British Journal of Cancer (1996) 73, 781-788
© 1996 Stockton Press Al rights reserved 0007-0920/96 $12.00

Implicit rationing criteria in non-small-cell lung cancer treatment
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Summary Data collected from lung cancer patients attending the Victoria Clinic of the British Columbia
Cancer Agency are used to investigate how resources are rationed in the treatment of non-small-cell lung
cancer (NSCLC). An ordered logit model is estimated to analyse empirically the relationship between treatment
selection and: tumour stage, size and differentiation; the Feinstein index; Karnofsky performance status (KPS);
and the patient’s age, gender and marital and smoking status. Implicit rationing is found to occur with respect
to all of these factors except the Feinstein index, gender and marital status. With respect to age, KPS and
smoker status the main empirical results are: (a) an increase in age from 50 to 85 reduces the expected
treatment expenditure by 50—70%, depending on the patient’s KPS and smoker status; (b) patients with a KPS
less than 80 and of 80, receive 30—46% and 75-85%, respectively, of the expected treatment expenditure for
patients with a KPS of 90 or 100, depending on age and smoker status; (c) the expected treatment expenditure
for active smokers is about 71-86% of the expenditure for non- or former smokers depending on age and
KPS.
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In a government-funded public health care system, such as
the Canadian model, the matching of limited resources to
health care needs can be viewed as a two-tiered process of
allocation and rationing (Evans, 19834,b). Allocation is the
distribution of resources according to a predetermined plan
at the aggregate, or health care programme, level. Allocation
decisions are typically made by government officials on the
basis of information provided largely by health care
programme administrators and analysts. Patients and their
families provide at best only minimal direct input into
allocation decisions. The term rationing is used by Evans
(1983a,b) non-pejoratively to refer to how programme
allocations are apportioned at the individual patient level.
Rationing decisions are made jointly by the care providers,
the patient and the patient’s family and may be based on
good clinical practice and appropriate use of resources and
interventions. These decisions will reflect any explicit guide-
lines for the use of programme funds, as well as the care
provider and patient’s personal assessments of the need for
care and of the potential net benefits of treatment. The nature
and appropriateness of the criteria governing allocation and
rationing in the health care sector are the focus of an
expanding literature (Detsky et al., 1981; Aaron and
Schwartz, 1984; Goodwin et al., 1987; Greenberg et al.,
1988; Naylor et al., 1993).

Although some of the criteria governing rationing may be
explicitly formulated by programme administrators, addi-
tional criteria come into play implicitly as care providers and
patients and their families interpret and react to the formal
guidelines. Thus, for a full understanding and appreciation of
resource rationing in the treatment of a specific condition, all
the rationing criteria need to be identified and their relevance
assessed. Our paper contributes to this process for non-small-
cell lung cancer (NSCLC) by identifying the rationing criteria
implicit in the primary treatment decisions for NSCLC at the
Victoria clinic (ViCC) of the British Columbia Cancer
Agency (BCCA). Moreover, it does so by using a more
general model of the rationing decision and a larger set of
potential rationing criteria than used thus far.

To date, rationing is usually modelled as a decision of
whether or not a patient will receive a specified treatment.
This binary decision is analysed with a logit model in which
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the probability that the patient will receive the specified
treatment is a function of disease-specific factors, functional
status and personal attributes. However, it is frequently the
case, as it is with NSCLC, that a specific condition can be
treated in a variety of ways. Thus, in our analysis the
rationing decision is modelled as a choice from a range of
discrete primary treatment options ranked from no treat-
ment, to progressively more elaborate palliative treatment, to
progressively more aggressive radical treatment. We therefore
use the ordered logit, rather than the logit, regression model.
Furthermore, our model not only brings together into one
analysis the disease-specific and functional status variables
used elsewhere to capture rationing based on medical criteria
but also adds tumour size and weight loss, two variables
whose impact on the treatment decision have not yet been
quantified. Of special interest is whether, after this extensive
adjustment for rationing on the basis of purely medical
considerations, additional rationing also occurs on the basis
of one or more of four non-medical variables: age, gender,
marital status and smoker status.

Materials and methods
Patients

The data were obtained through the cooperation of ViCC, a
publicly funded freestanding treatment centre located on the
grounds of the Royal Jubilee Hospital in Victoria, British
Columbia. VIiCC serves a population of 600000 on
Vancouver Island and delivers a variety of outpatient
services such as oncological consultation and assessment,
radiotherapy, chemotherapy and activities relating to the
follow-up of patients. The clinic is staffed with salaried
oncologists and related care providers. Surgical procedures
undertaken by VICC patients were performed at local
hospitals in Victoria.

