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L E T T E R  T O  T H E  E D I T O R

Three patients with defects in interferon gamma receptor 
signaling: A challenging diagnosis

To the Editor,
Mendelian	susceptibility	to	mycobacterial	disease	(MSMD)	is	a	rare	
inherited disorder characterized by infections with weakly virulent 
mycobacteria in otherwise healthy individuals.1	MSMD	 is	 caused	
by	genetic	defects	 in	genes	coding	for	proteins	in	the	IL-	12/IFN-	γ 
signaling pathway.2– 4	 IFN-	γR1 deficiency is a common cause of 
MSMD.1,5– 7 The pathogenic variants in IFNGR1 can be either auto-
somal	recessive	(OMIM	#209950)	or	dominant	(OMIM	#615978),8 
resulting in complete or partial functional defects.7 Lack of surface 
expression leads to a complete loss of function. Expression of hypo-
morphic	or	amorphic	IFN-	γR1 can lead to either partial loss of func-
tion or have a dominant negative effect by impairing the wild- type 
allele.	Complete	 loss	of	 function	 in	 IFN-	γR signaling results in se-
vere mycobacterial infections in early childhood and poor survival, 
while variants with partial loss of function may result in a milder 
clinical	phenotype	that	manifests	later	in	childhood.	A	general	ap-
proach	 in	 diagnosing	 patients	with	MSMD	has	 been	 proposed	 in	
the literature using flow cytometry, lymphocyte immunophenotyp-
ing, and sequencing of genes known to be involved in mycobacte-
rial host immunity.7,9 However, since recent advances in genomic 
analysis technologies, a genotype- first approach for patients with 
a suspicion of an inborn error of immunity has currently become a 
more typical approach.10 While having the advantage of analyzing 
multiple genes simultaneously, some variants can be missed and the 
interpretation of the significance of novel variants or new combina-
tion of hypomorphic variants can be a diagnostic challenge. Here, 
we	describe	three	patients	with	MSMD	with	novel	or	new	combi-
nations of hypomorphic variants in which functional assays were 
crucial to determine the extent of the interferon gamma receptor 
signaling defects.

Patient 1 is a 6- year- old girl who was admitted to our pediatric 
ward	with	progressive	cough,	 fever,	and	tachypnea.	She	 is	 the	only	
child	of	non-	consanguineous	parents	(Figure	1A).	Her	medical	history	
was remarkable with more than 20 hospital admissions for bronchial 
hyperreactivity, lower respiratory tract infections, and a coarctec-
tomy at the age of 2. Imaging showed mediastinal and hilar lymphade-
nopathy, a large right upper lobe mass and lymph nodes compressing 
the	trachea	(Figure	S1).	An	ultrasound	showed	three	focal	lesions	in	
the spleen and hepatomegaly. Because of her severely compromised 
airway, steroids were given, improving intraluminal tracheal diameter. 

