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Computational drug repositioning, designed to identify new indications for existing drugs, significantly reduced the cost and time
involved in drug development. Prediction of drug-disease associations is promising for drug repositioning. Recent years have
witnessed an increasing number of machine learning-based methods for calculating drug repositioning. In this paper, a novel
feature learning method based on Gaussian interaction profile kernel and autoencoder (GIPAE) is proposed for drug-disease
association. In order to further reduce the computation cost, both batch normalization layer and the full-connected layer are
introduced to reduce training complexity. The experimental results of 10-fold cross validation indicate that the proposed method
achieves superior performance on Fdataset andCdataset with theAUCs of 93.30% and 96.03%, respectively, whichwere higher than
many previous computational models. To further assess the accuracy of GIPAE, we conducted case studies on two complex human
diseases. The top 20 drugs predicted, 14 obesity-related drugs, and 11 drugs related to Alzheimer's disease were validated in the
CTD database. The results of cross validation and case studies indicated that GIPAE is a reliable model for predicting drug-disease
associations.

1. Introduction

For the past few decades, development of new drugs has
been a time-consuming and costly process. The cost of
developing new drugs has been rising in recent years, but
the profits of new drugs are declining. Drug development is
divided into three phases: the discovery phase, the clinical
phase, and the clinical development phase. The first step in
drug discovery phase is to identify potential drug-disease
associations. Computational approaches for predicting drug-
disease associations are drawing increasing attention in
recent decades. Some redirected drugs have been successfully
identified by rational observations. In view of the advantages
of drug repositioning, it is an urgent need to utilize a more
efficient approach for computational repositioning methods
systematically.

In the past few years, a large number of computational
methods have been proposed to predict drug-disease asso-
ciations. For instance, Wang et al. proposed the TL-HGBI

method, which is a computational framework based on
a heterogeneous network model [1]. Mart́ınez et al. built
a network of interconnected drugs, proteins, and diseases
and applied DrugNet to different types of tests for drug
repositioning [2]. Lu et al. proposed a computational tool,
DR2DI, to apply high-dimensional and heterogeneous omics
data as information source to accurately reveal the potential
associations between drugs and diseases [3]. Wu et al. devel-
oped a semisupervised graph cut algorithm, SSGC, to find the
optimal graph cut [4]. Chen et al. used the recommendation
system model to predict the relationship between drugs
and diseases and put forward two different recommendation
system models: ProbS and HeatS [5]. However, the data
integration adopted by these methods only simply considers
the linear combination between different types of features.
Developing extensible and interpretive models by fusing
multiple data sources remains challenging.

The drug repositioning problem is basically a prediction
problem, which is usually defined as a classification task to
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solve. Classification tasks normally include two processes,
feature extraction and classification. In the feature extraction
process, the features of the drug and the features of the disease
are, respectively, extracted, and then the drug and the disease
feature are spliced into a drug-disease pair feature. In the
process of classification, the extracted drug-disease features
are classified by a classifier to obtain the classification results.
For the approach of calculating features, the raw dataset as the
materials of prediction problem has large noise information,
which is themain challenge for the prediction task. Choosing
a method for extracting the most meaningful features in each
sample plays an important role in the subsequent prediction
tasks. For example, Wang et al. used the fingerprints of
the drug to generate Tanimoto score as the feature of the
drug. But the features which they used only contained the
structural information of the drug. Liang et al. combined the
drug fingerprints to extract the characteristics of LRSSL and
extracted important drug characteristics from multiple drug
characteristic spectra under the constraint of L1-norm [6].

In recent years, in addition to the traditional feature
extraction methods, feature extraction methods based on
deep learning have been widely used. Autoencoder can
learn features by reducing the dimension of the feature.
For instance, Vishnubhotla et al. applied autoencoder to the
modeling of low-dimensional coefficient model [7]. Badino
et al. apply autoencoder for the unsupervised identification
of subword units [8]. With the development of autoen-
coder and deep learning techniques, applications based on
autoencoder have receivedmore andmore research attention.
Using Autoencoder to map raw features to low-dimensional
spaces can more effectively measure the relationship between
drugs and disease. Along this promising direction, this
work proposes a novel feature extraction method based on
autoencoder for learning ameaningful feature representation
of drug fingerprints. By doing sowe can set objective function
with respect to recovering new links on known drug-disease
association network, considering the nonlinear combination
of different features.