Patient data were gathered at ViCC for the period
February 1990 to the end of January 1992 as part of a
larger lung cancer treatment cost-effectiveness study. Patients
were invited to participate if they had attended ViCC for
their new patient assessment and initial oncological consulta-
tion and resided within Greater Victoria. Participating
patients gave informed consent and authorised access to all
their medical records for the purpose of this study. At the
close of the data gathering there were 162 eligible patients in
the study sample for a participation rate of 66%. The medical
and personal data were captured from patient charts and
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provide a comprehensive overview of the patient’s general
health and the severity of the lung cancer at the time of
treatment choice.

Twenty-three patients with small-cell lung cancer (SCLC)
were excluded from our study on the basis that treatment
protocols and disease characteristics of SCLC are distinctly
different from those of NSCLC (Cancer Control Agency of
British Columbia, 1988). Of the remaining 139 participants,
one elected chemotherapy for primary treatment and this
patient was also excluded from the sample. The remaining
138 NSCLC patients agreed to either no primary treatment,
various levels of aggressiveness of radiotherapy or surgery.
The 15 surgery patients are participants from the group of
lung cancer surgery patients who subsequently established
contact with ViCC and thus represent a subset of all Greater
Victoria lung cancer surgery patients over the sample period.

Statistical methods

The statistical analysis uses the ordered logit model
(McKelvey and Zavoina, 1975; Greene, 1990, pp. 703 -707),
rather than multiple least-squared regression, since the
dependent variable is a discrete variable defined over a
finite number of states (primary treatment options) that are
ordered from least aggressive to most aggressive. The ordered
logit model assumes the existence of a latent variable — a
continuous, non-observable, non-measurable variable (see
Appendix). This latent variable, in our case the aggressive-
ness of primary treatment, is expressed as a function of
observable explanatory variables for disease-specific factors
[tumour stage (Mountain, 1986), Feinstein index (Feinstein,
1964), cell differentiation, tumour size and weight loss];
functional status [Karnofsky performance status (KPS)
(Karnofsky et al., 1948) and co-morbidity]; personal
attributes [age, gender, marital status and smoker status];
and a dummy variable for each physician who treated more
than six of the patients in the sample. For very low values of
the latent variable, the no treatment option is selected. As the
observable variables push up the latent variable, the no
treatment option continues to be selected until a threshold
value for the latent variable is crossed at which point a more
aggressive treatment option is selected, and so on up the
ordered set of treatments. The ordered logit regression results
can be used to compute the probability that a specific
treatment option will be selected, given a set of values for the
observed explanatory variables.

The regression analysis consists of first estimating the
fullest specification of the ordered logit model. The
categorical variables enter the model as dummy (binary)
variables which, depending on whether or not the patient is
in that category, take on the values 1 and 0 respectively. For
each of the disease-specific categorical variables the omitted
(base) case (Greene, 1990, p. 241) is the worst case scenario.
Since treatment aggressiveness, and hence treatment cost,
generally increases as the patient’s disease-specific character-
istics improve, positive coefficients are expected for the
dummy variables for these categorical variables. The full
specification of the model is then pared down to the preferred
specification by combining categories for a variable where
appropriate and dropping statistically insignificant variables.
Tests of significance are based on the likelihood ratio (LR)
test (Kennedy, 1987, p.58). The model is tested for
heteroskedasticity at each stage by estimating it twice, once
under the assumption of a constant error variance and once
with the error variance expressed as a function of tumour
stage, and testing the second specification against the first
with the LR test. Maximum likelihood estimation with an
adjustment for heteroskedasticity is used whenever the
hypothesis of homoskedasticity is rejected. The Ramsey
RESET test (Kennedy, 1987, p. 71) is used to test whether
the pared down model is correctly specified. The estimation
and tests were performed with LIMDEP (Greene, 1992).

The goodness of fit of ordered logit models cannot be
measured with the well-known adjusted R?. One frequently
used alternative is the likelihood ratio index (LRI):

LRI=1- (InL/InLy) O0<LRI<L1

where InL is the log of the likelihood for the estimated model
and InL, is the log of the likelihood when all the slope
parameters are set equal to zero, i.e. none of the variables
affects the qualitative response variable. If the model has no
explanatory power, InL=InL, and LRI=0. A perfect fit, on
the other hand, does not guarantee that LRI=1, i.e. that
InL =0 (Greene, 1990, pp. 651 —652). Another goodness-of-fit
measure is the count R?, which is the proportion of patients
for which the model ‘correctly’ predicts the treatment
selected, where the predicted outcome is the outcome with
the highest estimated probability.

