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Abstract: Routing quantum information among different nodes in a network is a fundamental
prerequisite for a quantum internet. While single-qubit routing has been largely addressed, many-
qubit routing protocols have not been intensively investigated so far. Building on a recently proposed
many-excitation transfer protocol, we apply the perturbative transfer scheme to a two-excitation
routing protocol on a network where multiple two-receivers block are coupled to a linear chain. We
address both the case of switchable and permanent couplings between the receivers and the chain.
We find that the protocol allows for efficient two-excitation routing on a fermionic network, although
for a spin- 1

2 network only a limited region of the network is suitable for high-quality routing.

Keywords: quantum state routing; many-body dynamics; quantum information; fermionic network

1. Introduction

The coherent transfer of excitations from a sender to a receiver, located at different
positions in a network, is of primary importance for many quantum-based technological appli-
cations, ranging from spintronics and atomtronics [1] to quantum-information processing [2].

While a great amount of work has been devoted to the routing of the quantum state of
a single qubit [3–11], where the fidelity of the transfer protocol can be expressed in terms of
the transition amplitude of a single excitation between a sender and a receiver location [12],
the routing of a multiple qubit state is a far less investigated scenario. Although several
protocols have been proposed both for two-qubit and multi-partite entangled quantum
state transfer [13–22], their extension to a routing configuration on an arbitrary network is
not straightforward. One reason being that almost all the proposed protocols rely on the
quantum channel possessing mirror-symmetry, which, allowing for multiple receivers at
arbitrary positions, is difficult to attain: in Ref. [23] it has been shown, e.g., that perfect
state routing between multiple sites with real Hamiltonians is impossible. Moreover, the
presence of a sender and a receiver block located at positions other than the edges of a
1D quantum channel, implies that the total system is no longer one-dimensional and the
fermionisation of the spin chain via the celebrated Jordan–Wigner mapping is not valid
anymore [24]. As a consequence, the full spectrum of the network’s Hamiltonian has to be
found in the Hilbert space sector with two excitations and this can become, for long chains,
quite cumbersome.

In this work we investigate the routing of two excitations by means of a linear chain,
acting as a quantum wire, to which receivers can connect at arbitrary positions. Following
the results of our recent work [25], we apply the weak-coupling protocol in order to route
fermionic excitations on a 2D network. We consider both the case of switchable and
permanent couplings of the receiver block to the quantum wire, obtaining the receivers’
locations which allow for perturbatively perfect two-excitation transfer. We then compare
the routing performance of fermions, which due to the non-interacting nature of the
Hamiltonian considered in our work, can be analyzed in terms of single-particle transition
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amplitudes, to the case where the network hosts spin- 1
2 particles interacting via the XX-

Heisenberg type Hamiltonian. We find that, although, a rigorous mapping of spins to
non-interacting fermions is not possible because of the 2D nature of the network, it is
indicated that several features of the free fermions dynamics can be retrieved also in the
spin dynamics.

The paper is organised as follows. In Section 2, a brief introduction to the many-body
dynamics in non-interacting fermion systems on a discrete lattice is given; in Section 3,
the proposed protocol of two-excitation routing, both with switchable and permanent
couplings, on a 2D lattice is presented; in Section 4, we analyze the case of spin- 1

2 particle
occupying the lattice positions of the network. Finally, in Section 5 we discuss the main
findings of our research and outline some future directions.

2. Many-Body Dynamics in Non-Interacting Fermions on a Discrete Lattice

Let us consider a discrete lattice model where each site can host one spinless fermion
and whose dynamics is governed by the hopping Hamiltonian

Ĥ = ∑
〈ij〉

Jij

(
ĉ†

i ĉj + h.c
)

, (1)

where ĉ†
i (ĉi) is the creation (annihilation) operator of a fermion on site i and Jij is the

kinetic term accounting for the hopping of a fermion between neighboring sites i and j.
This Hamiltonian conserves the total number of excitations (fermions) and can be block-
diagonalised in each fixed particle-number sector. Moreover, because of the quadratic
nature of the Hamiltonian, only the spectrum in the single-excitation subspace is needed
in order to retrieve the full energy spectrum. This is a consequence of the non-interacting
nature of the Hamiltonian witnessed by the absence of quartic terms accounting for particle-
particle interactions [26]. We report here, for the sake of completeness, the mains steps
for the derivation of the many-body dynamics in terms of single-body dynamics for non-
interacting fermions, which is standard procedure in the second-quantization formalism.

