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Abstract: There has been a great deal of controversy in recent years about the potential role of dietary
supplementation with long-chain omega-3 polyunsaturated fatty acids (n-3 PUFA) in the prevention
of cardiovascular disease (CVD). Four recent meta-analyses have been published that evaluated
randomized, controlled trial (RCT) data from studies that assessed the effects of supplemental
n-3 PUFA intake on CVD endpoints. The authors of those reports reached disparate conclusions.
This review explores the reasons informed experts have drawn different conclusions from the
evidence, and addresses implications for future investigation. Although RCT data accumulated
to date have failed to provide unequivocal evidence of CVD risk reduction with n-3 PUFA
supplementation, many studies were limited by design issues, including low dosage, no assessment of
n-3 status, and absence of a clear biological target or pathophysiologic hypothesis for the intervention.
The most promising evidence supports n-3 PUFA supplementation for prevention of cardiac death.
Two ongoing trials have enrolled high cardiovascular risk subjects with hypertriglyceridemia and are
administering larger dosages of n-3 PUFA than employed in previous RCTs. These are expected to
clarify the potential role of long-chain n-3 PUFA supplementation in CVD risk management.

Keywords: omega-3 fatty acids; long-chain polyunsaturated fatty acids; cardiovascular disease;
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trials; triglycerides

1. Introduction

There has been a great deal of controversy in recent years about the role of dietary supplementation
with long-chain omega-3 polyunsaturated fatty acids (n-3 PUFA) in the prevention of cardiovascular
disease (CVD). The predominant long-chain n-3 PUFAs in the diet are eicosapentaenoic acid (EPA)
and docosahexaenoic acid (DHA). Docosapentaenoic acid (DPA) is present in small quantities in
the diet and is an intermediate in the conversion of EPA to DHA. The predominant sources of
long-chain n-3 PUFAs in the diet are oily fish and other types of seafood. Alpha-linolenic acid is also
an essential omega-3 fatty acid that can be obtained through consumption of plant foods such as
flax, canola and soybean oils [1]. However, humans convert this shorter chain n-3 PUFA to EPA to
a very limited degree [2]. The long-chain n-3 PUFAs play key roles in maintaining normal neurologic
and cardiovascular functions [1]. Recommendations from various health authorities around the
world suggest consumption of the equivalent of at least 1–2 oily fish meals a week, which provides
250–500 mg/d of EPA + DHA [3–5]. Intakes of EPA + DHA in the US and many other developed
countries are well below recommended levels [6,7]. Intakes of long-chain n-3 PUFAs well above
those recommended for general health (≥3 g/d) have therapeutic applications, such as lowering the
circulating triglyceride (TG) concentration to reduce risk for pancreatitis [1].
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Results from early observational studies, such as those of Greenland Eskimos whose diets
contained large quantities of long-chain n-3 PUFA, suggested that higher intake was associated with
lower CVD risk. Subsequently, the results from the Gruppo Italiano per lo Studio della Sopravvivenza
nell’Infarto Miocardico (GISSI)-Prevenzione trial, initially published in 1999, showed lower risk of
the primary composite endpoint of death, non-fatal myocardial infarction (MI), and stroke in a group
of recent survivors of MI randomly assigned to receive treatment with n-3 PUFA (850 mg/d EPA
+ DHA as ethyl esters) compared with a control group that received no treatment [8]. The trial
also had randomization to vitamin E or no vitamin E, which showed no effect on CVD events.
In a two-way analysis comparing those receiving and not receiving n-3 PUFA (with or without vitamin
E), the incidence of the primary outcome was reduced by 10%, although this appeared to have been
driven mainly by 20–26% lower rates of deaths from cardiac causes, which included mainly deaths
from acute MI, sudden and arrhythmic deaths, and deaths from heart failure.

In mechanistic and animal studies, long-chain n-3 PUFA supplementation was found to have
a number of potentially beneficial actions that included reducing levels of TG and fibrinogen, inhibition
of vascular adhesion molecule expression, enhancement of endothelial function and arterial compliance,
and inhibition of some pro-inflammatory cytokines [9,10]. Given the biologic plausibility, promising
data from observational studies, and the benefit shown in the GISSI-Prevenzione trial, a great deal of
enthusiasm was generated for additional studies to evaluate the effects of n-3 PUFA interventions on
CVD risk.