Derivation of expected expenditures by age

The preferred ordered logit regression results can be
simulated to compute probability distributions across the
ordered treatment categories (see Appendix). Each combina-
tion of patient characteristics implies one probability
distribution, where the probability associated with a given
treatment category denotes the likelihood that a patient with
the specified characteristics will receive a treatment from that
category. The expected treatment expenditure for this patient
is the weighted sum of the costs of the various treatments,
where the weights are the corresponding probabilities. A
change in patient characteristics will alter the probability
distribution across the treatment categories and thus alter the
expected expenditure on treatment.

Model simulation is used to generate expected expendi-
ture—age profiles by smoker status (active or non/ex) and
Karnofsky performance status. Given performance and
smoker status, and the mean values for all the other
variables for patients with that performance status, the
preferred ordered logit regression results are simulated for
patients aged 50, 55, ..., 80, and 85 years. Each of these
simulations yields a probability distribution across the
treatment categories and, thus, an expected outlay on
treatment. The expected treatment expenditures by age for
a variety of combinations of performance status and smoker
status are summarised in tabular form.

Results
Descriptive data

The patient characteristics are summarised in Table I.
Percentage distributions are shown for the inherently
categorical variables — staging, Feinstein index, KPS,
differentiation, gender, marital and smoker status — and for
tumour size and weight loss, which are treated as categorical
variables to allow for non-linearity in their effect on
treatment choice. With one exception, patients are distrib-
uted across all the categories within a variable. The one
exception is that there are no patients with a KPS below 40.
This occurs because no lung cancer patients with a KPS
below 40 were referred to the clinic. Clinic services are thus
rationed in part by referral decisions based on functional
status. The patient ages range from 48 to 89 years, with a
mean of 70.0 years and a standard deviation of 9.0 years.
Active smokers comprise 40.6% of the sample.

The treatment and cost data are summarised in Table II.
Treatment costs are from Coy et al. (1994) and are in 1989—
90 Canadian dollars. These costs are the direct costs of
treatment and thus exclude expenditures on patient assess-
ment, follow-up and ancillary care. In order to have a
reasonable number of observations in each treatment choice
category, treatments are grouped by aggressiveness into seven
categories. The mean expenditure in each treatment choice
category is a weighted average of the component treatment
costs. As one would expect, treatment cost rises rapidly with
the aggressiveness of treatment.

The average treatment expenditure for patients cross-
classified by age, KPS and smoker status categories are
shown in Table III. The results support the hypothesis that



Table I Sample characteristics of NSCLC study participants

(n=138)
Variable %
Stage
I 31.9
I 7.2
IIla 319
IIIb 11.6
Iv* 17.4
Feinstein index
Asymptomatic 7.2
Long pulmonic 9.4
Short pulmonic 21.7
Pulmono-systemic 29.7
Pulmono-extrapulmono 28.3
Extrapulmonic® 3.6
Karnofsky performance status
40? 4.3
50 5.1
60 9.4
70 36.2
80 254
90 16.6
100 2.9
Gender
Male 63.0
Female* 3.70
Smoking status
Active 40.6
Non/ex* 59.4
Differentiation
Could not be assessed 24.6
Well 7.2
Moderately 18.8
Poorly 32.6
Undifferentiated® 16.7
Tumour size
Small unmeasurable 2.2
1-3cm 20.3
4-6 cm 45.7
>6 cm measurable 254
Large unmeasurable® 6.5
Weight loss
No weight loss 52.5
1-5kg 23.9
6-10 kg 15.2
11-15 kg 5.8
>15 kg? 29
Marital status
Married 84.1
Single® 15.9

#Base case (omitted) category in the regression analysis.
Patient age (mean), 70 years. Number of co-morbid conditions
(mean), 1.12.

treatment expenditure increases with an improvement in KPS
and is less for active smokers than for non/ex-smokers. The
results are ambivalent about the effect of age on treatment
expenditure. Average treatment expenditure declines appreci-
ably with age for patients with a KPS equal to 80 whether
smokers or non/ex-smokers, but rises with age for non/ex-
smokers with a KPS <80 and for smokers with a KPS > 80.

