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Abstract: The specific properties of metal-based nanoparticles (NPs) have not only led to rapidly
increasing applications in various industrial and commercial products, but also caused environmental
concerns due to the inevitable release of NPs and their unpredictable biological/ecological impacts.
This review discusses the environmental behavior of metal-based NPs with an in-depth analysis of
the mechanisms and kinetics. The focus is on knowledge gaps in the interaction of NPs with aquatic
organisms, which can influence the fate, transport and toxicity of NPs in the aquatic environment.
Aggregation transforms NPs into micrometer-sized clusters in the aqueous environment, whereas
dissolution also alters the size distribution and surface reactivity of metal-based NPs. A unique
toxicity mechanism of metal-based NPs is related to the generation of reactive oxygen species (ROS)
and the subsequent ROS-induced oxidative stress. Furthermore, aggregation, dissolution and ROS
generation could influence each other and also be influenced by many factors, including the sizes,
shapes and surface charge of NPs, as well as the pH, ionic strength, natural organic matter and
experimental conditions. Bioaccumulation of NPs in single organism species, such as aquatic plants,
zooplankton, fish and benthos, is summarized and compared. Moreover, the trophic transfer and/or
biomagnification of metal-based NPs in an aquatic ecosystem are discussed. In addition, genetic
effects could result from direct or indirect interactions between DNA and NPs. Finally, several
challenges facing us are put forward in the review.

Keywords: aggregation; dissolution; ROS; toxicity; antibacterial; DNA interactions; DLVO theory;
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1. Introduction

The rapid development and expansion of nanotechnology industries have ultimately led to
mass production of a wide variety of engineered nanoparticles (NPs) or nanomaterials (ENMs) that
inevitably increase the possibility of release into the environment and exposure to ecosystems or even
humans. These novel ENMs exhibit extraordinary performance in mechanical, electric, electronic,
thermal and optical applications due to unique properties that traditional or bulk counterpart materials
cannot begin to match. For instance, quantum dots (QDs), a type of semiconductor nanocrystal,
possess remarkable optical and electronic properties that have been extensively used in experimental
biomedical imaging, biolabeling and anti-counterfeiting applications to create special inks, dyes, paints,
light displays and chemical sensing [1–6]. Metal oxide NPs, such as CeO2, ZnO and TiO2, have also
been widely used in commercial products or industrial processes, such as sunscreens [7], antimicrobial
agents [8,9], solar energy conversion [10,11] and photocatalysis for remediation of environmental
pollutants [12,13]. With increasing and diverse applications, NPs will likely find their way into the
environment through many pathways (Table 1) and further pose potential risks to the environment
and human health. The sources of NPs released into the environment may comprise point sources (e.g.,
manufacturing facilities, landfills and wastewater treatment plants’ effluent) and nonpoint sources
(e.g., storm-water runoff and wet deposition from the atmosphere) [14]. NPs may also be released at
different nonpoint sources during their lifecycle; for example, NPs can be released due to abrasion or
washing during use phases or through disposal and recycling at the end of their lifecycle. Accidental
release during production or transport may also contribute to the release of NPs. On the other hand,
intended applications also occur. One example is the release of NPs into the aqueous environments
during in situ remediation of polluted natural waters using zero-valent iron NPs (ZVI NPs) [15].

Table 1. Selected applications and intentional release of metal-based NPs.

Metal-Based NPs Selected Applications Release References

Metallic
NPs

Ag Antimicrobial agent, wound healing,
novel cancer therapy

Abrasion during use/washing,
dissolution, disposal and recycling [16–18]

Au
Cellular imaging, photodynamic
therapy, targeted drug delivery,

biological sensors
Disposal and recycling [19,20]

Cu Antimicrobial agent, catalyst,
nanocomposite coating Abrasion, disposal and recycling [21,22]

Fe Environmental remediation Intentional release [21]

Al Drug delivery, wear-resistant
coating additives

Abrasion during
use/washing, disposal [21]

QDs
Medical imaging, targeted

therapeutics, solar cells,
telecommunications

During use, disposal [23]

Metal
oxide NPs

TiO2
Photocatalyst, antibacterial coating,

paint, cosmetics, sunscreens
Abrasion, runoff, disposal and

recycling [22,24]

CeO2

Fuel additive to decrease emissions,
polishing and computer,

chip manufacturing
Storm runoff, disposal and recycling [24,25]

ZnO Sunscreen, skin protectant Disposal [22,23]

CuO
Gas sensors, high-temperature
superconductors, solar energy

conversion, antimicrobial agent
During use, disposal [26]

Fe2O3
Biological imaging markers,
environmental remediation Disposal, intentional release [21]