To date, results have been reported from more than 30 randomized, controlled trials (RCTs) that
reported the effects of long-chain n-3 PUFA supplementation on CVD event outcomes [11]. In addition,
at least four RCTs are underway, or have recently been completed, which include long-chain n-3 PUFA
interventions and assess CVD events [12–15]. Four recent meta-analyses have been published that
evaluated the available RCT data from studies that assessed the effects of n-3 PUFA intervention on
CVD-related endpoints. The authors of these papers reached disparate conclusions regarding the
potential efficacy of long-chain n-3 PUFA supplementation for CVD risk reduction [11,16–18]. In one
case, the authors concluded that there is little reason to continue to study long-chain n-3 PUFA for
CVD protection [18], whereas others have suggested that long-chain n-3 PUFA supplementation shows
evidence suggestive of benefit, and that additional investigation is clearly warranted [16,17].

After reviewing the available evidence, the American Heart Association released an advisory to
update prior guidance regarding clinical use of dietary long-chain n-3 fatty acid supplementation,
in which the authors concluded [19]:

“Although recent RCT evidence has raised questions about the benefits of omega-3
supplementation to prevent clinical CVD events, the recommendation for patients with prevalent CHD
such as a recent MI remains essentially unchanged: Treatment with omega-3 PUFA supplements is
reasonable for these patients. Even a potential modest reduction in CHD mortality (10%) in this clinical
population would justify treatment with a relatively safe therapy. We now recommend treatment for
patients with prevalent heart failure without preserved left ventricular function to reduce mortality
and hospitalizations (9%) on the basis of a single, large RCT”.

In contrast, a Medical News and Perspectives piece published recently in the Journal of the
American Medical Association was titled Another Nail in the Coffin for Fish Oil Supplements [20].
The story quotes one of the authors of the meta-analysis cited earlier [18], who stated that their analysis
“doesn’t provide any support for the current recommendation from the American Heart Association to
use omega-3 fatty acids for the prevention of fatal coronary heart disease or any coronary heart disease
in people with prior vascular disease”.

The opinions among experts may thus be characterized as those who view the glass as half full
(i.e., the available results are promising and justify further research) and those who believe it is time to
nail the coffin shut on the question of potential benefits of long-chain n-3 PUFA supplementation for
CVD risk reduction [18–21]. Our view falls into the glass half full category. Therefore, the objectives of
this editorial review are to summarize results from recent meta-analyses of RCT data evaluating the
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effects of long-chain n-3 interventions on various CVD outcomes and to explain why we are of the
opinion that additional research is warranted to evaluate potential cardiovascular benefits of higher
dosages of long-chain n-3 PUFAs, particularly for reducing risk of cardiac death in subgroups at
high risk.

2. Results from Recent Omega-3 Meta-Analyses

Key results from four recent meta-analyses of RCT data from investigations of long-chain n-3
PUFA administration, compared to control or no treatment, are summarized in Table 1 in order to
highlight similarities and differences in the reported findings [11,16–18]. Alexander et al. included
18 RCTs in their evaluation of effects of long-chain n-3 PUFA interventions on coronary heart disease
(CHD) events [16]. A modestly lower (6%) incidence of CHD events was reported for the intervention
group, which was not statistically significant. A statistically significant 19% reduction in coronary
death was reported for a subset of five trials that reported this outcome.

Maki et al. reported that the pooled relative risk (RR) for cardiac death was 8% lower (p = 0.015)
for the intervention groups in 14 trials that provided the intervention as a dietary supplement or
pharmaceutical n-3 PUFA concentrate [17]. The outcome in this analysis included deaths from CHD,
cardiac arrhythmia and heart failure. The primary analysis included secondary prevention and
mixed primary and secondary prevention subjects, although trials of subjects with implanted cardiac
defibrillators were excluded.

Hooper and colleagues completed a comprehensive meta-analysis for the World Health
Organization [11]. Their results indicated that there were no statistically significant effects for
cardiovascular (CV) death, CV events, CHD death or stroke, but there was a statistically significant 7%
risk reduction in CHD events from a group of 28 RCTs. A separate analysis of stroke incidence showed
no evidence of benefit.

