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IL-7 is a Key Driver Cytokine in Spondyloarthritis?
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The rationale for a type 17 signature in the pathogenesis of spondyloarthritis (SpA) has been increasing and being ratified in studies
recently. IL-7 is a cytokine whose ability to stimulate IL-17 production in both innate and adaptive immunity cells has made it a
promising target not only for a better understanding of the disease as well as an important potential therapeutic target in
patients with SpA.

1. Introduction

The human interleukin-7 gene (IL-7) is located on chromo-
some 8q12-13, and its molecular weight is 17.4 kDa [1]. It is
classified as a cytokine of the hematopoietin family that
includes IL-2, IL-3, IL-4, IL-5, IL-9, macrophage colony-
stimulating factor (GM-CSF), IL-13, and IL-15 [2, 3]. This
cytokine family shares the common receptor of the γ chain
(γc), also known as CD132. The IL-7 receptor (IL-7R) is a
heterodimer (consisting of two subunits), interleukin-7-α
(CD127) receptor, and γc receptor (CD132) (Figure 1).

IL-7 already has a recognized function in B cell precur-
sors and acts on both mature [4] and immature T cells [5–
7], regulating homeostasis of the T cell population [8, 9],
for example, IL-7 levels increase when T cell depletion is
present for any reason [10–12]. The description of IL-7
receptor alpha chain mutations in patients with severe com-
bined immunodeficiency (SCID) has confirmed that IL-7 is
essential for the development of T cells [13].

The nonderived stromal bone marrow and epithelial cells
are the main sources of IL-7 [10]. However, as showed by
Ciccia et al. [14], Paneth cells also produce interleukin-7 in
the intestine especially in patients with ankylosing spondyli-
tis (AS). In addition, in activation by lipopolysaccharides in
the intestine, hepatocytes can significantly increase IL-7
secretion [15]. After secretion, IL-7 binds to the extracellular
matrix in lymphoid and nonlymphoid organs, including the
skin, liver, and intestine [10].

Consistent with the above writing, IL-7 is a pleiotropic
cytokine and plays a central role in the modulation of T
and B cell development, in addition to T cell homeostasis.
The potency and amplitude of the effects suggest that admin-
istration or neutralization of IL-7 may allow the modulation
of immune function in patients with lymphocyte depletion or
even in autoimmune diseases [2].

Since the most well-known function of IL-7 is that of
shaping and regulating CD8 cytotoxic T cells, the interesting
possibility of its role in diseases associated with the major
class I histocompatibility complex, such as spondyloarthritis
(SpA), arises. Several other roles in human and experimental
arthritis have recently been defined [16, 17]: IL-7 stimulates
the production of proinflammatory cytokines in experimen-
tal arthritis [18], influences ectopic lymphoid neogenesis
[19], promotes osteoclastogenesis [20, 21], and abolishes
the function of regulatory T cells (Treg) [22, 23].

SpA encompasses a group of chronic inflammatory con-
ditions, which may involve the axial skeleton (sacroiliac
spine and joints) and peripheral joints, as could be associ-
ated with extra-articular manifestations such as psoriasis,
inflammatory bowel disease (IBD), and uveitis, and usually
sharing a close association with HLA-B27 [24]. Thereto-
fore, SpA was based on the premise of an imbalance, espe-
cially of adaptive immunity, encompassing the IL-23 axis
as a polarization stimulator for a Th17 response, with con-
sequent IL-17 and TNF productions [25, 26]. However,
currently, the role of innate immunity cells as the main
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in the physiopathogenesis of SpAs has been growing expo-
nentially [27, 28].

The idea that SpA is a disease mediated by inflammatory
response type 17 (or type 3) has been growing, and therefore,
IL-17 has a dominant role in the inflammatory and prolifer-
ative cascades of human SpA [29–31]. Rihl et al. showed high
levels of mRNA and proteins IL-7 in peripheral SpA, which
were even higher than in rheumatoid arthritis (RA) [32]. In
addition, recent results indicate that the IL-7R pathway is
locally unregulated in the colon of patients with severe IBD
andmay contribute to the maintenance of chronic inflamma-
tion [33].

It has recently been shown that IL-7 stimulates not only T
helper lymphocytes 17 (LTh17) [34] but also innate immune
cells like γδ LT [35] and mucosa-associated invariant T
(MAIT) cells [36] to produce proinflammatory cytokines,
including IL-17 (Figure 2). An interesting fact is that these
innate-like T cells (T γδ, MAIT and ILC3) are the main
source of IL-17A, not Th17 cells, confirming the role of
innate immunity as a driver of pathophysiology in SpA
[27, 37].

2. The Role of IL-7 in Spondyloarthritis-
Associated Fibrosis

IL-7 counterregulates TGF-driven fibrotic processes and may
thus modulate the balance between inflammation and tissue
remodeling in SpA [38]. The balance between TGF and IL-
7 related to fibrosis is mediated by Smad, and in Figure 3,
we elucidate these possible interactions [39–42].