Computational methods based on statistical rules and
machine learning can be used to supplement clinical trials
to determine the relationship between drugs and disease
at low cost. In addition, they can integrate different types
of data resources related to diseases and drugs to generate
experimental validation candidates. Much has been done
in this promising direction. For example, SCMFDD applies
similarity constrained matrix factorization to identify poten-
tial indications for a given drug [9]. LRSSL associates drugs
with diseases through L1 regularized regressionmodel, which
improves the interpretability of the model [6]. SSGC is a
semisupervised graph cut algorithm to find the optimal
graph cut [4]. Inspired by the success of the recent machine
learning approach, we have proposed a machine learning-
based method to predict new drugs that are most likely to
treat a particular disease.

Public databases store all drug-disease associations that
have been confirmed by clinical studies, but a large number
of unknown relationships remain to be studied. In this study,
we propose a drug repositioning computationalmethod com-
bining Gaussian interaction profile kernel and autoencoder

Table 1: General statistics on Fdataset and Cdataset.

Datasets Drugs Diseases Interactions
Cdataset 663 409 2532
Fdataset 593 313 1933

(GIPAE). GIPAE combines data information from multiple
data sources, including drug Gaussian interaction profile
kernel similarity, drug fingerprints, disease semantic simi-
larity, and diseases Gaussian interaction profile. Secondly, a
module based on autoencoder technology is built to extract
the useful information of drug fingerprints and integrated
the drug Gaussian interaction profile as the final drug feature
descriptor. Similarly, disease Gaussian interaction profile
similarity and semantic similarity are integrated into the final
disease feature descriptor. Finally, the feature descriptor is
used as the inputs of the random forest classifier to predict the
association of each type of drugwith all diseases.The purpose
of our study is to establish an effective prediction model to
look for new drug-disease association and to provide deeper
understanding for the study of drug-disease association by
looking for the influence factors.

To evaluate the performance of GIPAE, 10-fold cross
validation was implemented on the Fdataset. GIPAE was
compared with several state-of-the-art methods which were
previously proposed for drug repositioning.The results show
that the proposed method has better performance than the
state-of-art methods. In addition, we validated the proposed
model against two human disease including Obesity and
Alzheimer disease. As a result, more than 10 of the top-20
drug candidates (14/20 for Obesity and 11/20 for Alzheimer
disease) predicted by GIPAE were successfully confirmed by
CTD database [10]. These experimental results indicated that
GIPAE is effective to predict drug-disease associations on a
large scale.

2. Materials and Methods

2.1. Datasets. In this work, we use two drug-disease associa-
tion datasets following Gottlieb et al. and Luo et al. [11, 12].
As shown in Table 1, Gottlieb et al. collected 593 drugs,
313 diseases, and 1933 validated drug-disease associations
from multiple data sources, which we here abbreviate as
Fdataset. Luo et al. collected another dataset called Cdataset
which covers 663 drugs, 409 diseases, and 2532 associations
between them. The information of drugs is extracted from
DrugBank, a comprehensive database containing extensive
information about drugs [13]. The drug fingerprints defined
in the PubChem database were extracted to represent the
chemical substructures of drugs [14]. Disease information
comes from human phenotypes definition in the Online
Mendelian Inheritance in Man (OMIM) database, which
focuses on human genes and disease [15]. In this work,
we randomly generate negative samples from the unlabeled
drug-disease pairs with the same number of the positive ones.

2.2. Feature Extraction Based on Autoencoder. Autoencoder
has made remarkable progress with regard to its learning
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Figure 1: Structure of autoencoder.

features for classification of more complex data such as
image classification or voice recognition. It proves to be
effective in solving different types of problems in datamining,
gaining increasing attention for the application of deep
learning-based applications in feature extraction for drugs.
Autoencoder is a specific neural network structure, which is
composed of two parts: encoder and decoder. As shown in
Figure 1, it tries to learn a function:

x́ = fW,b (x) ≈ x (1)

where x is the input vector. W = (W1,W2) and b = (b1, b2)
represent the variables for weights and the biases. Given a
training sample set x, the autoencoder first encodes the input
x into the hidden representation through a deterministic
mapping as

Y = 𝜎 (W1x + b1) (2)

𝜎 (x) = 1
1 + exp (−x) (3)

𝜎(x) denotes an elementwise application of the logistic sig-
moid.The resulting hidden representation, Y, is thenmapped
back to a reconstructed vector, x́, with a similar mapping
function:

x́ = 𝜎 (W2Y + b2) (4)

In this paper, the drug fingerprint is encoded and decoded by
an autoencoder to obtain a matrix FG representing structural
features.