In the meta-analysis of 10 RCTs, Aung et al. (the Omega-3 Treatment Trialists’ Collaboration)
reported that there were no statistically significant effects of long-chain n-3 PUFA for outcomes of CHD
events (nonfatal MI or CHD death), nonfatal MI, stroke, or major vascular events (composite of first
occurrence of nonfatal MI or death caused by CHD, nonfatal or fatal stroke, or any revascularization
procedure) [18]. However, for CHD death, the pooled effect size showed a marginally significant
(p = 0.05) 7% reduction in CHD death for the n-3 PUFA intervention groups, an outcome which
included sudden cardiac death, deaths due to ventricular arrhythmias and heart failure in patients
with CHD, as well as deaths occurring after coronary revascularization or heart transplant.

In addition to the meta-analyses summarized in Table 1, an updated systematic review was
prepared for the Agency for Healthcare Research and Quality (AHRQ), U.S. Department of Health and
Human Services by Balk et al. [22]. The authors concluded that there was low strength of evidence
to support a conclusion of no association between total n-3 fatty acid intake and stroke death or
MI, and insufficient evidence for other outcomes. The AHRQ analysis did not include a statistical
evaluation of cardiac death because its pre-defined inclusion criteria resulted in examination of just
five RCTs reporting cardiac death, and only one that reported cardiac death as a primary outcome.
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Table 1. Characteristics and selected results from four recent meta-analyses of data from randomized controlled trials of long-chain omega-3 polyunsaturated fatty
acid administration compared to control or no treatment.

Meta-Analysis Reference Trials Included (n) Subjects Included (n) Outcomes Evaluated Pooled Effect Size
(Risk Ratio, 95% CI)

Alexander, et al. [16] 18 93,633 CHD event (combination of fatal or nonfatal MI, coronary death,
sudden cardiac death, angina) 0.94 (0.85–1.05)

5 41,350 Coronary death (fatal MI, death from other acute or subacute
forms of CHD, or death from chronic CHD) 0.81 (0.65–1.00) *

Maki, et al. [17] 14 71,899 Cardiac death (death from CHD, cardiac arrhythmia,
or heart failure) 0.92 (0.86–0.98) *

Hooper, et al. [11] 25 67,772
CV death (death from any CV cause; death from individual CV

causes were summed if no report of CV death; cardiac death used
if CV death not reported)

0.95 (0.87–1.03)

32 89,362 CV event (non-fatal MI, CHD death, fatal and non-fatal stroke) 1 0.99 (0.94–1.04)

21 73,491 CHD death (coronary death or, when not reported, ischemic heart
disease death, fatal MI or cardiac death) 0.93 (0.79–1.09)

28 84,301 CHD event (CHD or coronary event, total MI, acute coronary
syndrome or stable or unstable angina) 0.93 (0.88–0.97) *

28 89,358 Stroke (fatal and non-fatal stroke, hemorrhagic and ischemic) 1.06 (0.96–1.16)

Aung, et al. [18] 10 77,917 CHD event (nonfatal MI, CHD death) 0.96 (0.90–1.01)

10 77,917 Nonfatal MI 0.97 (0.89–1.05)

10 77,917
CHD death (sudden cardiac death, deaths due to ventricular

arrhythmias and heart failure in patients with CHD, MI or deaths
occurring after coronary revascularization or heart transplant)

0.93 (0.85–1.00) *

10 77,917 Stroke (ischemic, hemorrhagic, unclassified/other) 1.03 (0.93–1.13)

10 77,917
Major vascular event (composite of first occurrence of nonfatal

MI or death caused by CHD, nonfatal or fatal stroke, any
revascularization procedure)

0.97 (0.93–1.01)

Abbreviations: CHD, coronary heart disease; CI, confidence interval; CV, cardiovascular; CVD, cardiovascular disease; MI, myocardial infarction. 1 The paper did not provide a discrete
definition of CV event, but an examination of the studies included suggests these were the types of CV events considered in the calculation. * Indicates pooled relative risk estimate with
a p value of ≤0.05.
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3. Summary of Meta-Analysis Findings by Type of CV Outcome

3.1. Stroke and Cardiovascular (CV) Events

The summary above suggests that the current RCT evidence does not support a benefit of the
long-chain n-3 PUFA interventions studied on risk for stroke because the two meta-analyses that
reported on that outcome showed pooled RRs that indicated non-significantly higher incidence
(3% and 6%) in the intervention groups compared with the control groups [11,18]. Because CV events
(also termed major vascular events) include both CHD events and stroke, it is not surprising that no
benefits were observed for CV events, including CV deaths.