One must be cautious in attaching significance to the
patterns in Table III since there is substantial variability
across the cells with respect to some of the other variables
that are likely to codetermine treatment selection. For
example, the distribution across stages I and II combined,
IITIA and ITIB combined, and IV for smokers with a KPS <80
is 9.1%, 54.5% and 36.4% respectively for patients less than
65 years old and 33.3%, 33.3% and 33.3% respectively for
patients 65—74 years old. Thus, the lower average treatment
expenditure for the former could simply reflect the more
advanced stage of their cancer. Conversely, the decline in
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average expenditure shown for non/ex-smokers with a KPS
equal to 80 could understate the true effect of age on average
treatment expenditure since the distribution across stages I
and II combined, IIIA and IIIB combined and IV is 25.0%,
75.0% and 0% for patients less than 65 years old and 40.0%,
60.0% and 0% for patients more than 74 years old. Similar
arguments apply when comparing average treatment ex-
penditure across smokers and non/ex-smokers within a KPS
category, and across KPS categories.

Whether age, smoker status and KPS exert a statistically
significant effect on primary treatment selection, after
adjusting for the influence of other factors, is analysed in
the context of the ordered logit regression results reported
below. The regression results are then simulated to determine
the quantitative impact of age and smoker status on
treatment expenditure within a KPS category holding all
other factors constant. These simulation results are
summarised in Table V.

Ordered logit regression results

The regression results for the ordered logit model using all
the variables in Table I and a dummy variable for each
oncologist who treated more than six patients in the sample
strongly reject the hypothesis that as a set these variables do
not influence treatment selection (P<0.00001). The hypoth-
esis that the error term is homoskedastic is also rejected
(P=0.02). The log of the likelihood, LRI and count R? are
—193.58, 0.2567 and 0.4348 respectively. At the individual
variable level the following hypotheses were not rejected: the
Feinstein dummy variables add no explanatory power to the
model, either individually (P>0.70) or as a set (P=0.83);
Karnofsky performance status enters the model in three
levels: <80 (the base case), 80, and >80 (P=0.97); the
coefficients of the dummy variables for tumour size >3 cm
are equal (P=0.77); weight loss enters the model in three
levels: more than 15 kg (the base case), 1-15 kg and no
weight loss (P=0.68); marital status, gender and co-
morbidity do not add explanatory power to the model
individually (P> 0.35) or jointly (P=0.60); the four physician
dummy variables have no explanatory power individually
(P>0.14) or jointly (P=0.11). The model is therefore re-
estimated with these restrictions in place and the results are
shown in Table IV.

The restricted specification of the model fits the data
almost as well as the initial specification in terms of LRI
(LRI=0.2292 vs LRI=0.2567 respectively), but has lesser
predictive power than the initial specification (count
R?>=0.3986 vs count R?>=0.4348, respectively). The explana-
tory variables are jointly statistically significant (nominal
P<0.00001) and the nominal P-values for the individual
coefficients range from 0.0013 to 0.066. The restricted model
is estimated with the error variance as a function of tumour
stage since the hypothesis of a constant error variance is
rejected (nominal P=0.0163). The null hypothesis that the
model is correctly specified is not rejected by the Ramsey
RESET test using ¥’ (nominal P=0.6222) or ¥; and Y*
(nominal P=0.8857) or Y%, Y* and Y* (nominal P=0.6515),
where Y is the outcome with the highest predicted
probability.

The ordered logit regression results indicate that perfor-
mance status, staging, tumour cell differentiation, tumour size,
weight loss, age and smoker status are statistically significant
factors in the treatment selection decision. After standardising
for these variables the patient’s gender, Fenstein index, co-
morbidity and, contrary to other studies (Lipworth et al.,
1970; Greenberg et al., 1988), marital status do not appear to
affect primary treatment selection. The lack of statistical
significance of the physician dummy variables is consistent
with the best practice treatment consensus at ViCC (Cancer
Control Agency of British Columbia, 1988).

With respect to the patient’s gender, Feinstein index, co-
morbidity and marital status we explored the possibility that
they are statistically insignificant because they may be
polarising treatment choice, i.e. the patient receives either

783
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very aggressive treatment or little or no treatment. We
investigated this by examining the distribution of patients
across the treatment categories for each of the statistically
insignificant categorical variables. If a variable polarises
treatment choice, patients with that characteristic should be
concentrated in the no treatment and very aggressive
treatment categories. There is no evidence of this happen-
ing. For each of the statistically insignificant categorical
variables patients are typically distributed across most of the
treatment categories with never fewer than 30% of them in
the three middle treatment categories. This also holds if
treatment choices are examined on the basis of whether or
not there are co-morbid conditions. The one exception,
patients with a Feinstein index of 6, is also consistent with no
polarisation since these patients received either no treatment
or low-dose palliative radiotherapy.