2.3. Similarity for Drugs and Disease. The use of Gaussian
interaction profile kernel can allow us to consider the
nonlinear relationship of known drug-disease associations
when we construct the feature representation. The method
of Gaussian interaction profile kernel has been widely used

in works relevant to disease prediction. For example, Chen
et al. used Gaussian interaction profile kernel to calculate
the similarity between MiRNA and disease when predicting
Mirna-disease association [16]. Chen et al. used heteroge-
neous graphs to infer the association of Mirna-disease and
used Gaussian interaction profile kernel to calculate the
miRNA similarity and disease similarity [17]. Lu et al. used
theGaussian interaction profile kernel to calculate the disease
similarity when predicting the drug-disease association [3].
The Gaussian interaction profile of the disease is calculated
based on the assumption that similar diseases (e.g., different
subtypes of lung cancer) can often bind to the same drug
molecule and vice versa.The definition binary vector Y(d(x))
represents the interaction profiles of disease d(x)whose value
describe whether d(x) is associated with each disease. The
binary vector Y(d(x)) is equivalent to the x-th row vector of
adjacency matrix. Then Gaussian interaction profile kernel
similarity between d(x) and d(y) was defined as follows:

GIPdis (d (x) , d (y))

= exp (−𝜕d Y (d (x)) − Y (d (y))

2)

(5)

where parameter 𝜕d was implemented to tune the kernel
bandwidth with normalizing original parameter as ́𝜕d as
follows:

𝜕d =
́𝜕d

[(1/nd) ∑ndi=1 ‖Y (d (x))‖2]
(6)

Similarly, the definition binary vector Y(u(x)) represents the
interaction profileswith drug u(x), andY(u(y)) represents the
interaction profiles with the drug u(y). Gaussian interaction
profile kernel similarity for drug GIPdrug between u(x) and
u(y) is calculated as follows:

GIPdrug = exp (−𝜕u Y (u (x)) − Y (u (y))

2) (7)

𝜕u =
́𝜕u

[(1/nu) ∑nui=1 ‖Y (u (x))‖2]
(8)

Here, the value of ́𝜕u is set to 0.5 for simplicity, and the nu
represents the number of the drugs.

We further calculate another type of disease similarity,
that is, disease semantic similarity by using MimMiner,
which measures disease similarity by calculating similarities
between grid items. Specifically, we measure disease simi-
larity using the similarity between MeSH terms and then
compute similarity of correlation between drugs and diseases
using known drug-disease association information. By apply-
ing the above method, the disease semantic similarity DSr
was obtained. We construct a new weighted disease sharing
network based on the known drug-disease associations. The
disease set represents the point of the network; the shared
disease of the disease pair represents the weight. Diseases in
the sharing network were clustered in groups by using Clus-
terONE [18]. ClusterONE is a method of graph clustering,
which can be used to identify the cohesive modules in the
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weighted network. The cohesiveness of a cluster K could be
defined by ClusterONE:

f (K) = Cin (K)
(Cin (K) + Cbound (K) + P (K))

(9)

where Cin represents the total weight of edges in vertex set
K, 𝐶𝑏𝑜𝑢𝑛𝑑 represents the total weight of edges connecting the
set with the rest of the group, and P is the penalty term. We
assume that drug uq and drug up are located in the same
cluster K; the disease semantic similarity DS between drug
uq and drug up is defined as [12]

DS = (1 + f (K)) × DSr (10)

In addition, for the disease semantic similarity between two
diseases, if it is equal to or greater than 1, we use 0.99 instead.

2.4. Multisource Feature Fusion. In this study, we ultimately
used descriptors that fused multiple sources of data includ-
ing disease similarity, drug similarity, and drug fingerprint
to predict the drug-disease association. There are some
unknown associations for diseases/drugs in the dataset, and
the corresponding Gaussian interaction profile kernel has a
value of 0. To address this challenge, we use disease semantic
similarity and drug structure similarity as a complement.The
advantage of this method is that it can reflect the features of
disease/drug from different perspectives.