Histological examination on the lymph node ruled out malignant lym-
phoma.	Sputum,	stomach	fluid,	lymph	node	biopsy,	and	bone	marrow	
culture revealed Mycobacterium avium.	She	was	not	vaccinated	with	
Bacillus	 Calmette–	Guérin	 (BCG).	 Plasma	 IFN-	γ level on admission 
was	elevated	(311	pg/ml).	She	was	treated	with	azithromycin,	rifam-
picin,	and	ethambutol.	Amikacine	was	added	for	the	first	2	months.	
She	recovered	after	a	year	of	treatment.	Patient	2	is	a	7-	year-	old	boy	
who was admitted with unexplained and recurrent low- grade fever, 
neck and leg pain, vasculitis- like skin lesions, and polydipsia for sev-
eral months. He had a medical history with recurrent bronchial hy-
perreactivity, recurrent parotitis, parechovirus- associated radiculitis, 
and	 cluster	 headache.	 A	 brain	MRI,	 CT	 scans	 of	 thorax	 and	 verte-
brae, total body X- ray studies, and abdominal ultrasound showed a 
hypophysitis leading to panhypopituitarism, several bone lesions in 
skull, vertebrae and hip, hilar lymphadenopathy, and a single lesion in 
the spleen. Tuberculin skin test showed induration of 18mm. Cultures 
of a bone lesion and sputum grew Mycobacterium persicum. Patient 2 
was	also	not	vaccinated	with	BCG.	Serum	IFN-	γ levels were undetect-
able. He started treatment with rifampicin, isoniazid, and ethambutol 
and hydrocortisone, levothyroxine, and desmopressin for his panhy-
popituitarism and has improved very well. Patient 3 is a 1- year- old 
girl with a swollen right upper arm and axillary lymphadenopathy. Her 
medical	history	showed	bronchial	hyperactivity	and	eczema.	She	was	
vaccinated for BCG during infancy and had a BCG scar that looked 
inflamed.	A	CT	scan	showed	multiple	active	hilar	and	axillary	lymph	
nodes, a splenic lesion and osteolytic lesions of her right humerus, 
two ribs, and a vertebral lesion in L2. Pathology of a bone biopsy from 
the right humerus showed lesions compatible with Langerhans cell 
histiocytosis	 (LCH).	Treatment	for	multifocal	LCH	was	started	using	
prednisone and vinblastine. The bone lesions showed improvement, 
but new skin lesions appeared at the site of the BCG scar, head, and 
back. Repeated CT scans showed multiple bone lesions in scapulae, 
ribs,	and	progression	of	hilar	and	axillary	lymphadenopathy.	Skin	bi-
opsies of the lesions showed granulomatous infiltration and grew 
Mycobacterium bovis BCG strain. The previous diagnosis of LCH was 
re- evaluated, and a new diagnosis of BCG- osis was made. Treatment 
with rifampicin and isoniazid resulted in rapid improvement on skin 
and bone lesions and on lymphadenopathy.

A	diagnostic	whole	exome	sequencing	(WES)-	based	PID	gene	panel	
analysis was used as first- line diagnostic approach. In Patient 1, one 
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heterozygous pathogenic variant in the IFNGR1	gene	NM_000416.2	
(IFNGR1):c.188T>G,	p.(Val63Gly)	was	identified.	However,	no	second	
variant was detected. Interestingly, only the IFNGR1 transcript with 
the	p.(Val63Gly)	variant	was	 identified	with	RNA	expression	analy-
sis	 (Figure	1B),	 and	 a	 SNP	array	 showed	decreased	binding	of	 one	
probe in exon 3 of IFNGR1. Long- range PCR using primers surround-
ing	exon	3	showed	a	heterozygous	 insertion	 (Figure	1C).	Sequence	
analysis revealed that this insertion concerned a complex insertion 
of	136	nucleotides	of	 the	 right	 arm	and	 the	poly-	A	 tail	 of	 an	AluY	
transposable element combined with a 4- nucleotide duplication in 
exon	 3:	 NM_000416.2(IFNGR1):c.210_211ins[136;A[?];207_210]	
(Figure	1D).	Parental	segregation	analysis	showed	that	the	two	variants	
were	bi-	allelic	(Figure	1A).	Patient	2	was	compound	heterozygous	for	
a	known	pathogenic	variant	NM_000416.2	(IFNGR1):c.373	+ 1G>T, 
p.(?)	and	variant	NM_000416.2(IFNGR1):c.110T>C,	p.(Ile37Thr),	clas-
sified	as	probable	pathogenic	(Figure	1D).	Parental	segregation	analy-
sis	showed	that	the	two	variants	were	bi-	allelic	(Figure	1A).	In	Patient	3,	
a novel variant in the STAT1	gene:	NM_007315.3	(STAT1):c.1379A>T, 
p.(Asn460Ile)	was	identified	(Figure	1C).	This	variant	was	not	identi-
fied	in	the	gnomADv2.1.1	control	populations.	Parental	segregation	
analysis	showed	this	was	a	de	novo	variant	(Figure	1A).

