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Abstract: Recent phylogenetic studies have transferred certain isolates from monocot plants
previously included in the heterogeneous group of Pectobacterium carotovorum (Pc) to a species
level termed Pectobacterium aroidearum. The specificity of Pectobacterium associated infections had
received less attention, and may be of high scientific and economic importance. Here, we have
characterized differential responses of Pectobacterium isolates from potato (WPP14) and calla lily
(PC16) on two typical hosts: Brassica oleracea var. capitata (cabbage) a dicot host; and Zantedeschia
aethiopica (calla lily) a monocot host. The results revealed clear host specific responses following
infection with the two bacterial strains. This was demonstrated by differential production of volatile
organic compounds (VOCs) and the expression of plant defense-related genes (pal, PR-1, lox2, ast).
A related pattern was observed in bacterial responses to each of the host’s extract, with differential
expression of virulence-related determinants and genes associated with quorum-sensing and plant
cell wall-degrading enzymes. The differences were associated with each strain’s competence on its
respective host.
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1. Introduction

Pectobacteria are plant pathogens that cause soft rot, black leg and wilt in numerous plant species in
more than 35% of angiosperm plant orders. Host specificity has never been considered to be an attribute
of pectobacteria, although some host specificity has been described for Pectobacterium atrosepticum
and P. wasabiae in connection with adaptation to a cooler climate and relatively narrow (but not
exclusive) host range, that is potato (Solanum tuberosum) and Japanese horseradish (Eutrema japonicum),
respectively [1–3]. In terms of host range, P. carotovorum probably has the widest host range and
geographical distribution, with strains of this species isolated from various substrates including plant
surfaces and tissues, soil, water and the gut and surfaces of invertebrates [4]. Another broad host range
species is P. brasiliense, which is associated with potato grown in relatively warm regions in Brazil,
Israel, South Africa and United States, but may also infect other crops [5]. With the ever-increasing
availability of genomic sequences, several taxonomic changes have been made, including the suggestion
to transfer Pectobacterium and Dickeya into the family Pectobacteriaceae [6]. According to the present
taxonomy, the genus now includes 18 species: P. actinidiae, P. aquaticum, P. aroidearum, P. atrosepticum,
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P. betavasculorum, P. brasiliense, P. cacticida, P. carotovorum, P. odoriferum, P. parmentieri, P. parvum,
P. peruviense, P. polaris, P. polonicum, P. punjabense, P. versatile, P. wasabiae and P. zantedeschiae, [4,7–11].
In spite of the clarifying taxonomy, the mechanisms underlying this natural segregation are largely
unexplored. The last decade, has proved that P. carotovorum had been serving as a catchall designation
for pectobacterial isolates that did not fall within any other specific taxon [12]. The use of multi-locus
sequence analyses (MLSA) revealed the heterogeneity of P. carotovorum, and the insufficient resolution
of former taxonomic tools. One particular example was the isolates of P. carotovorum obtained from
monocot hosts. These were reported to be more virulent on monocot plants than on dicot plants,
presented typical amplified fragment length polymorphism (AFLP) profiles and distinct banding
pattern in intergenic transcribed spacer (ITS) PCR analysis [13]. The combination of molecular
patterns with MLSA and recombinase polymerase amplification analyses indicated that these monocot
isolates represent multiple species in the genus, P. aroidearum, P. zantedeschiae, P. betavasculorum,
and P. wasabiae [12,14,15]. Atypical infections have also been reported in other monocots including
Allium cepa [16], Zantedeschia spp. [17,18], Dieffenbachia spp., Scindapsus aureus [19], Ornithogalum
dubium [1] and Pinellia ternate [20]. Past studies have shown that, under laboratory conditions,
a single strain may infect several plant species, including crop plants such as potato, carrot (Daucus
carota subsp. sativus), cabbage, tomato (Solanum lycopersicum) and peppers (Capsicum annuum) [1,4].
Host adaptation (specialization) has been suggested as one of the forces underlying the course of
Pectobacterium evolution, but this hypothesis has not been extensively examined [13,16,21]. Greater
fitness for infection of a host or a limited group of hosts was suggested mainly based on phylogenetic
comparisons, geographical distribution and associations with the taxonomy of the hosts [22,23]. Only a
few studies have focused on physiology or virulence patterns of different strains on taxonomically
diverse hosts [13,17].

Here, host specialization was tested using two Pectobacterium strains, a ‘monocot strain’
(PC16, isolated from Zantedeschia) and a ‘dicot strain’ (WPP14, isolated from potato) on calla lily
(Zantedeschia aethiopica) and cabbage (Brassica oleracea var. capitata). Host attributes such as volatile
emissions and expression of defense-related typical genes were evaluated and used to explore the
compatibility of the two bacterial strains with the two hosts. Similarly, bacterial responses to each of the
hosts or host extracts were assessed in terms of their pathogenicity and virulence. The results support a
compatible interaction between certain hosts and their respective monocot/dicot Pectobacterium isolates.

2. Materials and Methods

2.1. Bacterial Strains, Plants and Growth Media

P. aroidearum strains PC1 and PC16, which were isolated from Ornithogalum dubium and Z. aethiopica,
respectively, and P. carotovorum strain WPP14 and P. brasiliense strain Pb1692, which were originally
isolated from potato, were used for the infection assays. PC1 and PC16 were identified as typical
monocot strains, whereas Pb1692 and WPP14 have been defined as common dicot strains [13].
Biochemical and molecular assays were performed with WPP14 and PC16 as representatives of the
two groups, mainly as P. carotovorum represents the widest host range in the genus. Two classic
hosts of Pectobacterium were used in the study: cabbage as a dicot host and calla lily as a monocot
host. The bacterial strains were cultivated at 28 ◦C in lysogeny broth (LB; Difco Laboratories, Detroit,
MI, USA) or in minimal medium (MM) prepared as described previously [24].