We constructed two types of disease similarity, a semantic
similarity model DS and a Gaussian interaction profile
kernel similarity GIPdis. Calculate the disease similarity
Sim(d(x), d(y))for disease d(x) and disease d(y) as

Sim (d (x) , d (y)) =
{
{
{

GIPdis (d (x) , d (y)) if d (x) and d (y) has Gaussian interaction profile similarity

DS (d (x) , d (y)) otherwise
(11)

We use a Gaussian interaction profile kernel similarity of a
given disease pair (d(x), d(y)) to fill the feature matrix. If the
disease Gaussian interaction profile kernel for a given disease
pair (d(x), d(y)) is zero, then the disease semantic similarity
is used to fill.

We integrate drug structure similarity FG and drug
Gaussian interaction profile kernel similarity GIPdrug for the
similarity of drugs. The formula calculating drug similarity
RSim is

RSim (d (x) , d (y)) = [GIPdis, FG] (12)

The RSim and FG feature matrices are spliced in line.

2.5. Feature Extraction in GIPAE. Deep learning has received
extensive attention in the field of predicting drug-disease
association. We introduce the batch normalization layer and
the full-connected layer here to further improve the feature
of drugs and disorders through deep learning. In the deep
neural network training process, each batch sent to the
network is usually trained in order, so that each batch has a
different distribution.The Batch Normalization layer forcibly
pulls the distribution of the neural network input values back
to the standard normal distribution with a mean of 0 and
a variance of 1. As shown in Figure 2, we introduce a full-
connected layer tomap features to the sample tag space. Here,
the activation function of each neuron in the full-connection
layer adopts ReLU function:

f (x) = max (0, x) (13)

Ensemble learning algorithms have attracted increasing
attention because they are more accurate than a single classi-
fier. They are based on the premise that a group of classifiers
is better than a single classifier. Random Forest (RF) has been

widely applied in bioinformatics problems, including protein
or peptide recognition, in vivo transcription factor binding
prediction, and enhancer identification [19]. The RF consists
of a combination of classifiers, each of which assigns themost
frequent class to the input vector 𝜀 by a single vote.

ĈB
rf = majority vote {Ĉb (𝜀)}

B
1

(14)

where Ĉb(𝜀) is the class prediction of the b-th random tree.
RF increases tree diversity by growing trees from different
subsets of training data. Since RF corrects the habit of
overfitting a training set by a decision tree, it generally
has more stable prediction performance than other single
classifiers such as SVM. In the GIPAE model, we chose
random forests as our classifier.

The process of feature representation consists of three
steps (see Figure 3). Specifically, in the first step, the drug
Gaussian interaction profile kernel is combined with drug
fingerprint and disease Gaussian interaction profile kernel is
combined with disease semantic similarity to obtain the drug
and disease similar descriptors.The second step uses the full-
connected layer to extract the features based on the combined
drug and disease similarity. In its last step, a random forest
classifier is introduced to yield the predicted scores using the
outputs of second step as inputs.

3. Results and Discussion

3.1. Evaluation Criteria. To evaluate the performance of
GIPAE, different types of evaluation criteria were used in this
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Figure 2: Structure of full-connected layer.

work to evaluate the performance of the proposedmodel, i.e.,
precision (Prec.), F1-score, Recall, and accuracy (Acc.).

Prec. = TP
TP + FP (15)

Recall = TP
TP + FN (16)

F1-score = 2TP
2TP + FN + FP (17)

Acc. = TP + FN
TP + TN + FP + FN (18)

where TP, FP, and FN represent the number of positive sam-
ples correctly predicted in the model, denoting the number
of correctly predicted negative samples, the number of falsely
predicted positive samples, and the number of false predicted
negative samples, respectively. For further evaluation, we also
compute the receiver operating characteristic (ROC) curve,
sum up the ROC curve in a numerical way, and calculate the
area under the ROC curve (AUC).

3.2. Evaluate Prediction Performance. In this study, we
trained machine learning models to predict whether certain
drugs are related to certain diseases. The performance of the
model was evaluated by cross validation method on Fdataset
and Cdataset. In this method, all data sets are randomly
divided into ten roughly equal parts for cross validation.
Specifically, one group of them is taken as the test set, and
the remaining nine groups are taken as the training set. Each
time a different subset is used as the test set and the remaining
nine subsets are used as training sets to form ten models. In

this process, the Gaussian interaction profile kernel similarity
uses the matrix obtained above. Finally, the ten models are
used to predict the classification, and the average of ten
models was taken as the final result.