Functional	analysis	was	performed	to	determine	the	effect	on	the	
IFN-	γ/STAT1	signaling	pathway.	The	surface	expression	of	IFN-	γR1 
on monocytes was severely reduced in Patient 1 and Patient 2, while 
the	expression	was	normal	in	Patient	3	(Figure	2A).	In	Patient	1	and	2,	
the	expression	of	STAT1	was	normal	(Figure	S2),	while	the	phosphor-
ylation	of	 STAT1	was	 severely	 reduced	 in	 response	 to	 stimulation	
IFN-	γ,	but	normal	upon	IFN-	α	stimulation	(Figure	2B).	Furthermore,	
the	 upregulation	 of	 the	 IFN-	gamma-	regulated	 genes	 SOCS1 and 
FCGR1B	was	absent	after	stimulation	with	IFN-	γ	 (Figure	2C,D)	and	
normal	upon	IFN-	α	stimulation	(Figure	2C,D).	In	line	with	that,	mem-
brane	expression	of	the	IFN-	gamma-	regulated	gene	CD64	was	not	
increased	 after	 IFN-	γ	 stimulation	 in	 Patient	 2	 (Figure	 S3).	 These	
functional	data	suggest	that	Patient	1	and	2	have	a	defect	 in	 IFN-	
gamma	signaling.	For	Patient	1,	the	life-	threatening	presentation	of	
disease in combination with the results of the functional analyses 
led to refer her for an allogeneic hematopoietic stem cell transplan-
tation, which was successful.

The STAT1	gene	variant	p.(Asn460Ile)	 in	Patient	3	 is	 located	
in	 the	 DNA-	binding	 domain	 of	 the	 STAT1	 protein.	 Studies	 on	
the	 crystal	 structure	 of	 STAT1	 showed	 that	 Asn460	 is	 import-
ant	for	DNA	binding	since	it	 is	the	only	amino	acid	that	directly	

F I G U R E  1 Overview	of	the	genetic	
variants identified in IFNGR1 and STAT1. 
Family	pedigree	of	the	patients	indicating	
the genetic variant identified the patients 
(A).	RNA	sequence	analysis	in	Patient	
1 identified only the c.188T>G variant 
(B).	PCR	using	primers	surrounding	exon	
3	on	DNA	derived	from	Patient	1	(P1)	
showed an additional band compared 
with	controls	(C)	(C).	Linear	presentations	
of	the	human	IFN-	γR1	(D)	and	STAT1	
protein	(E)	indicating	the	different	
domains and genetic variants identified 
in	the	three	patients.	SP,	signal	peptide;	
TAD,	transactivation	domain;	TM,	
transmembrane domain. The binding 
location	for	JAK1	and	STAT1	is	indicated	
with black lines. The numbers underneath 
the	IFN-	γR1	and	STAT1	proteins	indicate	
the amino acid numbering. The numbers 
underneath	the	AluY	transposable	
element indicate the nucleotide 
numbering	of	the	AluY	
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interacts	 via	hydrogen	bonds	 to	DNA,	 implying	 that	 this	 amino	
acid	 is	 crucial	 for	 STAT1	 function.11,12	 In	 Patient	 3,	 STAT1	pro-
tein	expression	was	not	affected	 (Figure	S2),	but	the	phosphor-
ylation	of	STAT1	was	slightly	decreased	 (Figure	2B).	Expression	
of SOCS1 and FCGR1B seemed normal after 0.5 h of stimulation 
with	IFN-	γ	and	IFN-	α, but was reduced after 1 and 2 h of stim-
ulation	(Figure	2C).	Together,	these	functional	data	and	the	fact	
that the variant is de novo strongly suggest that Patient 3 has an 
AD	STAT1	deficiency.

In conclusion, patients presenting with disseminated myco-
bacterial infections in early or late childhood with bi- allelic or 
nonconclusive genetic variants in genes involved in mycobacterial 
immunity	need	to	be	phenotyped	by	functional	assays	of	the	IFN-	γ 
/STAT1	signaling	pathway	in	monocytes.	These	assays	are	crucial	in	
assessing	the	extent	of	IFN-	γ pathway signaling defects and in clin-
ical decision- making.

KE Y WORDS
IFN-	γ receptor, mendelian susceptibility to mycobacterial disease, 
mycobacterial infection, SOCS1, STAT1
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