In Table IV a positive coefficient for a categorical variable
indicates that, relative to the base category and holding all other
factors constant, a patient is more likely to receive more
aggressive (more costly) treatment. The larger this positive
coefficient, the greater the likelihood of more aggressive
treatment. Thus, the functional status results indicate that the
probability distribution across the treatment categories is
unaffected as the patient’s KPS increases from 40 to 70. The
probability distribution shifts to the right (more aggressive
treatment becomes more likely) when the KPS rises to 80, and
there is a further rightward shift when KPS rises above 80. Thus,
as others have found (Greenberg et al., 1988; Scitovsky, 1988),
functional status affects treatment selection.

The weight loss variable also has a set of ordered positive
coefficients that indicate that as one moves up the categories
of substantial, some and no weight loss the probability of
receiving more aggressive treatment increases. To our
knowledge, the impact of weight loss on treatment selection
has not previously been quantified.

The cell differentiation results indicate that as the category

changes from ‘undifferentiated’ to ‘could not be assessed’ the
probability distribution across the treatment categories shifts
to the right. Further shifts to the right occur as differentiation
changes from ‘could not be assessed’ to ‘poorly’ to
‘moderately’ to ‘well’. These findings broadly agree with
those of others (Chute et al., 1985) that lesser differentiated
cell types are associated with a poorer prognosis and hence
less aggressive treatment.

The marginally acceptable z-ratios for the tumour size
dummy variables could be the result of multicollinearity with
the dummy variable for tumour stage, since tumour stage
depends in part on tumour size (Mountain, 1986). However,
the hypothesis that the set of tumour size dummy variables
does not belong in the model is strongly rejected (P=0.005).
Furthermore, the results are consistent with expectations.
Patients with a small, unmeasurable tumour are less likely to
receive aggressive (expensive) treatment than patients with a
large, but not measurable tumour (the base case). For
patients with measurable tumours, the probability distribu-
tion across the treatment categories shifts successively to the
right (greater probability of more aggressive treatment) when
the tumour size category changes from the base case (large
unmeasurable) to large measurable, to small measurable. We
are unaware of this relationship being previously quantified.

The coefficients for the staging binary variables indicate
that the probability of aggressive (expensive) treatment
increases successively as one moves from the base case
(stage IV) to stages IIIB and IIIA, and then to stages II and
I. These findings broadly agree with those obtained by others
(Greenberg et al., 1988). Within this general ordering, stage
IIIB patients appear to be more likely to receive aggressive
treatment than stage IIIA patients, and stage II patients are
more likely to receive aggressive treatment than stage I
patients, holding all other factors constant. However, little
clinical significance should be attached to this anomaly. A
likely explanation is that after adjusting for all the other

Table I Treatment categories and treatment costs in 1989 dollars

Cost Number of Treatment Average
category Cases fractions Fields Plan® Shield cost’ cos.
0. No treatment 16 n/a n/a n/a n/a 0.00 0.00
1. Low-dose palliative 7 1 1or2 No No 249.21

Radiotherapy 11 2-4 1or2 No No 543.93

8 5-6 lor2 No No 635.27 492.69

2. Moderate-dose 3 4-5 2 No Yes 1292.31

Palliative 22 7-10 1or2 No No 1118.48

Radiotherapy 1 10 -15 2 No No 1606.52 1157.31
3. High-dose palliative 15 10-15 2 No Yes 1905.55

Low-dose radical 10 16-20 2 No No 2071.04

Radiotherapy 3 16-20 2 Yes No 2199.14 1996.11
4. Moderate-dose radical 9 16-20 2 No Yes 2746.11 2746.11

Radiotherapy
5. High-dose radical 18 16-20 3 Yes No 3677.65 3677.65

Radiotherapy
6. Surgery 15 n/a n/a n/a n/a 7279.20° 7279.20

2 Computerised planning beyond basic requirement. ® Custom shielding employed. ©Source: Coy et al. (1994). Table 6: Average of Linac and
cobalt machines. Treatment cost=(number of fractions x cost per fraction)+ planning cost + shielding cost. Weighted average=Treatment
cost x Frequency percentage. Computed on the basis of information from the case mix costing database developed at Royal Jubilee Hospital,

Victoria, BC.