We implemented our proposed method by using 10-
fold cross validation on the Fdataset. Table 2 shows that
our proposed model yielded an average accuracy of 87.30%,
precision of 86.06%, recall of 89.08%, and f1-score of 87.53%
with standard deviations of 1.84%, 2.38%, 1.49%, and 1.74%,
respectively. Table 3 shows that, in the experiment on the
Cdataset, ourmethod yielded the average accuracy of 90.52%,
precision of 89.77%, recall of 91.47%, and f1-score of 90.60%
with standard deviations of 1.57%, 1.45%, 2.31%, and 1.61%,
respectively.

We further statistically discuss the prediction result of
10-fold cross validation. As shown in Figure 4, we illustrate
the distribution of predicted scores of positive and negative
samples on Fdataset. As a result, for more than 85% of
negative samples and 90% of positive samples, their predicted
scores are lower than 0.2 and higher than 0.8, respectively.
Specifically, 69% and 16% of negative samples’ scores lie in the
range of 0-0.1 and 0.1-0.2, respectively, while 76% and 14.3%
of the positive samples achieve scores of 0.9-1.0 and 0.8-0.9,
respectively.

These results indicate that the information including
the Gaussian interaction profile kernel, the disease semantic
similarity, and the drug fingerprint is sufficient to predict the
interaction of a given drug-disease pair.The strong prediction
performance of GIPAE model comes from the selection of
drug-disease pair extraction method and machine learning
classifier. Random forest classifier shows better performance
due to ensemble model and random tree splitting strategy.

To further evaluate the performance of the proposed
method, we compared it to the other five models previously
proposed using the same ten-fold cross validation framework
and exploring the same datasets. The five methods are
MBiRW [12], DrugNet [2], HGBI [20], KBMF [21], andDRRs
[22]. As shown in Figure 5 and Table 4, on Fdataset, our
method achieves the highest AUC (Area Under the ROC
Curve) which is 0.155 higher than that yielded by DrugNet,
0.104 higher than HGBI, and 0.018 higher than KBMF.
MBiRW and DDRS yielded poor AUCs of 0.917 and 0.930.
On Cdataset, GIPAE has an AUC of 0.960. DrugNet has an
AUC of 0.804; MBiRW, HGBI, KBMF, and DRRS yielded
AUC of 0.858, 0.928, 0.933, and 0.947. The results from both
experiments demonstrate that the performance of GIPAE
is significantly better than that of the other five models.
Different from these comparison methods, our model has
a wider application, using deep learning to express low-
dimensional space, combined with ensemble classifier and
random tree splitting strategy to achieve more significant
prediction results.

3.3. Comparison among Different Classifiers. In this section,
we try to replace random forest with Support vector machine
(SVM) to compare the effectiveness of combination of the
proposed feature extraction method and random forest
classifier [23]. SVM is a widely used supervised learning
algorithmwith outstanding performance in classification and



6 BioMed Research International

Drug

Disease

Fingerprint

Drug Gaussian Similarity

Disease Semantic
Similarity

Disease Gaussian Similarity

PubChem

MeSH

Sample Feature

ClassifierPredictdrug-disease 
association prediction

combination based on (11)

concatenating

YES NO

full-connected layer

Figure 3: Flowchart of GIPAE model to predict potential drug-disease associations.

1326

318
174

71 15 12 7 3 5 20 6 3 4 4 5 49 109

277

1476

0

400

800

1200

1600

0-0.1 0.1-0.2 0.2-0.3 0.3-0.4 0.4-0.5 0.5-0.6 0.6-0.7 0.7-0.8 0.8-0.9 0.9-1

co
un

t

Positive and Negative samples probability distribution

Negative Samples Positive Samples

Figure 4: Positive and negative sample probability distribution.

Table 2: Experimental results of 10-fold cross validation yielded by GIPAE on Fdataset.