3.2. Coronary Heart Disease (CHD) Events

Three of the four meta-analyses reported on the outcome of CHD events. The pooled RRs
indicated modestly lower incidence of 6% [16], 7% [11] and 4% [18], but only one of the three had a 95%
confidence interval (CI) that did not include the null value of 1.0, indicating statistical significance [4].

3.3. Coronary Heart Disease (CHD), Coronary or Cardiac Death

Analyses of deaths from cardiac-related causes were included in all four meta-analyses and
three of the four showed significantly lower incidence in the long-chain n-3 PUFA intervention arms.
Alexander et al. reported a significant reduction of 19% in coronary deaths, although this analysis
pooled data from only five trials [16]. Maki et al. reported a significant reduction of 8% in cardiac death
based on data from 14 trials [17]. Hooper et al. reported a non-significant reduction of 7% in CHD
death based on pooled data from 21 trials [11], whereas Aung et al. reported a marginally significant
reduction of 7% based on data from 10 trials [18].

The summary above indicates that results appear most promising for a potential benefit of
long-chain n-3 PUFA supplementation for prevention of cardiac death. As discussed below, such an
effect is biologically plausible through mechanisms relating to prevention of arrhythmic events
triggered by cardiac ischemia and modulation of adverse cardiac remodeling in response to injury,
which has the potential to reduce risks for both heart failure and ventricular arrhythmia [9,19].
However, it is also possible that higher dosages of long-chain n-3 PUFAs may be effective for lowering
risks for non-fatal events through anti-inflammatory and anti-atherosclerotic pathways, particularly
in some subsets of those at high CV risk, such as individuals with elevated TG and low high-density
lipoprotein cholesterol (HDL-C) [17]. A number of limitations exist in the existing evidence base
from RCTs of long-chain n-3 interventions evaluating CV outcomes that suggest biologically plausible
hypotheses that, in our view, warrant further investigation. Thus, we feel it is premature to suggest that
it is time to “nail the coffin shut” regarding a potential role for long-chain n-3 PUFA supplementation
as a strategy to reduce CV event risk.

4. Mechanisms through Which Long-Chain n-3 Polyunsaturated Fatty Acids (PUFAs) Could
Potentially Lower Cardiovascular Disease (CVD) Risk

Mozaffarian and colleagues have reviewed the mechanisms through which increasing n-3 PUFA
intake may influence risk for CV events [9,10]. These include metabolic effects, such as reducing
plasma levels of TG and TG-rich lipoprotein cholesterol levels; effects on the myocardium, such as
reducing susceptibility to ventricular arrhythmia (especially that induced by ischemia); lowering
heart rate and myocardial oxygen demand, as well as increasing left ventricular diastolic filling;
vascular effects, such as reducing vascular adhesion molecule expression and increasing flow-mediated
vasodilation. Additional effects include reducing platelet aggregation and increasing the production
of n-3 PUFA metabolites that may reduce inflammation and enhance resolution of inflammatory
responses. For many mechanisms, the dose-response relationship is not well defined and potential
interactions with baseline n-3 PUFA intake and status have not been extensively studied.
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5. Limitations of the Current Randomized Controlled Trial (RCT) Evidence Base

The existing RCT evidence base has several limitations, including: low dosages of long-chain n-3
PUFA in most trials, lack of assessment of biomarkers of n-3 PUFA status (and status of other relevant
fatty acids such as n-6 PUFA) at baseline or during treatment, and selection of study samples in whom
the pathophysiologic basis for predicting a benefit was not clear.

