution pattern of sensitive (C57BL/6J = B) and resistant

(SWR/J = S) alleles at each of the polymorphic microsatellite loci.

The first level of analysis was simply to detect a linkage using a

constrained additive regression model whereas the second level

involved estimating QTL position more precisely by interval

mapping. Actual calculations were performed using the program

Map Manager QTX b29 [17].

Microarray Analysis
Four- to six-month old C57BL/6J and SWR/J mice were

deeply anesthesized, and when deep tendon and corneal reflexes

they were absent rapidly decapitated. The substantia nigra

(Bregma: 22.70 to 23.70) and striatum (Bregma: +0.14 to

+1.26 mm) [18] were rapidly dissected, flash frozen and stored at

280uC. mRNA was isolated from SN and striatum in accordance

with the protocol outlined in RNAqueous Micro kit (Ambion,

Austin, TX) according to manufacturers recommendations.

Technical procedures for microarray analysis, including quality

control of mRNA, labeling, hybridization and scanning of the

arrays were performed by the Hartwell Center for Bioinformatics

& Biotechnology (HC) at St. Jude Children’s Research Hospital

(SJCRH) according to standard operating procedures for Affyme-

trix protocols (GeneChip Expression Analysis manual, Affymetrix,

Santa Clara CA, USA).

The GeneChip HT MG-430 PM array plate (Affymetrix)

containing 45,037 probe sets were used in this study. These arrays

represent 39,000 transcripts. Scanned images of processed arrays

were analyzed with the Gene Chip Operating Software

(GCOSv1.2, Affymetrix). Assessment of probe set present/absent

calls was made using the Single Array Analysis method using the

statistical algorithm with default analysis parameters as detailed in

http://media.affymetrix.com/support/technical/whitepapers/ht_

system_whitepaper.pdf. Expression levels of genes located within

the QTL regions were queried and those having a difference

in expression (625%) and a significance of p,0.001 were

identified.

Results

Strain specific Effects of PQ on SNPC dopaminergic
neuron number

We compared the effects of PQ on the severity of SNpc

dopaminergic neuron loss in C57BL/6J and SWR/J strains. We

have previously shown that these strains were respectively

susceptible and resistant to MPTP-induced SNpc dopamine

neuron loss [19]. We find that there is a strain-dependent

sensitivity to PQ-induced SNpc neuron loss, and that C57BL/6J

lose ,48% of SNpc dopaminergic neurons, whereas SWR/J show

a much less and insignificant 8% loss (Figure 1).

Identification of QTL’s underlying strain dependent PQ –
induced SNpc neuron loss

To identify quantitative trait loci responsible for PQ-induced

strain dependent SNpc DA neuron loss, we used stereological

procedures to estimate the number of SNpc DA neurons in 61

C57BL/6J6SWR/J N2 progeny. Only C57BL/6J6SWR/J F1

mice are sensitive to PQ, and we therefore crossed C57BL/

Paraquat QTL
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6J6SWR/J F1 to SWR/J males to generate the N2 backcross

progeny that will be B/S heterozygotes or S/S homozygous at

each locus. Genotypes were entered for each marker and

correlated to two phenotypes: (1) the overall phenotypic severity

treated as a Mendelian score (affected or unaffected), and (2) the

number of SNpc DA neurons [15]. We found two significant

(genome-wide P,0.001) chromosomal loci using the Mendelian

correlation with a 20 cM sensitivity, and the program Map

Manager QTX b29 based on 10,000 permutation analysis, located

on Chr 5 centered near D5Mit338 (Chr5, <109 Mb, all genome

positions are based on the NCBI37/mm9 mouse genome

assembly) (Fig. 2A) and on Chr 14 centered near D14Mit206

(Chr 14, <21.5 Mb) (Figure 2B)(Table 1). The same loci were

found using the numerical data.

The QTL on Chr 5 overlaps 88 coding genes whereas that on

Chr 14 overlaps 28 coding genes (as delineated by Ensembl).