Test set Acc. (%) Pre. (%) Recall (%) F1-score (%)
1 87.11 86.00 88.66 87.31
2 87.89 86.57 89.69 88.10
3 85.57 83.82 88.14 85.93
4 91.19 91.19 91.19 91.19
5 87.05 85.22 89.64 87.37
6 88.60 86.34 91.71 88.94
7 86.01 84.92 87.56 86.22
8 84.97 82.61 88.60 85.50
9 85.49 84.77 86.53 85.64
10 89.12 89.12 89.12 89.12
Average 87.30±1.84 86.06±2.38 89.08±1.49 87.53±1.74
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Figure 5: (a) and (b) Shown are the ROC curves yielded by GIPAE using 10-fold cross validation on Fdataset and Cdataset, respectively.

Table 3: Experimental results of the 10-fold cross validation yielded by GIPAE on Cdataset.

Test set Acc. (%) Pre. (%) Recall (%) F1-score (%)
1 88.19 89.11 87.01 88.05
2 92.91 92.25 93.70 92.97
3 88.93 86.89 91.70 89.23
4 90.91 89.35 92.89 91.09
5 90.12 90.44 89.72 90.08
6 90.12 88.89 91.70 90.27
7 92.49 90.87 94.47 92.64
8 90.91 89.66 92.49 91.05
9 88.54 88.84 88.14 88.49
10 92.09 91.44 92.89 92.16
Average 90.52±1.57 89.77±1.45 91.47±2.31 90.60±1.61

Table 4: AUC results yielded by different methods using 10-fold cross validation.

Fdataset Cdataset
DrugNet [2] 0.778 0.804
HGBI [20] 0.829 0.858
KBMF [21] 0.915 0.928
MBiRW [12] 0.917 0.933
DRRS [22] 0.930 0.947
GIPAE (the proposed method) 0.933 0.960
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Figure 6: (a) and (b) Shown are the ROC curves yielded by SVM using 10-fold cross validation on Fdataset and Cdataset, respectively.

regression problems. Tables 5 and 6 show the results yielded
by combining the proposed feature descriptor with support
vector machine on Fdataset and Cdataset. On Fdataset,
SVM achieved accuracy, precision, recall, and f1-score being
79.31%, 79.28%, 79.36%, and 79.30%. Their standard devia-
tions are 1.58, 1.42, 2.69, and 1.75, respectively. On Cdataset,
SVM achieved accuracy, precision, recall, and f1-score being
83.83%, 83.93%, 83.69%, and 83.80%, respectively. Their
standard deviations are 1.60, 1.71, 1.92, and 1.62. It can be
seen from the comparison that the classification result of the
random forest classifier is better than the SVM classifier on
F dataset and Cdataset. As shown in Figure 6, on Fdataset,
the mean AUC is 0.8760. On Cdataset, the mean AUC was
0.9146. Among them, the average accuracy of random forests
on Fdataset and Cdatasets is 7% and 6.69% higher than SVM,
respectively. From the comparison we can see that, due to the
ensemble model and its random tree splitting strategy, the
random forest classifier can achieve better performance than
the SVM classifier using the proposed feature descriptor.

4. Case Study

To further evaluate the predictive effect of this model, we
selected Obesity and Alzheimer disease for case studies.
Specifically, we use Fdataset as the training set to train the
model. It is worth noting that when predicting the relevance
of a particular disease, all associations between a particular
disease and the drug should be removed. Take remaining
drug-disease associations as positive sample.Then, among all
unknown associations, the same number of associations with

the positive sample is randomly selected as negative samples,
and the negative samples are guaranteed not to be repeated.
Based on the predicted results of GIPAE, the top 20 drugs
were selected and compared with the CTD database.

Obesity is defined by the world health organization as
abnormal or excessive accumulation of fat that poses a
threat to human health. It is a major risk factor for many
chronic diseases. As shown in Table 7, after we compared the
predicted results with the CTD database records, 14 of the top
20 predicted drugs were confirmed. The other disease in our
case study is Alzheimer disease, which is a neurodegenerative
disease. Alzheimer disease is caused by a variety of factors,
including biological and psychosocial factors. Table 8 lists
the top-20 drugs predicted by GIPAE to be associated with
Alzheimer disease. Checking on CTD database, we success-
fully confirm 11 of them. It is worth noting that high-ranked
interactions that have not been reported may also exist in
reality. The case studies of Obesity and Alzheimer disease
suggest that GIPAE has a good performance with regard to
predicting the most promising diseases.