2.2. Virulence Assays

Virulence assays were performed in calla lily leaves or cabbage leaves using the Pectobacterium
strains described above (i.e., PC1, PC16, Pb1692 and WPP14). Potato tubers were not used for the
infection analyses, as they are too easily infected by all strains. To assess infection symptoms, calla lily
and cabbage leaves were infiltrated with 100 µL bacterial cultures, that had been grown overnight,
centrifuged at 14,000 rpm/3 min and re-suspended in sterile double-distilled water (DDW) at cell



Microorganisms 2020, 8, 1479 3 of 22

density of 107 colony forming units (cfu)/mL. As a negative control, leaves were infiltrated with the
same volume (100 µL) of sterile DDW and kept at 28 ◦C for 24 h, with leaf petioles dipped in water.
Finally, the appearance of water-soaked lesions was recorded. Leaf-disc infection assays were carried
out in calla lily and cabbage leaves with each of the strains, PC16, PC1 or WPP14 and Pb1692 as
described previously [13,25]. Other experiments to unravel host specificity were performed using
PC16 and WPP14 strains.

2.3. Scanning Electron. Microscopy (SEM)

SEM micrographs were taken on calla lily and cabbage leaves following disinfection in 0.7%
sodium hypochlorite for 15 min and a double wash with sterile DDW. Bacterial cultures (PC16 and
WPP14) that had been grown overnight were centrifuged and re-suspended in sterile DDW at 108

cfu/mL and 10 µL of that suspension were placed on the leaf surface and incubated at 28 ◦C for 3 h inside
an airtight box. Leaf samples (4 × 4 mm), from bacterial inoculation site, were gently rinsed with DDW,
then fixed in 70% ethanol overnight, followed by dehydration with 90%, 95%, 100% ethanol for 1 h each
and a second dehydration with 100% ethanol. Then, the samples were dried on a K850 critical-point
dryer and coated with gold-palladium alloy in a Q150T ES turbo-pumped sputter coater, following
the manufacturer’s instructions (Quorum Technologies Ltd., East Sussex, UK). Finally, samples were
observed under SEM, JSM-7800F (JEOL Inc., Peabody, MA, USA). Experiment was performed with
five biological repeats and 10 replicates for each strain-host combination. The micrographs are
representative photos of the experiment. In addition, 5 leaves were inoculated as above, and 3 h post
inoculation were washed gently in DDW, and sections (4 × 4 mm) were excised and grind in 200 µL
sterile DDW, serial dilutions were made and plated onto LB agar for CFU assessment.

2.4. Analysis of Volatile Organic Compounds (VOCs)

Leaf samples were treated by infiltrating bacterial cultures as detailed above and incubated in
airtight jars at 28 ◦C. Volatile compounds produced during 24 h were adsorbed onto a solid-phase
microextraction (SPME) fiber divinylbenzene/carboxen/polydimethylsiloxane (DVB/CAR/PDMS) that
was inserted through septum into each jar for the final 1 h. Every SPME then served to inject the
adsorbed VOCs into the injection port kept on 250 ◦C, of a HP Agilent series 4890D gas chromatograph,
equipped with a flame ionization detector (GC-FID), DB-5MS column (30 m × 0.32 mm, 0.5 µm film
thickness; J & W Scientific, Folsom, CA, USA) operated in split mode. For calla lily samples, initial
temperature of the oven was held at 50 ◦C for 1 min, raised to 220 ◦C at a rate of 8 ◦C/min. For cabbage
samples, the initial temperature of the oven was held at 50 ◦C for 1.5 min, and then increased to 200 ◦C
at a rate of 5◦C/min, and to 280 ◦C at a rate of 10◦C/min. Helium served as carrier gas, injection
port temperature was set to 250 ◦C and detector temperature to 300 ◦C. Gas chromatography-mass
spectrometry (GC-MS) was carried out on Agilent GC 7890A and 5975C MSD, operated as above.
Chromatographic separation was carried out on a Rxi-5MS capillary column (30 m × 0.25 mm, 0.25 µm
film thickness; Restek, Bellefonte, PA, USA). Mass spectra were acquired in positive electron-impact (EI)
scan mode (m/z 20–350). Identification of the VOCs was performed by comparing their mass spectra
and retention time with the NIST/EPA/NIH Mass Spectral Database (NIST 05, National Institute of
Standards and Technology, Gaithersburg, MD, USA). Further, six commercially available compounds
(methyl acetate, ethyl acetate, ethanol, isopentyl alcohol, isobutyl acetate, 4-methyl heptane) were
purchased (Sigma-Aldrich, Rehovot, Israel) and chromatographed using GC-FID to support the
identification, as described above.

2.5. Plant. Extracts

To extract phenolic compounds, cabbage and calla lily leaf samples were crushed in liquid
nitrogen using mortar and pestle, and 200 mg were transferred into a 2 mL tubes, to which
acidified aqueous methanol (1 mL, methanol:DDW:acetic acid, 11:5:1 vol/vol, respectively) was added.
The supernatant was collected following vortex (1 min) and sonication (30 s 2×), and centrifugation
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(14,000 rpm/10 min/4 ◦C). The pellet was re-extracted in acidified aqueous methanol as above, and both
extracts were pooled together and fractionated (2×) against hexane (0.6 mL hexane/1 mL extract),
to remove hydrophobic residues (chloroplasts and cell membranes). The upper phase were discarded
and the extracts were used immediately or stored at –80 ◦C for future use.

2.6. Growth Assessment

Bacterial growth in the presence of the plant extract was tested with Pectobacterium strains PC16
and WPP14. Both strains were grown overnight at 28 ◦C in 4 mL LB under continuous shaking at
150 rpm in a TU-400 incubator shaker (M.R.C. Ltd., Holon, Israel). The suspensions were then diluted
in fresh LB to a concentration of 5 × 106 cfu/mL and 200 µL of it were added to 96-well microtiter plates
containing increasing volumes of the host extracts or extraction solution (control), that were dried in a
laminar flow hood prior to adding the suspensions. Plates were incubated at 28 ◦C with continuous
shaking and growth was assessed every hour for 16 h by measuring optical density at 600 nm using a
micro-plate reader (Spectra MR, Dynex Technologies, Chantilly, VA, USA).