Table IIl Average treatment expenditure (in dollars) by age, Karnofsky performance status and smoker status

Karnofsky performance status
80

Age <80 90 or 100

(years) Smoker status Smoker status Smoker status
Active Nonjex Active Nonjex Active Nonjex

<65 897(11)* 1065(6) 2350(5) 6146(4) 2305(3) 3860(5)

65-74 1355(6) 1556(24) 1652(9) 4728(7) 2670(5) 4052(4)

>74 1056(8) 1637(21) 1278(5) 2990(5) 2758(4) 3647(6)

*The number of patients in the category is shown in parentheses.



factors that determine treatment aggressiveness, having stage
II rather than stage I, or stage IIIB rather than stage IIIA,
lung cancer does not affect treatment aggressiveness. This
hypothesis was tested and could not be rejected (P=0.6354).

The statistically significant (nominal P=0.002) negative
coefficient for the age variable shows that even when an
extensive set of medical criteria enter the model, the negative
impact of age on treatment aggressiveness found by others
(Mor et al., 1985; Samet et al., 1986, Greenberg et al., 1988;
Scitovsky, 1988) persists. The robustness of this result was
checked by twice re-estimating the model: once omitting all
patients receiving no primary treatment, and once omitting
all surgery patients. In both cases, the impact on the
estimated age coefficient was trivial. We also tested the
restriction that treatment aggressiveness declines smoothly
with age against the alternative that it follows a step function
with thresholds at ages 55, 65, 75 and 85. The restriction that
treatment aggressiveness declines smoothly with age cannot
be rejected (P=0.6518). This result is consistent with the
perception that the effect of ageing is generally continuous
rather than concentrated at discrete points in a person’s
lifetime. The negative coefficient for the active smoker
variable indicates that an active smoker receives less
aggressive treatment than an equivalent patient who either
never smoked or has stopped smoking.

Expenditure—age profiles by performance status

The expected expenditures by age implied by the restricted
model are shown in Table V for active and non/ex-smokers
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for the three performance status categories in our model.
Each column in Table V is generated by a two-step
procedure. For example, for the first column the model is
simulated once for each of the ages 50, 55, ... 85 for active
smokers with a Karnofsky performance status <80 while
setting the other variables equal to the means for patients
with a Karnofsky status <80, where the mean for a
categorical variable is the proportion of the group that has
the specified characteristic. The simulation for each age group
yields a probability distribution across the seven treatment
expenditure categories (see Appendix). The expected expen-
diture for a given age is then computed as the weighted sum
of the expenditure in each treatment category, where the
weights are the simulated probabilities. Column 2 in Table V
is obtained by repeating the simulation for non/ex-smokers.
A similar two-step procedure is used to generate the other
columns in Table V.

The columns in Table V show that the expected
expenditure on lung cancer treatment declines appreciably
with age. The expected treatment expenditure for an 85-year-
old is about one-third the expected expenditure for a 50-year-
old when both have a KPS <80. When both have a KPS
>80 the expected treatment expenditure for an 85-year-old is
about one-half the expenditure for a 50-year-old. Within each
KPS category the expected treatment expenditure for an
active smoker is from 16% to 29% less, depending on KPS
and age, than for an equivalent patient who is a non- or
former smoker.

As noted earlier, the model simulations across age and
smoker status within a KPS category are for the average

Table IV Regression results for the ordered logit NSCLC treatment choice model

Variable Coefficient t-ratio
Constant 0.3117 0.22

Stage I 2.7422 2.81

Stage II 3.0925 2.96

Stage IIIA 1.8484 2.48

Stage IIIB 2.1672 2.24

Well differentiated 2.4746 2.50

Moderately differentiated 1.9591 2.83

Poorly differentiated 1.6001 2.94

Differentiation cannot be assessed 1.0537 2.23

Small unmeasureable tumour -3.4171 -1.88
1-3 cm tumour 1.6697 2.15

>3 cm tumour 1.2694 1.84

No weight loss 2.4334 2.65

Weight loss of 1-15 kg 2.0597 2.28

Karnofsky index =80 1.1980 2.46

Karnofsky index =90 or 100 2.0288 3.21

Active smoker —0.6258 -1.96
Age —0.0640 -3.06
I 1.6338 3.36

2 2.8036 3.75

U3 3.9925 3.78

Ha 4.4716 3.79

Us 5.7862 3.76

2 (df) 119.39(21)°

LRI 0.2292

Count R? 0.3986

“The degrees of freedom (d.f.) exclude the us and include the four staging dummy variables that adjust for

heteroskedasticity.