6. Low Dosages and Lack of n-3 Polyunsaturated Fatty Acid (PUFA) Status Determination before
and during Supplementation

Most RCTs of interventions for CVD prevention are designed to evaluate effects on one or more
biomarkers of disease risk, such as circulating cholesterol level, blood pressure, or inflammatory
markers, in addition to clinical events. This approach provides a mechanistic link between the effects
of the intervention on one or more biomarkers and the observed effect(s) on CVD event risk. Long-chain
n-3 PUFA have been shown to affect a variety of biomarkers of CVD event risk. However, with the
exception of TG-lowering [23], the dose-response characteristics for effects on biomarkers of risk have
not been well defined, thus it is unclear whether large enough dosages were employed to induce
physiologic changes required to produce CVD benefits. For example, of the 10 trials included in the
meta-analysis by Aung et al., only two tested dosages >1.0 g/d of EPA + DHA and none tested dosages
>2.0 g/d [18]. As an analogy, the drug atorvastatin is used to lower CVD risk, primarily through its
effect to reduce low-density lipoprotein cholesterol (LDL-C). Beneficial effects have been demonstrated
in trials with dosages ranging from 10–80 mg/day [24]. However, if a large majority of trials had been
conducted with 2 mg/day of atorvastatin, it is doubtful that a reduction in CVD risk would have been
consistently demonstrated because the CVD event risk reduction with statin therapy has been shown
to be closely related to the degree of LDL-C lowering, with each mmol/L reduction associated with
a 22% reduction in risk [24].

Long-chain n-3 fatty acid incorporation into tissues can be estimated through the evaluation of
the levels in blood pools such as plasma phospholipids and erythrocyte membrane phospholipids.
Values for these two blood pools are highly correlated with one another and with levels of long-chain
n-3 fatty acids in tissue phospholipids, including cardiac tissue [25]. Assessment of levels of EPA and
DHA in plasma or tissue pools eliminates many of the measurement issues associated with estimating
dietary long-chain n-3 PUFA intakes. Thus, biomarkers of n-3 status may be useful as proxy measures
for the adequacy of the dosage employed to impact the various pathways through which CVD benefits
might be realized [25,26].

The relationships between total long-chain n-3 PUFA content [EPA + DPA + DHA] of plasma
phospholipid fatty acids with selected CV mortality outcomes among subjects in the Cardiovascular
Health Study are shown in Table 2 [27]. Significant inverse associations were observed for CV death,
CHD death and arrhythmic death, but not for death from stroke. For CV death, CHD death and death
due to cardiac arrhythmia, no significant inverse associations with risk were observed in the second and
third quintiles compared with the first quintile. Significantly lower risks were observed in the fourth and
fifth quintiles for CV and CHD death, and only in the fifth quintile for arrhythmic death. In a separate
analysis from the Cardiovascular Health Study, the same investigators evaluated the association between
plasma phospholipid n-3 PUFA levels and risk for congestive heart failure. In the full sample, only the
top quartile of total plasma phospholipid n-3 PUFA (EPA + DPA + DHA) showed a significant inverse
relationship with incident congestive heart failure (hazard ratio [HR] 0.70, 95% CI 0.49–0.99) [28].