The major thought would be that by blocking IL-7 in
patients with SpA in an early period of inflammation, we

could prevent the process of tissue repair/fibrosis that is the
result of sustained inflammation. In theory, TGF antagonizes
IL-7 in a negative feedback process. By inhibiting IL-7, and
consequently inflammation, we may be able to prevent fibro-
sis. Studies to elucidate this mechanism between IL-7 × TGF
× inflammation/fibrosis need to be performed.

To resume, TGF-β and IL-7 share a reciprocal relation-
ship of antagonism, each of which is capable of downregula-
tion. Indeed, the ability of TGF-β to inhibit IL-7-induced
pre-B cell proliferation was recognized shortly after identifi-
cation of IL-7. While the mechanisms and implications of
this antagonistic correlation are not yet well clarify, the
potential role of these two molecules in several cell popula-
tions of immunity suggests that this interaction has impor-
tant influence on immunological regulation [2, 43].

3. IL-7 and Correlation between SpA and
MAIT Cells

MAIT cells can act on both the innate and the adaptive
immune systems [37]. Because they are unconventional T
cells, they produce cytokines faster than conventional T cells
and may have both Th1 profile (tumor necrosis factor (TNF)
and interferon-gamma (IFN-γ)) and a Th17 response (IL-
17A) [44]. These cells appear in large numbers in humans,
accounting for 1 to 10% of circulating T cells, 20 to 45% of
T cells in the liver, and 3 to 5% of lymphoid cells in the intes-
tinal mucosa [27].

MAIT cells emigrate from the thymus and mature in the
intestine. This process of maturation in the epithelial cells of
the gut therefore depends on local microbial flora as well as B
cells [27]. Since alteration in the composition of the
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Figure 1: IL-7Rα (CD127) associates with γc to (CD132) form the IL-7R. The γc cytokine signal via the Janus kinase- (JAK-) signal
transducer and activator of the transcription (STAT3 or 5) pathway.
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Figure 2: IL-7 stimulates T helper lymphocytes 17 (LTh17), innate immune cells like γδ LT, mucosa-associated invariant T (MAIT) cells, and
ILC3 to produce IL-17 through activating STAT.

Smad2/3

Smad2/3

Smad4

TGF-�훽

Fibrosis

(a)

Smad7

Smad2/3

Smad2/3

Smad4

TGF-�훽

Fibrosis

IL-7

(b)

Figure 3: (a) The TGF-β receptor phosphorylates Smad2/3. Phosphorylated, they bind to Smad4, and the resulting complex translocates to
the nucleus and activates transcription through binding to the CAGA sequence, i.e., initiates signal transduction. (b) Smad7 inhibits Smad2/3
TGF-β-mediated phosphorylation and competes with the Smad2/3 binding to the TGF-β receptor. In turn, TGF-β then induces the
production of both IL-7 (b) and Smad7, and this in turn is also stimulated by IL-7, ratifying a negative feedback loop of control of TGF-β.
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microbiota has been associated with the development of sev-
eral inflammatory arthritis [45], this type of interaction with
intestinal microbioma makes MAIT cells a very interesting
cell for understanding the pathogenesis of SpAs.

Therefore, high levels of IL-7 have been demonstrated
both in the intestinal tissue and in the inflamed joint tissue
of patients with AS [32, 46]. Elevated levels of IL-17 have
been attributed to the relationship of MAIT cells and IL-7,
and this phenomenon may extend to Th17 cells, since Th17
cells also have IL-7 receptor (IL-7R), which may be associ-
ated with susceptibility to SpA [27].

MAIT cells although are distinct in their development
and have MHC restriction when compared to Th17 cells rep-
resent an abundant and highly conserved semi-invariant T
cell population that produces IL-17, a major proinflamma-
tory cytokine thought to be involved in SpA pathogenesis.

4. The Role of IL-7 into SpA through LTγδ

Approximately 30 years ago γδ T cells were discovered [47,
48], and since then, γδ T cells have been associated with dif-
ferent infections and tumors, as well as autoimmune diseases,
like SpA in humans [49, 50]. IL-7 has therefore been
described as an essential cytokine in the regulation of devel-
opment and homeostasis for γδ T cells [51, 52].

The first association between T cells and production of
IL-17/IL-22 in human SpA has been described by Kenna
et al. [53]. Corroborating this finding, analyses of tissue sam-
ples from patients with enthesitis-related arthritis [54], reac-
tive arthritis or undifferentiated SpA [55], and juvenile
idiopathic arthritis (JIA) patients [56] showed increased IL-
17 levels produced by γδ T cells in both blood and synovial
fluid.

IL-17-producing γδ cells may not depend on STAT3
[57], but they are rapidly responsive to IL-23 signaling via
STAT3 [58]. Parallel to this, Michel et al. [35] showed a study
that identified the ability of IL-7 to activate STAT3 and stim-
ulate IL-17 production. In this way, we can infer that IL-7 is
capable of stimulating the production of inflammatory cyto-
kines such as IL-17 by γδ T cells and therefore link to the
pathophysiology of SpA.