2.7. Exoenzyme Activity

Exoenzymes are the main factor responsible for the development of disease symptoms. Of these,
pectate lyase (Pel) and polygalacturonase (Peh) are the most studied, but proteolytic enzymes (Prt) and
cellulases (Cel) also play a role. Here, the levels of Pel, Peh and Prt were evaluated in the presence
of a non-lethal volume (less than 50% growth inhibition) (40 µL extract/200 µL LB) of host extract
in semi-quantitative enzymatic activity assays carried out in plates containing different substrates
(Pel assay medium: 1% polygalacturonic acid, 1% yeast extract, 0.38 µM CaCl2, 0.8% agarose and
100 mM Tris-HCl pH 8.5; Peh assay medium: 1% polygalacturonic acid, 1% yeast extract, 2.2 mM
EDTA, 0.8% agarose and 110 mM sodium acetate, pH 5.5; Prt assay medium: 3% gelatin, 0.4% nutrient
broth and 0.8% agarose), as described previously [26]. Pectobacterium strains were exposed to 1:4
dilution ratio of dried host extracts resuspended in 4 mL LB, for 8 h at 28 ◦C with continuous shaking.
Eight hours reflect the exponential growth phase of the bacteria. Then, 4 mm holes were poked in the
medium plates containing substrates and those holes were filled with filter sterilized supernatants
(20 µL) of the grown cultures and incubated at 28 ◦C for 18 h. Pel and Peh plates were then submersed
in 4N HCl to observe the haloes created by the enzymes, while Prt haloes were observed directly.
The haloes were measured and compared with control (extraction solution).

2.8. Biofilm Formation

Biofilm formation was evaluated in glass test tubes, using crystal violet staining, as described
previously [27]. Briefly, 100 µL of host extracts (i.e., calla lily and cabbage extracts) and extraction
solution (control) was added to sterile and clean glass test tube and dried under laminar. Overnight
grown Pectobacterium strains were adjusted to a concentration of 2 × 106 cfu/mL, using fresh LB.
Five hundred microliters of the bacterial culture were transferred to the test tubes containing dried
extracts and extraction solution. The tubes were then incubated at 28 ◦C for 72 h. Next, the bacterial
suspensions were carefully discarded, and test tubes were washed with deionized water. Following
washing, 500 µL of 0.1% crystal violet was added to each test tube and incubated (25 ◦C, 15 min) to stain
the biofilm. Staining was followed by washing the tubes with deionized water twice. Finally, 500 µL
of 30% acetic acid, was added to the tubes and incubated at 25 ◦C for 15 min, following absorbance
measurement at 550 nm in a micro-plate reader (Spectra MR).

2.9. Total RNA Extraction and cDNA Preparation

2.9.1. Extraction of RNA from the Pectobacteria

Pectobacterium strains were grown overnight at 28 ◦C in LB medium under continuous shaking.
The bacteria were centrifuged at 14,000 rpm for 3 min, washed and then transferred to fresh LB
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to a final concentration of 106 cfu/mL, with a non-lethal volume (40 µL extract/200 µL LB) of the
phenolic extract of cabbage or calla lily or extraction solution (control). The suspensions were then
incubated at 28 ◦C under continuous shaking (150 rpm) for 8 h. RNA was extracted from 2 mL of the
culture using the EZ-RNA II kit (Biological Industries, Kibbutz Beit Haemek, Israel), following the
manufacturer’s instructions.

2.9.2. Extraction of RNA from Calla Lily and Cabbage

Calla lily and cabbage leaves were rinsed twice in sterile DDW, wiped gently with absolute
ethanol and infiltrated with bacterial cultures that had been grown overnight (100 µL), followed by
centrifugation and resuspension in sterile DDW to a final cell density of 107 cfu/mL and then incubated
at 28 ◦C for 24 h. The control treatment included leaves that were infiltrated with the same amount
of sterile DDW. Total RNA was extracted from leaf piece (100 mg, tissue around necrotic area) using
RNA buffer (10 mM Tris-HCl pH 8.0; 1 mM LiCl; 0.2 mM EDTA and 1% LiDS) and hot phenol. Briefly,
leaf pieces were ground to a fine powder in liquid nitrogen and mixed with a pre-heated mixture of
RNA buffer and phenol (80 ◦C until the tissue became transparent, 0.6 mL per leaf piece). The extract
was then mixed and incubated at 80 ◦C for 5 min. Then, 650 µL of chloroform: isoamyl alcohol (24:1)
was added and the mixture was mixed well for 3 min. The samples were centrifuged at 13,000 rpm for
5 min. Three phases were obtained, and the upper phase was transferred to a clean tube and placed
on ice. This step was repeated twice with 1 mL chloroform and isoamyl alcohol mixture to attain a
clean upper phase, which was transferred to the clean tube. Next, cold 10 M LiCl was added to the
tube in a ratio of 3:1 (sample:LiCl). The solution was mixed gently and incubated at −20 ◦C overnight.
The next day, samples were thawed on ice and centrifuged at 4 ◦C and 12,000 rpm for 30 min to obtain
crude RNA. The RNA pellet was washed twice with 1 mL of 70% ethanol and then dried for 30 min.
The pellets were then dissolved in 90 µL DEPC-treated DDW. Samples were treated with RNase-free
DNase (Thermo Scientific, Waltham, MA USA) to remove any residual DNA. Further cleaning was
done using a Zymo-Spin IIC column with RNA binding buffer, RNA preparation buffer and RNA
wash buffer (Zymo Research, Irvine, CA, USA).

2.9.3. cDNA Preparation

For cDNA synthesis, a minimum of 1 µg of total RNA was reverse transcribed in a reaction
mixture of 20 µL using a cDNA synthesis kit (Applied Biosystems, Foster City, CA, USA) following
manufacturer’s instructions. The cDNA reverse-transcription reaction was performed using a
programmable thermal controller (MJ Research, Quebec, Canada) programmed to one cycle at
37 ◦C for 60 min, followed by inactivation at 95 ◦C for 5 min. The obtained cDNA was stored at −20 ◦C
for future use.