Del Gobbo et al. completed a pooled analysis of data from cohort studies that assessed biomarker
levels of n-3 fatty acids [29]. They found that each 1-standard deviation (SD) increase in long-chain
n-3 fatty acids (EPA + DPA + DHA) in plasma phospholipids was associated with an HR for fatal
CHD of 0.88 (95% CI 0.80–0.96). West and colleagues (2018, in press) provided supplements containing
an average of 1.26 g/d of EPA + DHA in ethyl ester form. The mean increase in the omega-3 index
(erythrocyte phospholipid EPA + DHA) was 1.8%. The median level of supplementation in the 10 RCTs
included in the Aung et al. meta-analysis was ~850 mg/d of EPA + DHA, with eight of 10 studies
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providing the supplements in ethyl ester form [18]. If approximate dose-proportionality is assumed,
the results from the study by West et al. suggest that a dosage of 850 mg/d of EPA + DHA as ethyl esters
would be expected to increase the omega-3 index by ~1.2% [30]. Harris et al. [26] showed that the SD for
estimated omega-3 index in 10 cohorts evaluated in the Del Gobbo et al. [29] analysis was 2.1%. Therefore,
the expected median increase in omega-3 index for the RCTs in the Aung meta-analysis was ~0.57 SDs [5].
Accordingly, the expected effect on fatal CHD would be 0.880.57 = 0.93, a 7% reduction in fatal CHD risk.
This value is consistent with the rate ratios of 0.93 for CHD death reported by both Aung et al. [18] and
Hooper et al. [11], as well as the value of 0.92 for cardiac death reported by Maki et al. [17] (see Table 1).
Thus, based on results from prospective cohort studies, it is reasonable to speculate that supplementation
with higher dosages of long-chain n-3 PUFA than used in most of the RCTs completed to date might be
expected to produce larger reductions in cardiac death (death from CHD, arrhythmia and heart failure).
Alexander et al. and Maki et al. reported subgroup analyses for RCTs that employed dosages > or
≥1.0 g/d of EPA + DHA [16,17]. Alexander et al. showed a non-significant pooled RR from seven trials
for any fatal CHD event (RR = 0.89, 95% CI 0.58–1.37) [16]. Maki et al. reported a pooled RR for cardiac
death of 0.71 (95% CI 0.51–0.99, p = 0.043) from seven trials that included 20,418 participants (28% of
those in the primary analysis of 14 trials) [17]. Although these subgroup analyses must be interpreted
with caution, the results are consistent with the hypothesis that the dosages provided in most of the
large-scale RCTs of long-chain n-3 PUFA interventions may have been insufficient to reduce risk for
cardiac-related deaths.

Two ongoing trials [Reduction of Cardiovascular Events with EPA-Intervention Trial (REDUCE-IT)
and Outcomes Study to Assess Statin Residual Risk Reduction with Epanova in High CV Risk Patients
with Hypertriglyceridemia [STRENGTH]) are using dosages of EPA + DHA ≥3 g/d that are well
above the ~850 mg/d used in a majority of the largest trials completed to date [12,13]. Two other
trials [The Vitamin D and Omega-3 Trial (VITAL) and A Study of Cardiovascular Events in Diabetes
(ASCEND)] that have recently been completed and are expected to report results this year used dosages
of 840 mg/d of EPA + DHA as ethyl esters [14,15].

Table 2. Multivariate-adjusted associations between plasma phospholipid total long-chain omega-3 fatty
acid (EPA + DPA + DHA) quintiles with incident mortality from selected cardiovascular causes [27].

Type of Event Q1 Q2 Q3 Q4 Q5 p for Trend

CV Death 1.00 0.92 (0.72–1.19) 1.05 (0.82–1.35) 0.74 (0.56–0.98) 0.65 (0.48–0.87) <0.001
CHD Death 1.00 0.88 (0.64–1.22) 1.03 (0.75–1.41) 0.62 (0.43–0.89) 0.60 (0.42–0.87) 0.002
Arrhythmic

Deaths 1.00 0.79 (0.50–1.24) 1.07 (0.70–1.63) 0.68 (0.42–1.10) 0.52 (0.31–0.86) 0.008

Stroke Death 1.00 0.92 (0.53–1.58) 1.11 (0.66–1.88) 0.84 (0.48–1.48) 0.60 (0.32–1.12) 0.092

Abbreviations: CHD, coronary heart disease; CV, cardiovascular; DHA, docosahexaenoic acid; DPA,
docosapentaenoic acid; EPA, eicosapentaenoic acid; Q, quintile.