Table V_ Simulated expected treatment expenditure (in dollars) by age, Karnofsky performance status and smoker status

Age <80

Karnofsky pergzrmance status

90 or 100
(years) Smoker status Smoker status Smoker status
Active Nonjex Active Nonjex Active Nonjex

50 1928 2468 3777 4550 4628 5384
55 1685 2180 3402 4151 4229 5006
60 1465 1916 3046 3760 3836 4611
65 1264 1675 2715 3385 3457 4211
70 1083 1455 2408 3031 3099 3819
75 920 1256 2125 2701 2763 3441
80 774 1075 1866 2395 2453 3083
85 645 913 1629 2113 2166 2749
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patient in that KPS category rather than for the average
patient in the full sample. This was done in order to quantify
more reliably the effect of age and smoker status on expected
treatment expenditure. However, as a consequence, the
change in expected treatment expenditure shown in Table V
for a change in KPS category reflects not only the effect of a
change in KPS but also the net effect of changes in the co-
determinants of treatment selection other than age and
smoker status. Subject to this caveat, we note that patients
with a KPS of 80 and of less than 80 receive roughly 80%
and 35%, respectively, of the expected expenditure for
equivalent patients with a KPS >80. Thus, an improvement
in performance status and the concomitant changes in the co-
determinants of treatment selection can more than offset the
negative effect of age on expected expenditure. For example,
the expected expenditure for a non-smoking 85-year-old with
a KPS >80 is greater than for a non-smoking 50-year-old
with a KPS <80 ($2749 vs $2468). Our ordered logit analysis
and more extensive set of regressors confirm the findings of
Scitovsky (1988) that a patient’s age and the oncologist’s
perception of the patient’s functional status are quantitatively
important determinants of the expenditure on the patient’s
treatment. Our results also indicate that weight loss, tumour
size and smoking status can be added to this list.

Discussion

The results developed in this paper indicate that in the
treatment of NSCLC health care resources at ViCC were
implicitly rationed on the basis of medical considerations,
patient age and smoker status. That medical considerations
affect resource use in the treatment of NSCLC is not
surprising. What is surprising is that after adjusting for a
variety of medical considerations patient age and smoker
status remain statistically significant rationing criteria during
the study period. It is not self-evident why this is the case.
Are active smokers offered less aggressive treatment than
equivalent non/ex smokers because they minimally have not
even tried to help themselves by quitting, or are smokers
more fatalistic about their disease and its prognosis and thus
less willing to fight it?

It is also not self-evident why, after adjusting for medical
considerations, patient age remains an implicit rationing
criterion. The BCCA guidelines for the treatment of patients
with inoperable NSCLC include stage, performance status
and the presence of co-morbid conditions, but not age
(Cancer Control Agency of British Columbia, 1988). This is
consistent with a growing awareness that older patients may
have a biological age anywhere on a broad spectrum (Cohen,
1995) and that age, per se, is not a relevant prognostic or
medical criterion for the treatment of lung cancer (Sherman
and Guidot, 1987; Lipschitz, 1995). The results obtained if
age is regressed separately on co-morbidity, Karnofsky
performance status, Feinstein index, tumour stage, tumour
size, differentiation and weight loss support this view. The P-
values for these regression equations are greater than 0.1450
except for tumour stage (P=0.0321) and tumour size
(P=0.0646). However, for the latter two the relationship
with age is negative, not positive. Thus, in terms of the usual
medical and prognostic indicators, there is no evidence that
older patients have more advanced NSCLC and are less able
to withstand aggressive treatment. An assessment of the
patient’s physiological function, not age, should guide
treatment selection.

A full analysis of why treatment expenditure declines with
age is beyond the scope of this paper and is left for further
research. However, three explanations are briefly considered.
First, age may be correlated with a relevant medical
consideration not included in our model and is thus acting
as a proxy for it. It is not clear what this omitted variable
might be since the patient’s Feinstein index, Karnofsky
performance status, weight loss and co-morbidity were
explicitly included in the full specification of the model to
capture his or her ability to absorb aggressive treatment.