The diagonalized form of the Hamiltonian in Equation (1) in the single-excitation
sector reads

Ĥ =
N

∑
k=1

Ek|Ek〉〈Ek| = Ek ĉ†
k ĉk (2)

where {Ek, |Ek〉} are the eigenvalues and eigenvectors of the N-dimensional adjacency
matrix of the graph with entries Jij. Expressed in the position basis, |n〉 ≡ ĉ†

n|0〉 =
|00 . . . 1n00 . . . 〉, where |0〉 represents the fermionic vacuum state and |1n〉 denotes the
presence of a fermion on site n, the energy eigenstates in the single-excitation sector read
|Ek〉 = ∑N

n=1 akn|n〉, with akn = 〈n|Ek〉. The single-particle transition amplitude of an
excitation from site s to site r is given by

f r
s (t) = 〈r|e−iĤt|s〉 =

N

∑
k=1

ar,ka∗s,ke−iEkt . (3)

Because of the non-interacting nature of the Hamiltonian in Equation (1), the energy
eigenstates in the Hilbert space with m fermionic excitations are given by

∣∣Ek1k2 ...km

〉
=

N

∑
n1<n2<···<nm=1

an1n2 ...nm ,k1k2 ...km |n1n2 . . . nm〉 , (4)

with eigenvalues Ek1k2 ...km = Ek1 + Ek2 + · · · + Ekm and an1n2 ...nm ,k1k2 ...km denoting the
Slater determinant.
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The many-body transition amplitude of m excitations from sites s = {s1, s2, . . . , sm} to
sites r = {r1, r2, . . . , rm} is readily obtained as a determinant of a matrix whose entries are
the single-particle transition amplitudes in Equation (3),

f r
s (t) = 〈r|e−iĤt|s〉 =

N

∑
k1<k2<···<km=1

e−i
(

Ek1
+Ek2

+···+Ekm

)
t〈r1r2 . . . rm

∣∣Ek1k2 ...km

〉〈
Ek1k2 ...km

∣∣s1s2 . . . sm〉

=

∣∣∣∣∣∣∣∣∣∣∣

f r1
s1 (t) f r2

s1 (t) · · · f rm
s1 (t)

f r1
s2 (t) · · · · · · f rm

s2 (t)
...

. . .
...

f r1
sm (t) · · · f rm

sm (t)

∣∣∣∣∣∣∣∣∣∣∣
. (5)

The expression given in Equation (5) holds for every fermionic quadratic model, whereas
if the operators in Equation (1) represent bosons, then, instead of the determinant, the
many-body transition amplitude is given by the permanent of the matrix [25,26].

3. The Model

In this section, we apply the formalism of Section 2 to determine the two-excitation
transition probability from a sender block to a receiver block, both composed of two sites,
that are connected to a linear chain. The aim is to derive the conditions for the routing
of the two excitations from the senders’ to the receivers’ location. We will analyze two
networks: (a) the receiver blocks have switchable couplings to the wire (Figure 1); (b) the
receiver blocks are permanently coupled to the wire and the hopping term Js in the sender
block is tunable (Figure 3).

We consider Hamiltonians of the type given in Equation (1), which, decomposed into
the different components of the network, i.e., sender S, wire W, and receivers R, read

Ĥ = ĤS + ∑
i

ĤRi + ĤW + ĤSW + ∑
i

ĤRiW . (6)

The Hamiltonian of the sender block and the i-th receiver block are, respectively

ĤS = Js

(
ĉ†

1 ĉ2 + h.c.
)

, ĤRi = Ji

(
ĉ†

ri
ĉri+1 + h.c.

)
, (7)

with ri denoting the position on the graph which will be given in the following. The
Hamiltonian for the quantum data bus reads

Ĥw = J
nw−1

∑
n=1

(
ĉ†

n ĉn+1 + h.c.
)

. (8)

where nw denotes the length of the wire. Finally, the coupling between the sender block
and the data bus site is assumed to be in the weak-coupling regime, J0 � J, Js, Ji

ĤSw = J0

(
ĉ†

2 ĉ3 + h.c.
)

; (9)

as well as the coupling between the i-th receiver block at location ri and the corresponding
data bus site wi, where 1 ≤ wi ≤ nw

ĤRiw = J0

(
ĉ†

ri
ĉwi + h.c.