2.10. Primer Design and mRNA Quantification by Real-time qRT-PCR

Several virulence genes of Pectobacterium have been identified and well characterized. The most
recognized are genes related to plant cell wall-degrading enzymes (PCWDEs), quorum-sensing
and the type III secretion system. Accordingly, we examined the expression levels of pel and peh
(representative PCWDE genes), expI and expR (QS system genes), hrpL (representative of T3SS) and
araF (a representative membrane-transporter gene). The primer specificity for the aforementioned
gene has already been validated previously by Joshi et al. [28], the same primers were used in this
study. Similarly, the expression levels of defense-related genes (lipoxygenase lox2, pathogenesis-related
gene PR-1, phenylalanine ammonia lyase pal and aspartate aminotransferase ast) in calla lily and
cabbage were evaluated. Primers for these genes in calla lily were designed using Primer 3.0
(http://bioinfo.ut.ee/primer3-0.4.0/) software as explained [28] and detailed in Table 1. Gene sequences
of calla lily is not available in the database, therefore cDNA sequences of defense related genes were
sequenced by our lab and deposited at figshare.com (DOI 10.6084/m9.figshare.12326495). Sequences
of the same genes for cabbage were obtained from the Joint Genome Institute (JGI) database (https:
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//phytozome.jgi.doe.gov/pz/portal.html) and primers were designed as explained above and detailed
in Table 1. The specificity and quality of the primers were tested using serial dilution of cDNA
mix from all treatments and data were translated into standard curve. Specifically, all primers were
tested for their specificity (single product amplification, observed as single melting curve), efficiency
(90–105% observed) and correlation coefficient R2 (>0.98 observed). Primers, that passed quality check,
were used for qRT-PCR reactions using the Step One Plus Real-Time PCR system (Applied Biosystems
Inc. Foster City, CA, USA), with reaction details mentioned as in Joshi et al. [28]. Finally, data were
analyzed by the comparative Ct (∆∆Ct) method, relative to control (bacteria cultured in sterile water),
with expression normalized to the expression of the reference gene recA for bacteria, actin for calla
lily, and tubulin for cabbage. The reference genes were selected based on their expression consistency
under all conditions.

Table 1. Primers used for qRT-PCR.

Genes. Forward Primer (5′→3′) Reverse Primer (5′→3′)

A. PC16 and WPP14
recA
(reference gene) CAG CAT CGA TGA ACG CAC AG GGT TTA CCG ATG GGC CGT AT

pel CTT CTT CAT GGC CGA TCC CA CAA CGG ACT GTG GCT GAT TG
peh TAC CGC TAC GAG TAC GAC GA GAT CCC ACC AGC TCA CCT TT
expI TAC AAT AGC GGC AGG CAC TC TGA GAA TCA GGA AGC ATT GGC
expR TGA GGT CAT GAG ATG TCG CC TTA TGC CGT CGT AGC GAT CC
hrpL AAC GTC GTC ATG GTT GCT GA AAA CAC ATC GAA CCG ACC CC
araF GGC TGA TTA TCG GTA TGA ACG CCT GTT GCC TGA CCT TTG

B. Calla lily
actin
(reference gene) GAC TCA AAT CAT GTT AGA GAC ATT CAA GTA CGG CCA CTG GCA TAG A

pal GAC CTC GTC CCG CTC TCC TAC A CTC CAC AGC AGA GAC GTG GTG AC
lox2 CAT CAA GCT GCC AAG AGG TT GCA ACC AAG AAA ATC CGT CT
ast GCC AGT GGT GAT CCT GAG AG GGA TGC TGA GGC AAC CTA CT
PR-1 GGT AGA ACC TCT TCT GGG GAT G AGT TGC TTC GGT AGT CGT AGT AC

C. Cabbage
tubulin
(reference gene) GGC TTC ACC ATT TAC CCT TC TCC AAG AGG ACA GCA ACA TC

pal ATC CCT AAC CGC CGA AGA G TCC GCT AAC ACC GAT TGA AC
lox2 GCT CTC CGT TCC ATA AAC CA TAT TTG ACT GTG ATG CCG TGA
ast TCC AAC CAC CAC AAC ATC TG CAC ATC ATC CAT CAA TCC TTT G
PR-1 GGA GAG AAC ATC GCT TGG AG CAC ACA ACC TGC GTA TAG TGG

2.11. Statistical Analysis

Leaf discs infection area and enzymatic assays were measured using ImageJ software, version
1.52e (National Institutes of Health, USA). Statistical comparisons were made using one-way analysis
of variance (ANOVA) by JMP-Pro software, version 13.0 (SAS Institute Inc., Cary, NC, USA).
When ANOVA yielded significance (p ≤ 0.05), Tukey–Kramer HSD test or Student’s t-test were
performed. Tukey–Kramer HSD test was used for Figures 1B, 4, 6, 7, 8 and Figure S4; Student’s t-test
was used for Figure S2. Data presented were means ± standard errors (SE). Graphs were generated
using Sigma Plot Version 10.0 software (Systat Software, San Jose, CA, USA).

3. Results

3.1. Virulence of Pectobacterium Strains on Different Hosts

We examined the abilities of four Pectobacterium strains (PC1, PC16, Pb1692 and WPP14) to infect
cabbage and calla lily leaves. Both PC1 and PC16 produced visible necrosis symptoms on calla lily
leaves. However, on cabbage leaves, those isolates produced limited symptoms. In contrast, Pb1692
and WPP14 infected cabbage leaves but produced hardly any symptoms on calla lily leaves (Figure 1A).
Similar infection patterns were observed in a leaf-disc assay, in which the leaf disc was pierced at its

https://phytozome.jgi.doe.gov/pz/portal.html
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center and the bacterial suspension was applied to that spot. This assay allowed the evaluation of
tissue decay caused by PC16, PC1, Pb1692 and WPP14 on both hosts and revealed significantly greater
decay following each strains infection of its “favored” host. That is, PC16 and PC1 caused more decay
on calla lily and Pb1692 and WPP14 caused more decay on cabbage (Figure 1B) (Figure S1).
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Figure 1. Disease symptoms on calla lily or cabbage leaves in response to inoculation with Pectobacterium
strains isolated from monocot or dicot hosts. (A) Pectobacterium strains PC1 and PC16 (P. aroidearum
isolated from Ornithogalum dubium and Zantedeschia aethiopica, respectively), Pb1692 and WPP14
(P. brasiliense and P. carotovorum, both isolated from potato) were infiltrated into calla lily or cabbage
leaves (100 µL, 107 cfu/mL sterile DDW) and disease symptoms were evaluated 24 h after inoculation.
(B) Leaf discs assessment of calla lily or cabbage inoculated with the same strains as above (10 µL of 108

cfu/mL). Infection was measured as percentage of decayed tissue at 15 h after inoculation. The full-leaf
experiment (A) was repeated twice with five replicates and the leaf-disc experiment (B) was repeated
twice with 20 replicates for each strain/host combination. Bars represents mean ± standard errors (SE)
of decayed area (%). Bars not labeled with the same letter (a–d) are significantly different from each
other (one-way ANOVA with post hoc Tukey HSD test, p < 0.05).
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3.2. Attachment of Pectobacterium Strains to Host Leaf Surfaces