Second, treatment expenditure may decline with age as a
result of two cost—benefit considerations. First, the potential
gain in life expectancy is higher for younger patients than for
older patients. Second, research suggests that health status is
considered twice as valuable in the early periods of life than
in the last decade of life (Busschbach et al., 1993). If this is
true, younger patients may be more willing to pursue
aggressive treatment strategies than are elderly patients, and
the proportion of patients receiving expensive treatment
would decline with age.

The third explanation is based on the physician - patient
interaction and their respective preferences. Elderly
patients are perhaps more willing to defer the responsibility
of treatment choice to their physician (Blanchard et al.,
1988), and physicians may generally be more averse to
aggressive treatment alternatives than are patients (Mack-
illop et al., 1987). If both are true, the conservative
treatment preferences of physicians will dominate the
decision-making process for older patients relative to
younger patients. The outcome is a decline in treatment
expenditure with age that suggests rationing according to
age, whereas in fact neither the patient nor the physician is
using age as a factor in the treatment decision. The
perceived implicit rationing by age is simply the result of
revealed preferences and a shifting balance in the physician—
patient relationship.

Further research is also needed to determine whether the
implicit rationing criteria identified in this paper, and their
quantitiative impact on the treatment decision, apportion
resources efficiently across the range of NSCLC patients, i.e.
there is no alternative distribution of the available funds to
NSCLC patients that would yield a greater benefit. This
requires an analysis of the incremental benefits (longer
survival and/or improved quality of life) of more aggressive
treatment by age, functional status and smoker status, and is
beyond the scope of this paper. Some of these issues are
being addressed in additional papers by the lung cancer cost-
effectiveness study group at ViCC.

Conclusion

Publicly funded health care facilities generally operate
within a fixed budget allocation and these limited resources
must somehow be apportioned (rationed) among competing
users. Empirical analyses of the rationing criteria implicit in
treatment decision typically use the logit model to examine
the criteria that determine how a specific treatment is
rationed. In this paper the analysis is generalised to how
scarce resources are rationed in the treatment of a specific
disease by selecting more or less aggressive treatment. Our
analysis uses the ordered logit model and examines the
rationing criteria implicit in the primary treatment choices
for non-small-cell lung cancer. Furthermore, our set of
explanatory variables includes tumour size, weight loss and
smoker status, three variables that appear not to have been
used in previous analyses of rationing in the context of
NSCLC. We show that the amount of resources appor-
tioned to the primary treatment of a patient’s NSCLC
declines with a rise in the patient’s age, with a deterioration
in the patient’s functional status and if the patient is an
active smoker. Further work is needed to determine why
this happens and whether these implicit rationing criteria
are directing scarce resources to where they are most
beneficial.

Follow-up costs after primary treatment are not included
in our analysis. Our focus is on the determinants of resource
use at the primary treatment level rather than on the factors
that determine resource use by the NSCLC patient from
diagnosis to death. Substantial further work is needed to
address this much larger issue. Additionally, the robustness
of our results need to be explored by estimating ordered logit
models for primary treatment selection for NSCLC at other
institutions.



Appendix

Let T* denote the unobserved willingness to treat a patient
more aggressively and let 7; i=0,1,2...6 denote the seven
treatment options in this study, ranked from the least
aggressive, Ty, to most aggressive, Ts. Furthermore, let p,,
Uyeoy s (o<1 <...< g) denote six threshold values so that if

T < o Ty is chosen

o <T* <y T, is chosen

us < T* < ps Tsis chosen

us < T T is chosen )

The unobserved willingness to treat a patient more
aggressively is a continuous variable and is postulated to be
a linear function of K observable explanatory variables, i.e.:

k
T*=a+) BX;+e )
j=1

where a is a constant term, f is a vector of coefficients, the X;
are the selected disease indicators and postulated implicit
rationing criteria and € is a disturbance term that is assumed
to be logistically distributed.

The ordered logit technique uses a non-linear, maximum
likelihood estimation technique, the normalisation po=0, and
the assumption that € is logistically distributed to generate
estimates of the model parameters, y,, u,,..., ts, Pi,-.., Ba, and
a. These parameter estimates, in conjuncition with specific
values for the explanatory variables, X, can be used to
compute the probability that a patient will receive a specified
treatment. The formulas for calculating these probabilities
are:

k

—a= BiX;

[ =

Py ="Prob(T, selected) =

k

—a-Y BX;
1+e ,Z; o

k

—a= BiX;

e =1

k
—a= BiX;
=

k
m—a=Y BiX;
e =
P =Prob(T; selected)= " -
m—a=Y BiX;
=

1+e 1+e
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