5. Conclusion

Drug-disease associations provide critical information for
drug reposition. Biological experiments for drug reposition-
ing are very expensive, so it is more advantageous to use com-
putational methods to address drug repositioning problems.
In this study, we proposed a novel computational method
based on machine learning and deep learning called GIPAE.
An underlying idea of the method that we propose is that the
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Table 5: Results yielded by SVM on Fdataset using 10-fold cross validation.

Test set Acc. (%) Pre. (%) Recall (%) F1-score (%)
1 78.87 79.79 77.32 78.53
2 77.83 78.12 77.32 77.72
3 80.93 81.91 79.38 80.63
4 78.50 78.06 79.27 78.66
5 81.87 81.22 82.90 82.05
6 80.31 80.00 80.83 80.41
7 79.02 79.17 78.76 78.96
8 80.57 78.37 84.46 81.30
9 79.02 79.17 78.76 78.96
10 76.17 77.01 74.61 75.79
Average 79.31±1.58 79.28±1.42 79.36±2.69 79.30±1.75

Table 6: Results yielded by SVM on Cdataset using 10-fold cross validation.

Test set Acc. (%) Pre. (%) Recall (%) F1-score (%)
1 82.68 82.42 83.07 82.75
2 86.61 86.05 87.40 86.72
3 83.99 82.82 85.77 84.27
4 83.79 84.34 83.00 83.67
5 81.62 81.75 81.42 81.58
6 82.41 83.06 81.42 82.24
7 85.77 86.06 85.38 85.71
8 84.58 84.58 84.58 84.58
9 84.98 86.42 83.00 84.68
10 81.82 81.82 81.82 81.82
Average 83.83±1.60 83.93±1.71 83.69±1.92 83.80±1.62

Table 7: Top-20 drugs predicted by GIPAE to be associated with Obesity based on Fdatabase.

Index Drug name Evidence Index Drug name Evidence
1 Phendimetrazine Confirmed 11 Almotriptan N.A.
2 Ticlopidine Confirmed 12 Thioguanine N.A.
3 Sibutramine Confirmed 13 Terfenadine Confirmed
4 Nitroglycerin Confirmed 14 Sodium tetradecyl sulfate N.A.
5 Mesalazine Confirmed 15 Salsalate Confirmed
6 Flutamide Confirmed 16 Ramipril N.A.
7 Felodipine Confirmed 17 Procainamide N.A.
8 Diethylpropion Confirmed 18 Pravastatin Confirmed
9 Desipramine Confirmed 19 Phentermine Confirmed
10 Captopril N.A. 20 Orlistat Confirmed

known drug-disease associations and drug fingerprint have
a great influence on drug-disease associations. Specifically,
GIPAE is a computational model based on Gaussian inter-
action profile kernel and autoencoder. It effectively integrates
data on the association between known drugs and diseases.

We evaluated our proposed model on Fdataset and
Cdataset datasets and tested them with 10-fold cross val-
idation. On Fdataset, GIPAE obtained 86.06% prediction

precision with 89.08% recall and the AUC of 93.30%. On
Cdataset, GIPAE obtained 89.77% prediction precision with
91.47% recall and the AUC of 96.03%. These good experi-
mental results show that ourmodel can effectively predict the
potential association between drugs and diseases. In addition,
we conducted case studies on two complex human diseases
(Obesity and Alzheimer disease) and found that more than
half of the top 20 predicted results could be verified in the
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Table 8: Top-20 drugs predicted by GIPAE to be associated with Alzheimer disease based on Fdatabase.

Index Drug name Evidence Index Drug name Evidence
1 Dopamine Confirmed 11 Ranitidine Confirmed
2 Methylergonovine N.A. 12 Nizatidine N.A.
3 Meperidine N.A. 13 Nifedipine Confirmed
4 Gemcitabine Confirmed 14 Lithium Confirmed
5 Betamethasone Confirmed 15 Esomeprazole N.A.
6 Pioglitazone Confirmed 16 Ergocalciferol Confirmed
7 Guanethidine Confirmed 17 Dihydrocodeine N.A.
8 Valrubicin N.A. 18 Amitriptyline Confirmed
9 Teriparatide N.A. 19 Almotriptan Confirmed
10 Rizatriptan N.A. 20 Adenosine N.A.

CTD database. These good experimental results indicate that
this method can be used as a reliable application to predict
potential interactions between drugs and diseases. In future
work, we will consider ways to improve feature extraction to
achieve higher prediction accuracy.
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