In order to study early colonization patterns of the strains, we have focused on PC16 and WPP14
on the two hosts (calla lily and cabbage). Bacterial suspensions (10 µL, 108 cfu/mL DDW) were applied
by pipetting onto the leaf surfaces in an airtight box. SEM micrographs of leaf-surface colonization
were obtained 3 h post inoculation, revealing distinctive patterns of attachment and proliferation for
each strain on the two hosts. PC16 exhibited greater proliferation and attachment on the surface of
calla lily leaves, whereas WPP14 performed better on cabbage (Figure 2). The performance of each
strain on its non-favored host was poor, with less biofilm initiation, clustering and/or colonizing of cells.
In addition to SEM, the inoculated tissues were grinded and serially diluted for bacterial enumeration.
The results revealed significantly higher cell numbers for each strain on its competent host. Bacterial
cell numbers (CFU/mL) 3 h post inoculation are provided (Figure S2).
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Figure 2. SEM micrographs of (A) P. aroidearum PC16 and (B) P. carotovorum WPP14 on the leaf
surfaces of calla lily and of cabbage. The micrographs were obtained 3 h after inoculation (10 µL,
108 cfu/mL) onto the host leaf surfaces. The colonization patterns were examined on 10 leaves for each
plant. SEM images are presented (left to right) magnification 400×, bar =50 µm; 2000×, bar = 10 µm;
magnification 7000×, bar = 1 µm.
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3.3. Production of VOCs by Calla Lily and by Cabbage in Response to Inoculation of Pectobacterum

VOCs are produced by plants as part of the early reaction to and interaction with
microorganisms [29,30]. VOCs emitted from calla lily or cabbage leaves following inoculation with
either PC16, WPP14 or DDW (mock-inoculated control) were contained for 24 h. Thermal desorption
served to release adsorbed VOCs that were produced for 24 h by the treated leaves in a sealed glass jar
for 24 h and adsorbed onto SPME fibers.

GC-MS was employed in an effort to identify VOCs in all six samples. In calla lily samples,
a total of 16 VOCs were detected, 11 of which were identified (Figure 3 and Table 3). Four VOCs
were common to all calla lily samples, while two, 4-methylheptane and 2, 4-dimethyl-1-heptene,
were present only in calla lily + WPP14 and the calla lily control. Toluene was also identified, but only
in the mock-inoculated calla lily control. Three VOCs, 4-methyloctane and two branched alkanes,
were only detected following infection of calla lily with WPP14 samples. The headspace of calla lily +

PC16 samples contained six VOCs that were unique to that interaction: methyl acetate, ethyl acetate,
isopentyl alcohol, isobutyl acetate, isopentyl acetate and a compound similar to sandaracopimaradiene
(Table 3).
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Figure 3. Chromatograms of volatile organic compounds (VOCs) produced by leaf samples, (A) calla
lily and (B) cabbage samples (double-distilled water (DDW)-black, Pc16- red, WPP14-green), following
infiltration with bacteria, and incubation in airtight jars at 28 ◦C for 24 h, and adsorption onto a SPME
fiber. The adsorbed compounds were analyzed using Agilent GC 7890A and 5975C MSD, and mass
spectra were acquired in positive electron-impact (EI) scan mode (m/z 20–350). Identification of the
VOCs was performed by comparing their mass spectra and retention times with the NIST/EPA/NIH
Mass Spectral Database (NIST 05, National Institute of Standards and Technology, Gaithersburg,
MD, USA; see Tables 2 and 3). Representative chromatograms from two independent experiments
are presented.
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Table 2. VOCs collected from the headspace of cabbage samples inoculated with PC16 or WPP14 and
the corresponding control (DDW), as identified by GC-MS.

RT (min) Identified Volatile
Compounds Cabbage Control Cabbage + PC16 Cabbage + WPP14

2.10 Ethanol + 1 + +

2.78 Ethyl acetate + + +

3.65 3-Hydroxy-2-butanone + + +

3.84 Isopentyl alcohol +

4.0 Methyl disulfide +

4.20 4-Methylheptane + + +

4.58 Octane + + +

4.88 2,4-dimethylheptane + + +

5.10 2,4-dimethylheptene + + +

5.36 4-methyloctane + + +

7.13 Branched alkanes + + +

7.18 Branched alkanes + + +

7.71 Dibutoxy-methane + + +

7.96 Branched alkanes + +

8.01 Branched alkanes + +

8.26 Not identified +

8.34 Not identified +

9.73 Not identified +

10.09 2,6,10,14-tetramethyl
heptadecane + +

10.37 Not identified +

11.20 Not identified +

1 Sign “+” indicates presence of that compound in the given sample.

Table 3. VOCs collected from the headspace of calla lily samples inoculated with PC16 or WPP14 and
the corresponding control (DDW), as identified by GC-MS.

RT (min) Identified Volatile
Compounds Calla lily Control Calla lily + PC16 Calla lily + WPP14

2.36 Methyl acetate +

2.78 Ethyl acetate +

3.80 Isopentyl alcohol +

4.20 4-Methylheptane + 1 +

4.25 Toluene +

4.28 Isobutyl acetate +

5.09 2,4-Dimethyl-1-heptene + +

5.38 4-Methyloctane +

5.51 Isopentyl acetate +

7.13 Branched alkanes + + +

7.18 Branched alkanes + + +

7.70 Dibutoxy-methane + + +

7.96 Branched alkanes +

8.01 Branched alkanes +

10.09 2,6,10,14-tetramethyl
heptadecane + + +

16.1 Similar to
sandaracopimaradiene +

1 “+” indicates presence of that compound in the given sample.

In the cabbage samples, a total of 21 VOCs were detected, 12 of which were identified (Figure 3
and Table 2). Eleven of the VOCs detected were found in all of the cabbage samples, and three VOCs
were detected for both cabbage + WPP14 and the cabbage control: two branched alkanes and 2, 6, 10,
14-tetramethyl heptadecane. The remaining seven VOCs were detected only following the inoculation
of cabbage with WPP14: isopentyl alcohol, methyl disulfide and five unidentified compounds (Table 2).