)
. (10)

For case (a) all couplings between the receiver blocks and the wire are switched off but
one, embodying the recipient of the routing protocol and we set ri = nw + 2; see Figure 1
for an instance of the numbering choice of the sites following the sender-wire-receiver
order; the same ordering is followed for case (b).

The whole system sender+wire+receivers is made up of N = nw + 2(nr + 1) sites with
r denoting the number of receiver blocks.
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From Equation (5), the two-body transition probability, with s = {s1, s2} and ri =
{ri,1, ri,2}, is given by

| f ri
s (t)|2 =

∣∣∣〈1, 2|e−itĤ |N − 1, N〉
∣∣∣2 =

∣∣∣∣ f N−1
1 (t) f N

1 (t)
f N−1
2 (t) f N

2 (t)

∣∣∣∣2 . (11)

For only one sender and one receiver block located at opposite edges of the quantum
wire, the model is one-dimensional and, using the Jordan–Wigner mapping from spin-
less fermions to spin- 1

2 particles, the Hamiltonian in Equation (6) with open boundary
conditions is equivalent to the XX spin- 1

2 model with nearest-neighbor coupling.

Ĥ =
N

∑
n=1

Jn

2

(
σ̂x

n σ̂x
n+1 + σ̂

y
n σ̂

y
n+1

)
. (12)

In such a case, it has been shown that two-qubit quantum state transfer [13–15] as
well as entanglement generation of two Bell states [27] is achieved with high fidelity.
Modifications of the one-dimensional geometry have been investigated too. In Refs. [17,18]
each spin of the sender (receiver) block is coupled to the edges of the 1D quantum wire
allowing for the transfer of a Bell state when operating in the single-excitation subspace.
A similar geometry is adopted in Refs. [4,6] with multiple sender (receiver) non-interacting
spins coupled to the wire at the edges.

1

2

3 4 5 6 7 8 9 10 11 12 13

14

15

Figure 1. Quantum routing of excitations by means of a linear chain quantum data bus with
switchable interactions. The sender and receiver sites are depicted in green and red, respectively,
while the quantum data bus sites are in blue. Continuous lines represent permanent couplings J = 1,
while dotted lines encode switchable weak couplings J0 � 1; also shown is the numbering choice of
the sites position adopted in Section 3.1.

3.1. Routing with Switchable Weak Couplings

Here we consider only one receiver block coupled to the wire for each execution of
the routing protocol and, as we shall see, this allows us to assume uniform coupling within
each component of the setup, i.e, the sender, the wire and the receiver blocks. We choose
Js = J = Jr = 1 as our energy and time unit. On the other hand, the couplings between the
sender (receiver) block and the wire will be in the weak-coupling regime, which we set
throughout the paper to J0 = 0.01.

The 1D-case where only one block of senders and one of receivers is each coupled at
the edge of the quantum wire has been addressed in Ref. [25]. There it has been shown that,
although each length of the quantum wire nw allows for high-fidelity excitation transfer,
for nw = 3l + 2 (l = 0, 1, 2, . . . ), resonances between the sender (receiver) and the wire
single-particle energy levels give rise to a faster transfer with respect to the instances
nw = 3l, 3l + 1 where off-resonant transfer takes place. In the former case, the single-
particle transfer occurs on a time scale of the order of J−1

0 , yielding to a two-excitation
transfer time scale of the order of 10 J−1

0 with the reason for the multiplicative factor being
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that the transfer dynamics involves a difference between eigenenergies that are perturbed
to first-order in J0. On the other hand, for the off-resonant dynamics, the two-particle
transfer time is of order J−2

0 . Considering that the excitation transfer mechanism holds in
the perturbative regime J0 � 1, this may translate in severals of magnitude.