Based on our analysis of array data, the majority of these genes (93

of 116) have detectible expression in either striatum or substantia

nigra in C57BL/6J and SWR/J. Of 88 identified genes located on

Chr 5 between 99 and 119 Mb, 31 were differentially expressed by

more than 25% between strains (p,0.001, Table S1) in striatum.

Only five genes met the same criterion on the Chr 14 interval

between 16.4 and 26.6 Mb (Table S2). In addition to the identified

coding genes, the Ensembl database also identified a sequence on

Chr 5 between 117.082490 and 117.083614 Mb. that corresponds

to a glutathione S-transferase Mu pseudogene (GSTm2-ps1).

Discussion

In this study we report that the C57BL/6J and SWR/J strains

are differentially sensitive to systemic administration of paraquat—

a finding that supports previous studies that detail differential

genetic effects of this herbicide [20] and other neurotoxins,

including MPTP [12,19,21,22,23]. We have exploited this

pronounced strain difference to map chromosomal regions that

modulate the differential vulnerability of dopaminergic cell to PQ.

Unlike studies of Parkinson’s disease in humans, we can carefully

control both genetic and environmental factors and efficiently

generate precise estimates of the loss of DA neurons in inbred

parental strains and backcross progeny. As shown here, the

Table 1. List of Microsatellite Markers and Mendelian Correlations.

MIT marker cM Mendelian Correlation MIT marker cM Mendelian Correlation

D1Mit211 10.59 0.013 D11Mit78 10.44 0.247

D1Mit100 62.56 0.023 D11Mit5 40.59 0.142

D1Mit293 97.55 0.064 D11Mit334 74.06 0.169

D2Mit416 12.00 0.009 D12Mit169 7.03 0.352

D2Mit458 29.62 0.092 D12Mit214 37.86 0.253

D2Mit311 86.12 0.069 D12Mit280 60.94 0.392

D3Mit240 15.80 0.221 D13Mit106 47.75 0.362

D3Mit51 26.20 0.253 D13Mit254 40.95 0.392

D3Mit19 66.70 0.198 D13Mit78 67.21 0.253

D4Mit192 13.50 0.299 D14Mit206 11.53 0.429

D4Mit78 61.15 0.197 D14Mit262 37.20 0.247

D4Mit13 75.67 0.121 D14Mit266 64.86 0.090

D5Mit233 28.55 0.250 D15Mit53 6.29 .0256

D5Mit338 52.23 0.428 D15Mit229 16.31 0.310

D5Mit287 89.18 0.325 D15Mit161 52.78 0.203

D6Mit273 22.51 0.143 D16Mit181 2.90 0.066

D6Mit146 43.05 0.101 D16Mit4 25.43 0.034

D6Mit291 66.78 0.169 D16Mit106 57.68 0.067

D7Mit117 17.26 0.041 D17Mit30 14.26 0.037

D7Mit238 63.78 0.169 D17Mit139 27.40 0.352

D7Mit259 88.85 0.250 D17Mit42 50.30 0.066

D8Mit95 12.47 0.172 D18Mit223 6.60 0.037

D8Mit205 28.85 0.218 D18Mit188 45.88 0.253

D8Mit121 72.27 0.170 D18Mit213 57.33 0.351

D9Mit205 20.75 0.168 D19Mit90 35.97 0.233

D9Mit32 36.41 0.196 D19Mit137 54.60 0.221

D9Mit116 59.58 0.305 DXMit166 28.26 0.175

D10Mit247 5.81 0.231 DXMit68 29.49 0.260

D10Mit186 38.56 0.325 DXMit117 53.75 0.314

D10Mit292 55.33 0.196

D10Mit297 72.31 0.037

doi:10.1371/journal.pone.0029447.t001
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parental strain difference can be dissected into a small number of

QTLs and candidate genes.