Using 6 commercially available compounds that were suggested by the GC-MS library search
we were able to confirm the identification of four compounds, namely methyl acetate, ethyl acetate,
isopentyl alcohol and isobutyl acetate, which eluted at RT 2.36, 2.78, 3.80 and 4.28, respectively.
These phytochemicals were only produced by calla lily that was challenged with PC16. Similarly,
we confirmed four compounds at RT 2.10, 2.78, 3.84 and 4.20 as ethanol, ethyl acetate, isopentyl alcohol
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and 4-methyl heptane in all cabbage samples, respectively. Among these 4 compounds, isopentyl alcohol
was specific to cabbage + WPP14 samples. Based on the FID signals, a marked increase in the amounts
of ethanol and 4-methyl heptane was observed in cabbage leaves that were inoculated with WPP14.

3.4. Expression of Defense-related Genes in Calla Lily and Cabbage in Response to Pectobacterium Infection

Plant immune systems may be activated in response to biotic and abiotic stresses, including
a pathogen attack. To better understand the pathways underlying the observed specificity of
Pectobacterium strains to their hosts, we tested the expression of marker genes that are related to
plant-defense pathways in two hosts: calla lily and cabbage. The expression of the genes for
lipoxygenase (lox2), phenylalanine ammonia lyase (pal), aspartate aminotransferase (ast) and a
pathogenesis-related gene (PR-1) were studied in response to infection with either PC16 or WPP14.
In calla lily, all of these genes were significantly upregulated following infection with PC16 or WPP14.
However, expression levels were higher following infection with PC16, as compared to WPP14,
except for the gene PR-1 (Figure 4A). In cabbage, the genes lox2 and PR-1 were significantly upregulated
by both PC16 and WPP14, with greater expression in response to WPP14 infection. The genes pal and
ast were only upregulated in response to infection with WPP14 (Figure 4B).
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Figure 4. Expression of defense-related genes pal, lox2, ast and PR-1 in (A) calla lily and (B) cabbage
following infection with Pectobacterium strains PC16 or WPP14. Calla lily and cabbage leaves were
infiltrated with overnight-grown Pectobacterium strains (100 µL, 107 cfu/mL in sterile DDW) or sterile
DDW. Twenty-four hours after infiltration, the transcript levels of these genes were determined by
qRT-PCR using cDNA-specific primers and expressed relative to control. Experiments were repeated
three times with three replicates per experiment. Bars represent mean ± SE of relative expression
of each gene. Bars not labeled with the same letter (a–c) are significantly different from each other
(one-way ANOVA with post hoc Tukey HSD test, p < 0.05).
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3.5. Effect of Host Phenolics on the Growth of the Pectobacterium Strains

To study the potential effect of host extracts on virulence-related responses of the bacteria,
plant extracts were added to the growth media. PC16 and WPP14 were then grown in the presence
of increasing levels of extracts from each of the two hosts (Figure S3). Increasing the levels of calla
lily extract (20, 40 or 60 µL added to 200 µL LB) did not affect bacterial growth (as shown by similar
absorbance at 600 nm), however addition of 80 µL inhibited the growth of both bacterial strains
(Figure 5a,b). Under all non-lethal conditions, PC16 reached a higher bacterial growth than WPP14.
Both strains exhibited a dose dependent response to the cabbage extract (Figure 5c,d). At lower
volumes, PC16 growth was enhanced by the cabbage extract. However, at the higher concentration
of cabbage extract, the growth of PC16, and to a lesser extent WPP14, was significantly inhibited.
The phenolic extracts of both hosts displayed a low level of antimicrobial activity, which was similar
against both bacterial strains. To better mimic the plant environment, the growth of the two strains
was also evaluated in MM and in the presence of non-lethal levels of the two extracts. Slower growth
was observed for both bacteria in MM (Figure S4) and, in agreement with the previous results, the two
strains grew similarly in MM in the presence of non-lethal levels of the two extracts (Figure S4).
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Figure 5. Effect of phenolic extracts from calla lily or cabbage leaves on the growth of Pectobacterium
strains PC16 (a,c) and WPP14 (b,d). Bacteria were grown at 28 ◦>C for 16 h, with or without plant
extract, under continuous shaking (150 rpm). Growth was assessed every hour and is presented as
absorbance at 600 nm (OD600 nm). Experiments were repeated twice with four replicates per treatment;
similar results were observed in the two repetitions (bar = mean ± SE; n = 8).

3.6. Effect of Host Phenolic Extracts on Bacterial Exoenzyme Activity

The most important virulence factor of Pectobacterium spp. is its capability to secrete PCWDEs
and macerate host tissues. The effect of non-lethal volume of host plant extracts on PCWDEs activity
was assayed. While calla lily extract significantly reduced the activity of Pel, Peh and Prt in WPP14,
the only effect it had on PC16 (Figure 6) was a significant reduction in the activity of Prt. The cabbage
extract reduced the activity of all of the tested exoenzymes in PC16, but not in WPP14, in which Peh
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activity was significantly increased relative to the control. However, Pel and Prt activities were similar
to control treatment (Figure 6).
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Figure 6. Effect of plant extracts (calla lily or cabbage) on the exoenzyme activity of Pectobacterium
strains PC16 (A) and WPP14 (B). Enzymatic activity was measured 8 h after application of a non-lethal
dose of plant extract to the microbial suspensions. Pel, Peh and Prt activities were determined based on
the area of the haloes formed by substrate degradation. Results are expressed as the level of activity
relative to that of the control (%). The experiments were repeated twice with eight replicates per
treatment. Tukey–Kramer HSD test was used to test differences, bars labeled with different letter (a–c)
are significantly different from each other (p < 0.05; bar = mean ± SE; n = 16).
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3.7. Effect of Plant. Extracts on Biofilm Formation

Differential biofilm formation was observed for PC16 and WPP14 in response to a non-lethal
volume (40 µL extract/200 µL LB) of the two host extracts. PC16 formed more biofilm in the presence
of calla lily extract; however, cabbage extract did not affect its biofilm formation capacity (Figure 7A).
In contrast, WPP14 had increased biofilm formation when exposed to cabbage extract (Figure 7B).
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Figure 7. Effect of phenolic extracts from calla lily or cabbage leaves on the biofilm formation ability of
Pectobacterium strains (A) PC16 and (B) WPP14. Biofilms were measured following the exposure of
Pectobacterium strains to a non-lethal volume (40 µL extract/200 µL LB) of each host extract (or extraction
buffer as control) for 72 h at 28 ◦C in glass test tubes. Biofilms were quantified by measuring absorbance
at 550 nm (crystal violet bound to biofilm cells). Experiments were repeated twice with six replicates
for each experiment. Tukey–Kramer HSD test was used to test the differences, bars not labeled with the
same letter (a-b) are significantly different from each other (p < 0.05; bar = mean ± SE; n = 12).