Here we address the case where the receiver block is coupled to the quantum wire at
a different position wi than the edge of the chain; see Figure 1. We also omit the suffix i
since only one receiver block is present in this protocol. We aim at finding the conditions
on the position w for which resonant transfer of the excitations from the sender to the
receiver block at takes place. Following the argument for faster (resonant) transfer in
Ref. [25], we set the length of the quantum wire nw = 3l + 2 so that perturbative transfer
is achieved for w = nw, i.e., a receiver block can be coupled to the edge of the wire.
For this wire length, we find that it is possible to couple a receiver block at each site
w 6= 3p of nw, with p integer. The fact that these latter sites of the wire cannot act as
connection points for the receiver block can be explained by looking at the eigenstates
of the wire’s Hamiltonian ĤW (Equation (8)) that are resonant with the eigenstates of the
sender (receiver) block. For J = 1, the unperturbed energy level of the sender (receiver) is
Eres = ±1, and, because of the mirror-symmetry of the Hamiltonians in Equation (7), they
have the identical (absolute value) overlap on each site [28] so that it suffices to consider
only one of them. The unperturbed energy levels of the wire that are resonant with the
sender (receiver) are given by Ek = 2 cos kπ

nw+1 = 1. Therefore, we obtain that, ordering
E′ks in decreasing order, the k = nw+1

3 -energy level of the wire is the resonant one, see left
panel of Figure 2 for a schematic representation of the resonance condition. Expressing the
corresponding energy eigenstate in the position basis

|Eres〉 =
√

2
nw + 1

nw

∑
m=1

sin
kmπ

nw + 1
|m〉 =

√
2

nw + 1

nw

∑
m=1

sin
mπ

3
|m〉 , (13)

meaning that the resonant energy level has no support on any site of the wire being
multiple of 3. As a consequence, at first-order perturbation theory, the resonant energy
level does not overlap with the receiver sites coupled to each third site of the wire, making
the latter not apt as connection points for a two-excitation transfer. Furthermore, the kres
eigenenergy state has constant spatial overlap with every other site m 6= 3p. This translates
into a symmetric spatial distribution of the first-order perturbed eigenstates on the sender
and receiver block, thus enabling the excitation transfer. Hence, for a wire of length
nw = 3l + 2 with uniform couplings equal to those within the sender (receiver) block, a
total of nr = 2(l + 1) receiver points are possible. In Figure 2 an instance of such a protocol
is shown for l = 3 with the receiver pair nr6 coupled to the quantum wire. In the right
panel of Figure 2 an instance of the Rabi-like oscillations are shown for a wire’s length of
nw = 11 and connection point of the receiver block at w = 7. We found in our numerical
simulations for lengths of the wire in the order of the hundreds, that also for longer chains
the fidelity reaches F = 1−O(J0) for a receiver block connected at w 6= 3p with the first
peak of the oscillations occurring at a time of order 10 J−1

0 .

Figure 2. (left) Single-excitation energy levels in the switchable coupling configuration. (right) Two-excitation transfer
fidelity in the switchable configuration of Section 3.1 with nw = 11, r = 7, and J0 = 0.01.
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3.2. Routing with Permanent Weak Couplings

A much more desirable routing configuration would be one without the need of
switching on and off the couplings as described in the previous section. For the routing
of a single particle, this has been achieved in Ref. [3] where in both the linear and the
circular geometry, the sender chooses the receiver site tuning the only single-energy level
on resonance with the receiver (and the quantum wire) energy level by means of a local
magnetic field, i.e., the value of the local magnetic field acting on the receiver qubit is
the routing address. In the case of a sender block embodied by two particles, the same
strategy does not work as a local magnetic field produces an uniform shift of both of the
two energy levels and the simple sinusoidal excitation dynamics is lost. However, it is
still possible to perform resonant routing with a sender block of two sites by using the
intraspin coupling, which results in a symmetric energy shrinking or dilatation of the two
single-energy levels. In such a case, the routing address of each receiver block is given by
their intraspin coupling Jr; see Figure 3 for the geometry of the network and the left panel
of Figure 4 for the single-excitation energy levels.

In Section 3.1, we have shown that, for Js = 1, the wire’s k = nw+1
3 -energy level is

resonant with the sender block, and allows for the transfer of the two excitations to a
receiver block with intraspin coupling Jr = Js provided that the connection point along
the wire is w 6= 3p. The very same argument can be applied by tuning Js to a different
value so that the single-energy levels of the sender block Es = ±2Js are resonant with two
(symmetric) energy levels of the wire. In order to match the resonance condition, an integer
solution for k has to satisfy the following equation

Js = cos
kπ

nw + 1
. (14)

That is, the k = nw+1
π arccos Js-th energy eigenvalue of the wire is resonant with the sender.