However, another study demonstrated that the mainte-
nance of Th17 cells via the T cell receptor (TCRαβ) by IL-7
is mediated by STAT5 [59], which seems paradoxical since
STAT5 can antagonize Th17 differentiation. Further studies
are needed to better characterize these interactions.

5. The Role of IL-7 into Th17 Cells

Th17 cells were discovered in 2005 [60] and appear to coor-
dinate the body’s defense against extracellular bacteria and
fungi in some specific sites such as the gastrointestinal bar-
rier, respiratory tract, and skin [61]. Th17 cells have the
potential to interconnect innate and adaptive immunity,
and associated chemokines induce the attraction of other
types of Th cells at the sites of infection [62–64]. It has been
implicated in the pathogenesis of several immunomediated
inflammatory diseases, such as encephalomyelitis, inflamma-

tory bowel disease, systemic lupus erythematosus (SLE),
Sjögren’s syndrome, rheumatoid arthritis, and SpA [65–69].

The role of Th17 cells is well defined in the development
of SpA, and the use of the therapy either by blocking the
polarization of Th naive to Th17 [70] or by directly inhibiting
the IL-17 cytokine [71] is already performed in a clinical
practice.

According to the results of the study by Liu et al., IL-23
promotes via STAT3 the differentiation of Th17, while IL-7
is crucial for the survival and expansion of Th17 through
STAT5 signaling, which cannot be blocked by IL-23p19 spe-
cific antibody [59]. It also appears that there is a connection
between the IL-7 and IL-23 pathways, since the requirement
for the IL-23 receptor is required in the reexpression of IL-
7Rα in effector and Th17 memory cells [72]. These findings
suggest that IL-23 and IL-7 have roles in the development
of Th17 but perhaps in distinct phases.

6. IL-7 and the Correlation between Enthesitis
and ILC3

Another group of cells that integrate innate immunity are
innate lymphoid cells (ILCs) [73, 74]. ILCs are cells that con-
stitute mucosal tissues and demonstrate the characteristic of
rapid response to infection by pathogens or to tissue damage
[75, 76]. Three groups of ILCs are now recognized based on
the properties of cytokines: ILC1 expresses the T-bet tran-
scription factor and produces interferon-γ (IFN-γ) in addi-
tion to mediating immunity against intracellular pathogens
and tumors; ILC2 mainly produce IL-5 and IL-13; ILC3s
are an important source of cytokines type 17, IL-22 and IL-
17 [14].

Intact lymphoid cells from group 3 (ILC3) are able to
promote lymphoid organogenesis and potentiate immune
responses against fungal and bacterial infection, through
the production of IL-17 and IL-22. This type of inflammatory
response of the ILC3 is correlated to SpA pathogenesis.

IL-7Rα signaling that regulates the development and/or
maintenance of ILC remains poorly understood [77]. What
is already known is that mice with IL-7 deficiency severely
reduced the number of all ILC3 populations [78] and there-
fore exhibits defective lymph node development [79].

Parallel to this, Ciccia et al. [14] confirmed that IL-7-
expressing IL-7-specific epithelial cells stimulate ILC3 differ-
entiation, thus increasing IL-17 and IL-22 expression. This
study ratifies the suggestion of a fundamental role of these
specialized epithelial cells in the activation and amplification
of the innate intestinal immune response in patients with AS
resulting in active ILC3 differentiation.

Recently, a subset of T cells in the enthesis, highly respon-
sive to IL-23, has been described in a mouse model of SpA
[80]. Although the intestinal presence of these cells has not
been studied in the work of Sherlock et al. [80], several
immunological similarities are shared between murine
entheseal T cells and ILC3 that were described in the study
by Ciccia et al. [14]. Both murine and human cells were in
fact lyn negative, express IL-23R, and produce IL-17 and
IL-22. With these findings, it can be assumed that perhaps
innate immunity cells, such as ILC3, are more prominently
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associated with enthesitis/SpA than conventional T cells, and
therefore as the presence of IL-7R in those cells is a fact, the
IL-7 role could be presumed.

7. Conclusion

SpA has an important pathophysiological component of the
type 17 signature with production of proinflammatory cyto-
kines such as IL-17. IL-7 is a cytokine correlated with cells of
innate immunity (ILC, MAIT, and LTγδ) and adaptive
(Th17 cells) and seems to play an important role in the STAT
transcriptional stimulus in the type 17 response, either in the
production of cytokines or in the survival and expansion of
IL-17-producing cells.

IL-7 appears to be more important than IL-23 in the
polarization of the type 17 signature, since the IL-7 receptor
is present in the key cells of innate immunity responsible
for the polarization of type 3 response. It is an interesting tar-
get for the development of research including in the context
of therapy trials for SpA.
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