7. Lack of a Clear Pathophysiologic Hypothesis in Most Trials

A large majority of the trials included in the four meta-analyses summarized in Table 1 were not
designed to enroll a group with increased risk attributable to one or more pathophysiological states
that could be mitigated by long-chain n-3 supplementation, such as subjects with elevated TG or low
omega-3 index. In the future, it would be of interest to conduct an RCT in subjects at high CV risk who
have a low omega-3 index, such as individuals with a value <4% (roughly 1-SD below the population
mean) [26]. Based on data from observational studies, Harris and von Schacky have suggested a target
level of omega-3 index of ≥8.0% for lowering CHD risk (roughly 1-SD above the population mean) [25].
Raising the mean omega-3 index to ≥8.0% from a baseline <4% would likely require a supplemental
EPA + DHA ethyl ester dosage of at least 3 g/d [26,30]. If the 12% reduction in risk for each SD
increase in omega-3 index based on the relationship observed in cohort studies that measured plasma
phospholipid long-chain n-3 fatty acids were to hold true [29], an increase in the omega-3 index from
3.8% to 8.5% would represent an increase of 2.2 SDs (8.5% − 3.8% = 4.7% and 4.7%/2.1% = 2.2 SDs).
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This would be predicted to reduce risk of CHD death by 1 − 0.882.2 = 0.25 or 25%. Ideally, such a study
would include measurements to document the impacts of the intervention on biomarkers of CV risk
such as indicators of chronic inflammation, hemodynamic status (e.g., blood pressure and heart rate),
endothelial function, lipoprotein lipids and particles, and hemostatic variables. This would allow
exploration of the relative importance of various hypothesized mechanisms if a benefit was observed.

To test the hypothesis that long-chain n-3 PUFA supplementation reduces CV risk through
pathways related to effects on inflammation and resolution, a study sample could be identified
with elevated levels of a biomarker of inflammation, such as high-sensitivity C-reactive protein.
The sample could then be randomized to receive long-chain n-3 PUFA or placebo along with
other standard therapies. A similar approach was taken in the Canakinumab Anti-inflammatory
Thrombosis Outcomes Study (CANTOS) with the monoclonal antibody canakinumab, an agent that
inhibits the inflammatory cytokine interleukin-1. CANTOS provided the first direct evidence that an
anti-inflammatory intervention could reduce CV event risk [31].

Inflammatory pathways are believed to play a key role in adverse cardiac remodeling [32–35].
Results from the Omega-3 Acid Ethyl Esters on Left Ventricular Remodeling After Acute Myocardial
Infarction (OMEGA-REMODEL) trial support the biologic plausibility of increasing long-chain n-3
PUFA status as a method to reduce adverse cardiac remodeling [36]. After injury, such as an
acute MI, chronically elevated cardiac pre-load and/or afterload, or chronic uremia such as occurs
in end-stage renal disease, adverse left ventricular remodeling can occur, which can contribute
to risks for progressive cardiac dysfunction, heart failure and ventricular arrhythmia [32,33,37].
In OMEGA-REMODEL, subjects with a recent history of MI were randomly assigned to 4 g/d n-3
acid ethyl ester capsules (3.4 g/d EPA + DHA) or placebo, while receiving current guideline-based
background therapy [36]. Long-chain n-3 PUFA supplementation significantly reduced left ventricular
systolic volume index (the primary outcome variable) as well as non-infarct myocardial fibrosis.
Furthermore, a change in the omega-3 index during treatment was related to percent improvement in
left ventricular systolic volume index, demonstrating a clear dose-response relationship (p for linear
trend across quartile of change in omega-3 index < 0.0001). Long-chain n-3 PUFA supplementation was
also associated with a significant reduction compared with placebo in the ST2 cardiac stress biomarker.
ST2 is a member of the interleukin-1 receptor family that signals the presence and severity of cardiac
stress and adverse cardiac remodeling [38]. ST2 elevation provides prognostic information for cardiac
mortality post-MI and in heart failure that is independent of other cardiac biomarkers [38]. Therefore,
a reduction in ST2 with long-chain n-3 PUFA supplementation in post-MI patients is consistent with
the potential to reduce risk of cardiac death, especially because this was accompanied by improved
left ventricular end systolic volume and reduced non-infarct cardiac fibrosis. These findings suggest
further investigation of the effects of relatively high dosages of long-chain n-3 PUFA is warranted
to evaluate the potential for reducing risk for cardiac death in high-risk subsets, such as those with
recent MI or left ventricular hypertrophy, individuals with heart failure, and patients with end-stage
renal disease.