For example, for Js =
√

3
2 , k = nw+1

6 . Hence, the allowed contact points wi along the wire
have to fulfill the condition that the resonant eigenstate spatial component of the contact
point of the sender has to be equal to that of the receiver’s contact point, i.e.,√

2
nw + 1

sin
kressπ

nw + 1
=

√
2

nw + 1
sin

kreswiπ

nw + 1
. (15)

  

1

2

4 5 6 7 8 9 10 11 12 133

14

1517

1618

192123

22 20

Figure 3. Quantum routing of excitations by means of a linear chain quantum data bus with
permanent interactions and assuming Js tuneable. The sender and receiver sites are depicted in green
and red, respectively, while the quantum data bus sites are in blue; also shown is the numbering
choice of the sites position adopted in Section 3.2.

To conclude this section, we recap the main results for routing a pair of excitations
across a wire with uniform couplings to a desired location, specifying the resonance
conditions on the sender and receiver couplings, respectively Js and Jri and the respective
allowed contact points.
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For a wire of length nw, the possible communication parties are nw
2 for even length

chain and nw−1
2 for odd length ones. Setting the intrawire coupling J = 1, the single energy

levels for which first-order excitation transfer occurs are Ek = 2 cos kπ
nw+1 , k = 1, 2, . . . , nw

2

(k = 1, 2, . . . , nw−1
2 for odd length chains). Each k determines the intraspin coupling of the

sender block via the relation Jri = 2 cos kiπ
nw+1 and the possible contact points wi along the

wire via
sin

kisπ

nw + 1
= sin

kiwiπ

nw + 1
. (16)

Assuming that the sender is attached to the first site of the wire s = 1, and exploiting the
periodicity of the sin function, |sin α| = |sin(α± nπ)|, with n integer,

kiwi
nw + 1

=
kiπ

nw + 1
± nπ → wi =

∣∣∣∣1± n(nw + 1)
ki

∣∣∣∣ . (17)

Finally, the allowed contact points wi are the integers ∈ [1, nw] satisfying Equation (17).
An instance of these conditions is given in Figure 4 for nw = 11 and the corresponding
values of Jri and ri are given in Table 1.

Table 1. Values of the intraspin couplings for the receiver blocks and available wire’s connection sites
for the receiver block for a wire’s length nw = 11.

k Jr wi

1
√

3−1
2 1,11

2 1 1,2,4,5,7,8,10,11
3

√
2 1,3,5,7,9,11

4
√

3 1,5,7,11
5

√
3+1
2 1,11

Figure 4. (left) Single-excitation energy levels in the permanently coupled routing scheme. The sender’s energy level can
be tuned to be in resonance with a different pair of wire’s (and receiver’s) energy levels by tuning Js. (right) Excitation
transfer in the permanent coupling configuration of Section 3.2 with nw = 11, J0 = 0.01 and coupling scheme as in Figure 3.
The different curves correspond to the transfer fidelity of the two excitation to different receiver block by tuning Js to Jri .
The colors of the curves correspond to the enegy levels in the left panel.

4. Routing in Spin Systems

In the previous Sections, we have shown how, in the weak-coupling regime, routing
of two-excitations from a sender to a receiver block can be achieved both in a switchable
and a permanent coupling configuration in quadratic Hamiltonians. In this Section, we
will consider the case when the network is made up of spin- 1

2 particles interacting via an
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XX-type Heisenberg Hamiltonian. We will consider the switchable routing configuration
depicted in Figure 1 with Hamiltonian

Ĥ = ∑
〈ij〉

Jij

2

(
σ̂x

i σ̂x
j + σ̂

y
i σ̂

y
j

)
, (18)

where 〈〉 denotes the summation running over nearest-neighbor sites. Notice that
Equation (18) differs from Equation (12) because of the 2D nature of the network. By intro-
ducing the ladder operators σ̂± = σ̂x±iσ̂y

2 , the Hamiltonian of the system can be obtained
from Equations (6)–(10) by substitution of ĉ → σ̂− and ĉ† → σ̂+. As already stated in
Section 3, were the network one-dimensional, i.e., the receiver block coupled to the last
spin of the wire, then the Jordan–Wigner transformation would map Equation (18) to a
quadratic spinless fermion Hamiltonian. Such a case would constitute a special instance of
the analysis in Section 3.1 and several works on two-qubit quantum state transfer can be
found in the literature. However, in the general case, where the receiver block is coupled
to an arbitrary site of the wire, the Jordan–Wigner mapping does not apply as the system
looses its one-dimensional nature.