3.8. Expression of Pectobacterium Virulence Genes in Response to Host Phenolic Extracts

The expression of major virulence genes was assayed in the two bacterial strains in response to the
studied plant phenolic extracts. The QS genes expI and expR were upregulated in PC16 in the presence
of both host extracts, with higher fold change in response to calla lily extract. WPP14, showed higher
expression levels of the QS genes only in response to the cabbage extract (Figure 8). The expression of
pel in PC16 was upregulated in response to calla lily extract, whereas the cabbage extract significantly
reduced its expression. An opposite response was observed in WPP14, in which pel expression was
upregulated in the presence of cabbage extract and downregulated in the presence of calla lily extract.
Unlike most of the responses described so far, the expression of peh was downregulated in both strains
and no host specific effects on araF and hrpL was observed. PC16 showed an increase in the expression
of both araF and hrpL in response to both plant’s extracts, while WPP14 presented higher expression of
these genes only in response to the cabbage extract (Figure 8). The expression of the genes expI, expR,
pel and peh was also evaluated in MM in the presence of both host extracts, to better mimic the plant
ecosystem. Similar expression patterns were observed for these genes when the bacteria were grown
in MM, however with lower fold change (Figure S5).
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Pectobacterium colonization of host plants cause severe damage to farmers, suppliers and 
consumers. This multifaceted process involves many factors, including pathogen virulence, 
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Figure 8. Expression levels of virulence-related genes in Pectobacterium strains (A) PC16 and (B) WPP14
in response to phenolic extracts from calla lily or cabbage leaves. The transcript levels of the examined
genes were analyzed in DNA-free RNA from the bacterial strains PC16 and WPP14 after 8 h in LB medium
with or without host extracts (control), at 28 ◦C under continuous shaking (150 rpm). The expression
levels of expI, expR, pel, peh, hrpL and araF were quantified relative to control using qRT-PCR. Experiments
were repeated three times with three replicates showing similar trends. Bars represents mean ± SE of
relative expression of each gene. Tukey–Kramer HSD test was used to test the differences, bars not
labeled with the same letter (a–c) are significantly different from each other (p < 0.05).

4. Discussion

Pectobacterium colonization of host plants cause severe damage to farmers, suppliers and consumers.
This multifaceted process involves many factors, including pathogen virulence, interspecific interactions,
host defense responses and environmental conditions. Little is understood about the level of specificity
between certain pectobacteria with their plant hosts, or on the influence of such specificity on the
outcome of these mutual associations. Here, several aspects of such host–pathogen interactions
were studied. Host specificity has been suggested for Pectobacterium isolates from different hosts,
but this hypothesis has not yet garnered conclusive support [13,17,31]. Host range studies based
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on genomic analyses, geographical distribution and hosts’ taxonomic classifications have revealed
an ever-increasing phylogenetic and evolutionary associations within the genus [1,4,11,23,32–34].
Fewer studies have included virulence assays on different hosts, and mutual characterization of the
differential interactions between certain pectobacteria and their natural hosts.

The most prominent virulence factor of soft rot bacteria is the secretion of PCWDEs, which are
under the strict control of the QS system [35]. These enzymes are responsible for the development of
disease symptoms such as wet lesions and the maceration of the plant tissue and, finally, the decay of
plant organs. Accordingly, bacterial virulence traits were monitored in response to inoculation with
phenolic extracts from the host leaves, which are known to contain most of the plant antimicrobial
arsenal and which were previously shown to play a role in the defense response to Pectobacterium
infection [25].

Differential infection patterns of the tested Pectobacterium strains were observed in infiltration
assays and in a leaf disc assay. In both cases, each of the strains was more virulent on the host belonging
to the plant clade from which it was isolated. The specificity to the host was observed as early as
3 h after inoculation using SEM. A short time that reflects the colonization process and the interface
between the host and the pathogens [36]. The washing and dehydration process during the preparation
for the SEM revealed what was apparently the initial attachment of the bacteria to the leaf surface
and the formation of early structures such as fibers surrounding the cells. Such submicrometer-scale
cell surface polymers are essential during cell adhesion and are typical to early establishment of
biofilms [36]. Differential adhesion patterns with varying levels of cell aggregates were observed and
found to be in line with the quantitative symptom assessment observed at 24 h after inoculation and
bacterial CFU counting 3 h post inoculation.

Plants respond to biotic stress by activating defense mechanisms, including the production of
complex blends of VOCs [29,30]. Specific VOCs have been shown to be part of a mechanism by which
individual plants signal and communicate with neighboring plants. Some volatile phytochemicals are
rather general and allow neighboring organs and other plants to recognize pathogens, attack them and
elicit defense responses [29]. Here, specific VOCs were emitted, and characterized in the context of the
interactions of PC16 and WPP14 with the two hosts. The results provided additional support for the
specificity of the interaction, and indeed every plant with every pathogen produced a different array of
VOCs. Calla lily leaves presented higher levels of VOC and a more complex VOC pattern in response
to infiltration with PC16; whereas WPP14 triggered a high and complex response in cabbage leaves.
Neither the opposite combinations nor the mock control led to the same plant response. Some of
the volatiles produced by each compatible interface and analyzed by GC-MS and a library search,
were recognized to be associated with typical defense responses, i.e., calla lily–PC16 interaction and the
cabbage–WPP14 interaction. Some of the identified compounds, namely methyl- and ethyl- acetate and
isopentyl alcohol, which were produced by calla lily in response to PC16, were previously suggested
to be produced by the oxidation of monoterpenes by pathogens in a compatible plant–pathogen
interaction [37]. Terpenes have been reported to play a key role in protecting plants from bacterial
pathogens as in the case of rice against bacterial rice blight [38]. Isopentyl alcohol, dimethyl disulfide and
several unidentified compounds were shown to be representative of cabbage–WPP14 unique interaction.
Ethanol, ethyl acetate, isopentyl alcohol, dimethyl disulfide and octane were previously reported to
be involved in the interaction of Pectobacterium spp. with different hosts [39,40]. To the best of our
knowledge, this is the first report to propose that different Pectobacterium strains differentially modulate
the VOCs production and emission by their hosts during compatible and non-compatible interactions.