PQ is one of the most commonly used pesticides in the

agricultural community. Its mechanism of action involves the

transfer of an electron (usually from NADPH) to form a PQ+
radical. This free radical interacts with molecular oxygen to form a

superoxide radical that damages lipids contained within cell

membranes [24]. PQ has been shown to induce extensive

mitochondrial oxidative damage [25,26]. In the brain, PQ is

actively transported through neutral amino acid transporters [27]

and its use has been linked to an increased risk for developing

Parkinson’s disease [28,29,30]. Experimentally, systemic adminis-

tration of paraquat induces a relatively specific lesion in the SNpc

that results in dopaminergic neuron loss [20,31,32]. Mechanisti-

cally, it has been proposed that this selective cell loss occurs by

virtue of the SNpc having 1) significant dopamine metabolism

[33], 2) a significantly increased microglial density compared to

other brain regions [34], and 3) an increased concentration of iron

which results in a propensity to form intracellular hydrogen

peroxide and superoxides [35] that can initiate apoptosis through

a BAK dependent mechanism [36]. Although these cellular

mechanisms have been hypothesized, the gene(s) underlying them

have not been identified.

Our analysis identified two QTLs for PQ senstivity; one located

within a 20 cM (100,120 Mb) interval of Chr 5 and the other

within a 20 cM (15,35 Mb) interval of Chr 14. To better define

genes in these regions that may contribute to differential sensitivity

to PQ-induced SNpc neuronal loss we used several criteria. First,

we used an unbiased approach to identify genes that are

differentially expressed in the substantia nigra and striatum of

the parental strains. Although a number of genes meet our criteria

of a 25% difference in expression, we further filtered results based

upon the known function of the genes and possible relations to a

function that could modulate PQ effects. We also flagged any

candidates identified in previous genome-wide association studies

of humans. The latter approach highlighted diacylglycerol kinase,

theta 110 kDa (DGKQ), a gene that has a strong association in

patients of Dutch decent with familial [37] and sporadic [38]

Parkinson’s disease Inhibition of DGKQ activity attenuates the

binding of SF1 to the CYP17 promoter, subsequently inhibiting

cAMP-dependent CYP17 transcription. CYP17 is a member of the

P450 proteins that function as xenobiotic metabolizing enzymes

Figure 1. Paraquat-induced cell loss is strain dependent. (A) After chronic PQ administration, we find that C57BL/6J have a <50% decrease in
SNpc DA neurons, while SWR have a <10% loss of SNpc neurons. (B) TH-immunostained section through rostral SNpc of C57BL/6J mouse. Box is seen
at higher magnification in (C). (D) Following chronic administration of PQ to C57BL/6J mice, there is a loss of both DA neurons and fibers. Box is seen
at higher magnification in (E). (F). TH-immunostained section through rostral SNpc of SWR mouse. Box is seen at higher magnification in (G). (H)
Following chronic administration of PQ to SWR mice, there is a no apparent loss of DA neurons or fibers. Box is seen at higher magnification in (E).
doi:10.1371/journal.pone.0029447.g001

Figure 2. Chromosomal maps showing the identified QTL regions. A 20 cM region (red box) on the distal are of mCHr 5 and the proximal
arm of mChr14 were identified by QTL analysis.
doi:10.1371/journal.pone.0029447.g002
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[39], which act in the modulation of free radicals in the nervous

system [40]. Other genes within the QTL were implicated by their

known function; where modulation of these activities have been

implicated in the pathogenesis of Parkinson’s disease. Examples of

these genes include Spp1 and Hspb8, each of which has been

implicated in the inflammatory, oxidative, and nitrosylative stress

response to insult [41]. Spp1 encodes the osteopontin protein that

is expressed in the SNpc [42] and its absence has been shown to be

neuroprotective in the MPTP model of experimental parkinsonism

[43]. Hspb8 encodes a heat shock protein that forms a complex

BAG3 [44]. When overexpressed, this HSPB8-BAG3 complex

functions in the clearance of mutated aggregation-prone proteins

including alpha-synuclein [45], whose accumulation is a hallmark

of Parkinson’s disease [46].