However, for a configuration such as the one depicted in Figure 1, there is only
one spin belonging to the wire that has three nearest-neighboring spins; therefore, the
one-dimensional nature of the model is only locally broken with the lowest possible
coordination number. It is therefore interesting to investigate if the routing properties of
the spinless non-interacting one-dimensional model of Section 3 still persist also when the
network is made of spins when a rigorous mapping to fermions is not possible.

Now, in order to evaluate the transition probability of two-excitations, we need
to diagonalise the Hamiltonian in Equation (18) in the two-excitations sectors, being
the reduction to one-particle transition amplitudes not possible. The dimension of the
Hamiltonian in the two-excitation Hilbert space is the binomial factor dim

[
Ĥ(2)

]
= (N

2 ) and
we diagonalise the Hamiltonian numerically for N = 306 using the QuSpin package [29].

From Figure 5 we see that, as for the free-fermion network in Section 3.1, the transition
probability of the two excitations from the sender block to the receiver block is negligible
whenever the latter is coupled to every third spin of the linear chain. Furthermore, high-
quality two-excitation transfer can be achieved, on a time-scale similar to that of the
free-fermion network, only if the receiver block is coupled to connection points of the
wire at the opposite edge with respect to the sender block. Moving away from that edge
causes a linear decrease of the quality of the transfer with a lower slope the longer the
wire. This may be seen as a consequence of the fact that the longer the wire, the more the
one-dimensional nature of the system becomes manifest.

-40 -30 -20 -10 0
n0.0

0.2

0.4

0.6

0.8

1.0

F

Figure 5. Transition probability for the switchable couplings protocol in Section 3.1 with spin- 1
2

particles sitting on the graph with N = 78 (red), N = 156 (gray), and N = 306 (blue) and interacting
via the XX Hamiltonian in Equation (18). The numbering on the x-axis is the distance from the edge
opposite the sender block n = 0,−1,−2, . . . . Notice that, for the receiver block coupled to each third
n of the wire, the transiton probability is negligible. Interestingly, the quality of the transfer increases
with the wire’s length.
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5. Discussion

In this paper, we have investigated the routing of two fermionic excitations across
a quantum network. In the proposed protocol we were able to show that two fermions,
initially located on a sender block composed of two sites, can be efficiently routed to a
receiver block of two sites, provided that both the former and the latter are weakly coupled
to a one-dimensional quantum wire, modeled by a fermionic nearest-neighbor hopping
Hamiltonian. We have proposed two different protocols: in the first one, we have assumed
switchable couplings and derived the connection points of the wire which yields high-
quality routing; in the second one we have assumed permanent couplings and envisaged
in the tunability of the sender’s intrasite coupling a mean to route the two excitations to
the desired location. In each considered configuration we obtained a perturbatively-perfect
fidelty, i.e., F = 1−O(J0), where J0 is the weak coupling of the sender and receiver block
to the wire, with a transfer time scaling as O(10J−1

0 ). We also compared the fermionic
network with a spin- 1

2 network interacting via an XX-Heisenberg Hamiltonian. Due to the
2D nature of the network, the analysis had to rely on numerical evaluation and we found
that, apart from the scenario where the receiver blocks are located towards the end of the
wire, efficient routing is not achievable with qubits. However, our work hints towards the
possibility to utilise very long quantum wires for the proposed 2-qubit routing protocol as
we observed an enhancement of the routing fidelity by increasing the length of the wire.
In such a scenario, our protocol may be utilised also for two-qubit entanglement routing,
similarly to Refs. [17,18] where the tranfer is achieved between the edges of the chain.

For a realistic implementation of our protocol one should however consider possible
experimental imperfections in the couplings, the time-dependence of the sender/receiver
couplings to the chain, and decoherence due to interaction with the surrounding envi-
ronment. While an extensive analysis of the performance of our protocol under these
conditions has not been presented here, and may be left to future investigation, it is reason-
able to assume that similar analyses done for the one-particle transfer scenario may apply
also for two-particle routing as our results are derived from single-particle transition ampli-
tudes. In this regard, disorder in couplings [21,30–33], time-dependent couplings [34,35],
and decoherence [36,37] have been extensively addressed and several strategies to counter
the detrimental effect on the transfer quality have been devised which may find application
also in our two-particle routing protocol.
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