Systemic acquired resistance (SAR) and induced systemic resistance (ISR) are the most recognized
defense pathways in plants and are associated with biotrophic and necrotrophic pathogens,
respectively [41]. Defense mechanisms activated in response to Pectobacterium infections are complex,
as the pathogen deploys stealthy and brute-force modes of action depending on the prevailing
environmental conditions [42–44]. Here, we assessed the expression of lox2, a typical ISR marker [45],
that is also involved in the production of volatiles in relation to pathogen attacks [46]; the SAR
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marker PR-1 [47]; pal, an enzyme involved in biosynthesis of salicylic acid and other phenolics [48];
and ast, which modifies the primary amino acid metabolism as part of defense responses in plants [49].
Significantly higher expression of pal and lox2 was observed in calla lily when it was challenged with
both strains. It is suggested that specificity may be expressed as the intensity of the gene expression of
calla lily in response to PC16 or cabbage’s expression of pal and lox2 upon WPP14 infection.

Synthesis of phenolics by these enzymes was previously demonstrated as part of ISR activation
in calla lily and potato against pectobacteria [25,50]. These enzymes were also shown to be involved
in the increased production of VOCs [46], and the expression of the relevant genes was shown to
increase following infection of tomato and A. thaliana with P. carotovorum [51,52]. PR-1 expression
increased in both hosts upon infection with both strains, similar to the infections caused by necrotrophic
pectobacteria or the necrotrophic fungus Alternaria solani in A. thaliana and tomato, respectively [51,53].
Since PR-1 is related to SAR and programmed cell death, this response may in some cases enhance the
infection. Another defense related gene, ast, was also shown to affect infection (lesion development) in
overexpressing lines of Arabidopsis upon infection with Botrytis cinerea [49]. Here, upon infection of the
host with its compatible strain a higher expression of ast was correlated with stronger development of
disease symptom in both hosts, suggesting that the higher levels of expression of this gene leads to
elevated disease.

Secondary metabolites including phenolics are part of an array of multifaceted defense mechanisms
that plants activate in response to microbial pathogens and to insect herbivores [41,54]. Levels of either
total or specific phenolics have been shown to increase following defense elicitation and/or necrotrophic
pathogen infections, and are considered a part of plants’ defenses against Pectobacterium [25,55,56].
Here, the effects of phenolics containing extracts were tested on virulence factors and expression of
virulence genes in both Pectobacterium strains. Exoenzyme activity (Pel, Peh and Prt) in both strains was
assessed in the presence of non-inhibitory concentration of host phenolic extracts. Again, the unique
nature of the interaction of each host with the different pathogen was clearly presented. The extracts
inhibited exoenzyme activity in both strains in a reciprocal manner, with calla lily extract inhibiting the
activity of Pel, Peh and Prt in WPP14 and cabbage extract reducing the activity of the same enzymes
in PC16.

Biofilm formation another important trait for successful colonization of hosts by plant-pathogenic
bacteria [57,58], also increased in a differential manner with each strain responding to the extract from
its favored host. Increased biofilm formation was seen in Pseudomonas aeruginosa and Agrobacterium
tumefaciens in the presence of non-lethal concentrations of phenolic compounds [59]. Differential biofilm
formation of the two Pectobacterium strains may be another factor affecting host specificity.

Finally, the effects of the host extracts on the expression of bacterial virulence genes was evaluated.
The genes expI and expR major components of the AI-1 quorum-sensing (QS) circuit in Pectobacterium [60],
largely control virulence by regulating PCWDEs, biofilm formation and T3SS [43,61]. Differential
expression of these genes was observed for both strains in response to the application of the extracts from
their respective host. A similar pattern was observed for pel gene in both strains. Similar results were
observed in Pseudomonas syringae pv. phaseolicola NPS3121 and Xanthomonas campestris pv. campestris
following exposure to extracts from their own hosts common bean (Phaseolus vulgaris) and cabbage,
respectively [62,63]. The expression of pel was quite congruent with the differences in enzymatic
activities of both strains. The varying expression of Peh suggests that this enzyme is also regulated
by other factors, as was suggested for the low-cell-density environment that exists mainly at earlier
stages of infection [64]. Other genes like hrpL and araF were significantly upregulated by cabbage
phenolics in both strains. The calla lily extract affected the expression levels of these genes only in PC16.
HrpL protein, a product of the hrpL gene, is an alternative sigma factor that regulates the expression of
structural components of T3SS and other genes that have been associated with Erwinia amylovora biofilm
formation [57]. Finally, although PCWDEs, biofilm formation and the expression of virulence genes in
Pectobacterium spp. were shown not to depend on the growth medium, we also examined some of these
traits in MM, since it was suggested to be a better mimic of the host environment [65]. The differential



Microorganisms 2020, 8, 1479 18 of 22

effect of the plant host extracts was conserved for both strains in MM. Overall, the results support host
specialization by certain pectobacteria.

5. Conclusions

Pectobacteria are commonly recognized as broad-host-range pathogens. Here, high levels of
recognition, primarily based on the production of specific molecules, were demonstrated in the
interactions of two Pectobacterium species with their typical hosts. Not only could each bacterial strain
sense its “favored” host and express different virulence factors in response, the plant hosts have also
identified the colonizing strain and activated different defense mechanisms. Wider transcriptomic
work is required to better characterize the specific genes and signals that may be involved in both host
and pathogen specialization.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/2076-2607/8/10/1479/
s1, Figure S1: Leaf discs of calla lily or cabbage leaves inoculated with Pectobacterium strains, Figure S2: Assessment
of bacterial colonization on leaves, 3 h post inoculation of P. carotovorum WPP14 or P. aroidearum PC16 onto calla
lily or cabbage leaf surface, Figure S3: HPLC chromatograms of phenolics extracted from Calla lily and Cabbage,
that served for the assays, Figure S4: Growth of Pectobacterium strains PC16 and WPP14 in MM in the presence of
non-lethal volumes (40 µL extract/200 µL LB) of phenolic extracts from calla lily or cabbage leaves, Figure S5:
Expression levels of virulence genes (expI, expR, pel and peh) in Pectobacterium strains PC16 and WPP14 in MM in
the presence of phenolic extracts from calla lily and cabbage leaves.
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