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L E T T E R  T O  T H E  E D I T O R

Three patients with defects in interferon gamma receptor 
signaling: A challenging diagnosis

To the Editor,
Mendelian susceptibility to mycobacterial disease (MSMD) is a rare 
inherited disorder characterized by infections with weakly virulent 
mycobacteria in otherwise healthy individuals.1 MSMD is caused 
by genetic defects in genes coding for proteins in the IL-12/IFN-γ 
signaling pathway.2–4 IFN-γR1 deficiency is a common cause of 
MSMD.1,5–7 The pathogenic variants in IFNGR1 can be either auto-
somal recessive (OMIM #209950) or dominant (OMIM #615978),8 
resulting in complete or partial functional defects.7 Lack of surface 
expression leads to a complete loss of function. Expression of hypo-
morphic or amorphic IFN-γR1 can lead to either partial loss of func-
tion or have a dominant negative effect by impairing the wild-type 
allele. Complete loss of function in IFN-γR signaling results in se-
vere mycobacterial infections in early childhood and poor survival, 
while variants with partial loss of function may result in a milder 
clinical phenotype that manifests later in childhood. A general ap-
proach in diagnosing patients with MSMD has been proposed in 
the literature using flow cytometry, lymphocyte immunophenotyp-
ing, and sequencing of genes known to be involved in mycobacte-
rial host immunity.7,9 However, since recent advances in genomic 
analysis technologies, a genotype-first approach for patients with 
a suspicion of an inborn error of immunity has currently become a 
more typical approach.10 While having the advantage of analyzing 
multiple genes simultaneously, some variants can be missed and the 
interpretation of the significance of novel variants or new combina-
tion of hypomorphic variants can be a diagnostic challenge. Here, 
we describe three patients with MSMD with novel or new combi-
nations of hypomorphic variants in which functional assays were 
crucial to determine the extent of the interferon gamma receptor 
signaling defects.

Patient 1 is a 6-year-old girl who was admitted to our pediatric 
ward with progressive cough, fever, and tachypnea. She is the only 
child of non-consanguineous parents (Figure 1A). Her medical history 
was remarkable with more than 20 hospital admissions for bronchial 
hyperreactivity, lower respiratory tract infections, and a coarctec-
tomy at the age of 2. Imaging showed mediastinal and hilar lymphade-
nopathy, a large right upper lobe mass and lymph nodes compressing 
the trachea (Figure S1). An ultrasound showed three focal lesions in 
the spleen and hepatomegaly. Because of her severely compromised 
airway, steroids were given, improving intraluminal tracheal diameter. 

Histological examination on the lymph node ruled out malignant lym-
phoma. Sputum, stomach fluid, lymph node biopsy, and bone marrow 
culture revealed Mycobacterium avium. She was not vaccinated with 
Bacillus Calmette–Guérin (BCG). Plasma IFN-γ level on admission 
was elevated (311 pg/ml). She was treated with azithromycin, rifam-
picin, and ethambutol. Amikacine was added for the first 2 months. 
She recovered after a year of treatment. Patient 2 is a 7-year-old boy 
who was admitted with unexplained and recurrent low-grade fever, 
neck and leg pain, vasculitis-like skin lesions, and polydipsia for sev-
eral months. He had a medical history with recurrent bronchial hy-
perreactivity, recurrent parotitis, parechovirus-associated radiculitis, 
and cluster headache. A brain MRI, CT scans of thorax and verte-
brae, total body X-ray studies, and abdominal ultrasound showed a 
hypophysitis leading to panhypopituitarism, several bone lesions in 
skull, vertebrae and hip, hilar lymphadenopathy, and a single lesion in 
the spleen. Tuberculin skin test showed induration of 18mm. Cultures 
of a bone lesion and sputum grew Mycobacterium persicum. Patient 2 
was also not vaccinated with BCG. Serum IFN-γ levels were undetect-
able. He started treatment with rifampicin, isoniazid, and ethambutol 
and hydrocortisone, levothyroxine, and desmopressin for his panhy-
popituitarism and has improved very well. Patient 3 is a 1-year-old 
girl with a swollen right upper arm and axillary lymphadenopathy. Her 
medical history showed bronchial hyperactivity and eczema. She was 
vaccinated for BCG during infancy and had a BCG scar that looked 
inflamed. A CT scan showed multiple active hilar and axillary lymph 
nodes, a splenic lesion and osteolytic lesions of her right humerus, 
two ribs, and a vertebral lesion in L2. Pathology of a bone biopsy from 
the right humerus showed lesions compatible with Langerhans cell 
histiocytosis (LCH). Treatment for multifocal LCH was started using 
prednisone and vinblastine. The bone lesions showed improvement, 
but new skin lesions appeared at the site of the BCG scar, head, and 
back. Repeated CT scans showed multiple bone lesions in scapulae, 
ribs, and progression of hilar and axillary lymphadenopathy. Skin bi-
opsies of the lesions showed granulomatous infiltration and grew 
Mycobacterium bovis BCG strain. The previous diagnosis of LCH was 
re-evaluated, and a new diagnosis of BCG-osis was made. Treatment 
with rifampicin and isoniazid resulted in rapid improvement on skin 
and bone lesions and on lymphadenopathy.