Other genes in these QTLs function in processes thought to be

important to neuronal survival following injury. There is higher

expression in genes involved in energy production and gluconeo-

genesis in the SN, where their gene products function to increase

production of ATP, and indirectly (Adk) or directly (Hscb)

contribute to protection from oxidative stress [44,47,48]—a

critical process in SNpc DA neuroprotection [5,49,50]. Addition-

ally, Ppp3cb, which encodes a subunit the calcineurin, is a protein

that is highly expressed in the SN [51] and functions as a

phosphatase that modulates synaptic plasticity and cell death

[52,53]. Lower levels of the citron mRNA are seen in both SN and

striatum of SWR mice exposed to PQ compared to C57BL/6J.

Citron acts as a rho/rac binding protein that regulates activity of

RhoA. Inhibition of RhoA is associated with repair of axonal

processes [54] and has been shown to increase its expression in

brain after treatment with the complex I inhibitor rotenone [55].

Conversely, citron levels are reduced in animals exposed to

environmental enrichment [56], which has been shown to be

neuroprotective [57].

A third class of genes differentially expressed between C57BL/

6J and SWR/J following PQ administration are in the

inflammatory pathway. Nos1, a gene encoding neuronal nitric

oxide synthase, functions to catalyze the production of nitric oxide

(NO) from L-arginine. Inhibition of nNOS in neuronal cells lines

increases the toxicity of MPP+ [58], suggesting that the higher

mRNA expression levels seen in the SWR striatum would be

neuroprotective.

We also noted the presence of sequence within the Chr 5 QTL

that encodes a sequence that appears to be glutathione S-

transferase mu (Gstm1) pseudogene. Pseudogenes resemble their

cognate genes, but for the most part are not translated into

functional proteins. Although they often lack introns, likely as a

function of their generation through retrotransposition, these

sequences are not likely to be ‘‘junk DNA’’ as previously thought

[59]. Recent evidence suggests that they can play a role in the

regulation of their related coded gene [60,61,62]. Gstm1 is a

member of the GST superfamily, that function as phase II

detoxification enzymes that catalyze the conjugation of glutathione

and electrophiles [63]. Gstm1 is one of seven members in a closely

associated gene cluster located on mouse Chr3 [64]. Gstm1 is

expressed in brain [65], and in the substantia nigra is seen in both

dopaminergic neurons and astrocytes [66] and has been

implication in control of dopamine metabolism [67] that could

have implications in the etiology of Parkinson’s disease.

In a previous QTL examining sensitivity to the parkinsonian

agent MPTP, we identified a single QTL called Mptp1, located on

Chr1 [15] and a strong candidate gene, glutathione S-transferase

pi (Gstp1). Gstp1 is a member of the same GST superfamily as

Gstm1 and also functions as a phase II detoxification enzyme. The

location of the two significant QTLs in this study do not map to

the Mptp1 QTL, although the same two mouse strains show a

similar phenotype after treatment with MPTP and PQ including

loss of DA neurons and induction of micro-and astrogliosis. This

difference is, however, not unexpected since the mechanism of

action of MPTP, which involves blockade of complex I of the

electron transport chain leading to generation of free radicals [68],

has been shown to be different from PQ, which is a direct redox

generator [8]. It would be interesting to determine if the effects of

these two xenobiotics are synergistic, suggesting that there are

independent populations of SNpc dopamine neurons that are

sensitive to different xenobiotic insults and thus different

interventions would be necessary for each xenobiotic. However,

if PQ, MPTP or other exogenous agents (i.e. rotenone) kill the

same populations of SNpc dopamine neurons, independent of the

mechanism that initiates the cell death, one could concentrate on

developing a general therapy to reduce oxidative stress in the brain

as a method for protecting against or slowing the progress of the

SNpc dopamine neuron death.
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