8. Ongoing and Recently Completed Randomized Controlled Trials (RCTs) of Long-Chain n-3
Polyunsaturated Fatty Acid (PUFA) Interventions

There are four ongoing or recently completed CVD outcomes trials testing long-chain n-3 PUFA
interventions: REDUCE-IT [12], STRENGTH [13], ASCEND [15] and VITAL [14]. Results from
REDUCE-IT, ASCEND and VITAL are due to be released in 2018. Of the trials ongoing or
recently completed, two (REDUCE-IT and STRENGTH) are testing the efficacy of higher dosages of
long-chain n-3 PUFAs for lowering CV event risk in subjects at high CV risk who have persistent
hypertriglyceridemia despite statin therapy. These trials are notable because they are evaluating the
effects of treatment on a specific target (hypertriglyceridemia and related lipoprotein abnormalities)
in subjects with elevated risk that is believed to be at least partly attributable to an elevated level of
the target of the intervention. These studies are also using much larger dosages of EPA and DHA
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(≥3000 mg/d) than most prior trials. The dosages used in these RCTs should be sufficient to produce
clinically meaningful changes in the intervention target (TG) and possibly in other relevant variables
such as markers of inflammation, heart rate and blood pressure.

REDUCE-IT enrolled statin-treated patients at elevated CV risk with TG ≥150 mg/dL and
<500 mg/dL (but later raised the lower TG requirement to ≥200 mg/dL to increase enrollment of
patients with more significant TG elevations) and LDL-C >40 mg/dL and ≤100 mg/dL. The primary
outcome is the composite of CV death, nonfatal MI, nonfatal stroke, coronary revascularization
or unstable angina. With just over 8000 subjects, a potential concern is that the study may be
underpowered to detect an effect in the primary outcome variable. A substantial fraction of the
subjects enrolled had TG <200 mg/dL (prior to the change in entry criteria) and subjects were not
required to have low HDL-C.

In a meta-analysis investigating the results from RCTs evaluating the effects of agents that
primarily lower TG (6 trials of fibrates, 2 of niacin, 1 of a fibrate plus niacin, and 1 of EPA ethyl esters),
the pooled CV event risk reduction was 12%, but was higher for the subgroups with elevated TG (18%)
and highest (29%) for those with elevated TG plus low HDL-C [39]. Since REDUCE-IT is utilizing
a higher dosage of EPA only (3.7 g/d) and is testing a clinically relevant hypothesis in higher risk
subjects, we are cautiously optimistic about the potential to demonstrate benefit. Also, the trial has
undergone periodic review and has not been stopped for futility, which suggests that some degree of
difference in event rates between groups is likely.

Of the four ongoing or recently completed studies, we feel that STRENGTH shows the most
promise, based on the higher dosage of EPA + DHA being administered (3.0 g/d EPA + DHA), the form
of n-3 used (carboxylic acids, which are better absorbed than n-3 ethyl esters) [40], and the study
sample that has been shown in prior subgroup analyses to have the most benefit from TG-lowering
medications (i.e., those with high TG and low HDL-C) [13,39]. STRENGTH enrolled patients at high
CVD risk with LDL-C < 100 mg/dL, TG ≥ 180 mg/dL and <500 mg/dL and HDL-C < 42 mg/dL
for men and <47 mg/dL for women. The primary outcome is the first occurrence of any major
adverse cardiac event (including CV death, nonfatal MI, nonfatal stroke, emergent/elective coronary
revascularization, or hospitalization for unstable angina). Results are expected in 2020.

Unfortunately, VITAL and ASCEND are each testing a relatively low dosage of 840 mg/d
EPA + DHA as n-3 acid ethyl esters. This is approximately the same dosage that has been used
in a majority of the trials conducted to date. Therefore, it would not be surprising if these trials
produced neutral results.

9. Conclusions

RCTs have failed to produce unequivocal evidence of CVD risk reduction with n-3 PUFA
supplementation. The evidence appears most promising for prevention of cardiac death, which
includes death from ischemic cardiac events, arrhythmia and heart failure. As described herein,
the RCTs conducted to date have been limited by design issues, particularly low dosages in many
studies, lack of assessment of long-chain n-3 PUFA status prior to and during treatment, and absence of
a clear biological target for the intervention in many studies. Two trials (REDUCE-IT and STRENGTH)
have enrolled higher CV risk subjects with hypertriglyceridemia and are administering larger dosages
of n-3 PUFA (≥3.0 g/d EPA + DHA) than used in most prior RCTs. These trials have addressed many
of the design limitations in prior studies; therefore, we view them as the most likely to clarify the
potential role of long-chain n-3 PUFA supplementation in CVD risk management.
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