A diagnostic whole exome sequencing (WES)-based PID gene panel 
analysis was used as first-line diagnostic approach. In Patient 1, one 
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heterozygous pathogenic variant in the IFNGR1 gene NM_000416.2 
(IFNGR1):c.188T>G, p.(Val63Gly) was identified. However, no second 
variant was detected. Interestingly, only the IFNGR1 transcript with 
the p.(Val63Gly) variant was identified with RNA expression analy-
sis (Figure 1B), and a SNP array showed decreased binding of one 
probe in exon 3 of IFNGR1. Long-range PCR using primers surround-
ing exon 3 showed a heterozygous insertion (Figure 1C). Sequence 
analysis revealed that this insertion concerned a complex insertion 
of 136 nucleotides of the right arm and the poly-A tail of an AluY 
transposable element combined with a 4-nucleotide duplication in 
exon 3: NM_000416.2(IFNGR1):c.210_211ins[136;A[?];207_210] 
(Figure 1D). Parental segregation analysis showed that the two variants 
were bi-allelic (Figure 1A). Patient 2 was compound heterozygous for 
a known pathogenic variant NM_000416.2 (IFNGR1):c.373 + 1G>T, 
p.(?) and variant NM_000416.2(IFNGR1):c.110T>C, p.(Ile37Thr), clas-
sified as probable pathogenic (Figure 1D). Parental segregation analy-
sis showed that the two variants were bi-allelic (Figure 1A). In Patient 3, 
a novel variant in the STAT1 gene: NM_007315.3 (STAT1):c.1379A>T, 
p.(Asn460Ile) was identified (Figure 1C). This variant was not identi-
fied in the gnomADv2.1.1 control populations. Parental segregation 
analysis showed this was a de novo variant (Figure 1A).

Functional analysis was performed to determine the effect on the 
IFN-γ/STAT1 signaling pathway. The surface expression of IFN-γR1 
on monocytes was severely reduced in Patient 1 and Patient 2, while 
the expression was normal in Patient 3 (Figure 2A). In Patient 1 and 2, 
the expression of STAT1 was normal (Figure S2), while the phosphor-
ylation of STAT1 was severely reduced in response to stimulation 
IFN-γ, but normal upon IFN-α stimulation (Figure 2B). Furthermore, 
the upregulation of the IFN-gamma-regulated genes SOCS1 and 
FCGR1B was absent after stimulation with IFN-γ (Figure 2C,D) and 
normal upon IFN-α stimulation (Figure 2C,D). In line with that, mem-
brane expression of the IFN-gamma-regulated gene CD64 was not 
increased after IFN-γ stimulation in Patient 2 (Figure  S3). These 
functional data suggest that Patient 1 and 2 have a defect in IFN-
gamma signaling. For Patient 1, the life-threatening presentation of 
disease in combination with the results of the functional analyses 
led to refer her for an allogeneic hematopoietic stem cell transplan-
tation, which was successful.

The STAT1 gene variant p.(Asn460Ile) in Patient 3 is located 
in the DNA-binding domain of the STAT1 protein. Studies on 
the crystal structure of STAT1  showed that Asn460 is import-
ant for DNA binding since it is the only amino acid that directly 

F I G U R E  1 Overview of the genetic 
variants identified in IFNGR1 and STAT1. 
Family pedigree of the patients indicating 
the genetic variant identified the patients 
(A). RNA sequence analysis in Patient 
1 identified only the c.188T>G variant 
(B). PCR using primers surrounding exon 
3 on DNA derived from Patient 1 (P1) 
showed an additional band compared 
with controls (C) (C). Linear presentations 
of the human IFN-γR1 (D) and STAT1 
protein (E) indicating the different 
domains and genetic variants identified 
in the three patients. SP, signal peptide; 
TAD, transactivation domain; TM, 
transmembrane domain. The binding 
location for JAK1 and STAT1 is indicated 
with black lines. The numbers underneath 
the IFN-γR1 and STAT1 proteins indicate 
the amino acid numbering. The numbers 
underneath the AluY transposable 
element indicate the nucleotide 
numbering of the AluY 
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interacts via hydrogen bonds to DNA, implying that this amino 
acid is crucial for STAT1 function.11,12 In Patient 3, STAT1 pro-
tein expression was not affected (Figure S2), but the phosphor-
ylation of STAT1 was slightly decreased (Figure 2B). Expression 
of SOCS1 and FCGR1B seemed normal after 0.5 h of stimulation 
with IFN-γ and IFN-α, but was reduced after 1 and 2 h of stim-
ulation (Figure 2C). Together, these functional data and the fact 
that the variant is de novo strongly suggest that Patient 3 has an 
AD STAT1 deficiency.

In conclusion, patients presenting with disseminated myco-
bacterial infections in early or late childhood with bi-allelic or 
nonconclusive genetic variants in genes involved in mycobacterial 
immunity need to be phenotyped by functional assays of the IFN-γ 
/STAT1 signaling pathway in monocytes. These assays are crucial in 
assessing the extent of IFN-γ pathway signaling defects and in clin-
ical decision-making.
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