SiO2

Electric and thermal insulators,
adsorbents, filler materials, drug

carriers, gene delivery
Abrasion during use, disposal [21]
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Considering unintended or accidental spills or the release of ENMs into the environment, there is
an increasing concern about ENMs’ effects on the environment, ecosystems and human health [27].
Many toxicological studies have indicated that many metallic NPs could be toxic to organisms, such as
bacteria [28–31], algae [32,33], epithelium [34–37] and plants [38,39]. There are three pathways that
induce the toxicity of NPs: (1) direct surface interactions or internalization of NPs; (2) release of toxic
metal ions (e.g., Ag+ Cu2+ and Zn2+) from NPs; and (3) oxidative stress induced by ROS [21,40–42].
These adverse biological impacts were found to vary with material properties (e.g., size, shape,
surface areas, chemical compositions, electronic properties, surface reactivity and functional groups
or coatings) [43]. Furthermore, the complexities between material properties and toxicity are highly
dependent on the environmental behavior of NPs. As illustrated by Figure 1, typical environmental
behavior of NPs includes dispersion, aggregation, redox reactions, ion release or dissolution, speciation,
complexation with natural organic matter (NOM) leading to surface coating, sedimentation and
deposition onto solid phases, such as sediment or soil. These physicochemical processes, which could
take place concurrently and influence each other, are sensitive to the properties of NPs. Meanwhile,
the properties (e.g., size distribution, surface charge or hydrophobicity) of NPs are likely to be changed
by the interactions of NPs with the environment. Moreover, both metal-based NPs and their released
metal ions can adsorb into aquatic organisms and further be bioaccumulated and biomagnified in
aquatic ecosystem. Thus, it is necessary to complement valuable mechanistic studies with systematic
short-term and long-term animal experiments for providing predictable derived no-effect levels in
the risk assessment of ENMs. The current situation is especially challenging, as testing capabilities,
reliability and resources do not allow for an adequate assessment of ENM safety and risks due to
knowledge gaps in the study of nanomaterial properties, such as uncertainties in their reactivity,
transformation and behavior in aquatic environments.
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Figure 1. Potential physiochemical processes and biological impacts of metal-based NPs (e.g., Ag NPs) in
natural waters (reprinted with major modification from [44] with permission, Copyright Elsevier, 2011).

This review summarizes research in the past few years that has investigated the aqueous behavior
of metal-based NPs with in-depth analyses of the mechanisms, kinetics and subsequent environmental
and ecological impacts. Specifically, we analyzed the potential portals for NPs to enter or exit the
environment and discussed their estimated concentrations based on previous experimental and
modeling studies. Kinetics and governing parameters (e.g., pH, salinity and NOM) for aggregation
and dissolution of selected metal NPs were compressively evaluated with analytical methods and
mathematical modeling. The mechanisms of ROS generation of different metal-based NPs and the
quantitative relationships between the generated ROS concentrations by NPs were demonstrated to
provide insight into cellular damage and oxidative stress on microorganisms. Finally, the impacts
on aquatic organisms at multiple trophic levels, bacteria and single biomolecules (i.e., DNA) were
extensively surveyed. The goals of this review were also to deliver the current level of knowledge
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about the safety of NPs or ENMs to identify knowledge gaps and to help prioritize research on the
safety of ENMs.

2. Environmental Behavior of Metal-Based NPs in the Aqueous Environment

The high surface-to-volume ratio and resulting reactive properties make NPs highly dynamic in
the environment. The environmental transformations may tremendously alter the physiochemical
properties, fate, transport, reactivity, bioavailability and toxicity of NPs. A comprehensive
understanding of the transformations of NPs in the environment can provide important insights
into the potential environmental and human health implications of NPs.

2.1. Aggregation of Metal-Based NPs in the Environment

Of all of the transformations, aggregation of NPs in an aqueous environment has been one
important aspect, as aggregation transforms NPs into several micron clusters in an aqueous
environment, which not only alters the size distribution of NPs, but also alters NP transport
characteristics and biological interactions. According to collision efficiency (also known as attachment
efficiency, α), aggregation can be divided into two types of processes relating to NPs in the
environment: (1) diffusion-limited cluster aggregation (DLCA); and (2) reaction-limited cluster
aggregation (RLCA). When α is close to one, aggregation occurs in the DLCA regime, whereas
RLCA becomes dominant when α < 1. Kinetics and aggregate structure in these two regimes are
fundamentally different. In the RLCA regime, an increase in the electrolyte concentration screens
surface charge and reduces the energy barrier to aggregation, which leads to faster aggregation.
At electrolyte concentrations above the critical coagulation concentrations (CCC), the repulsive energy
barrier will be eliminated, and rapid aggregation of NPs occurs in the DLCA regime. Recent studies
apply the Derjaguin–Landau–Verwey–Overbeek (DLVO) theory to predict the aggregation behavior
of NPs under various aqueous environmental conditions. Classic DLVO is based on the interaction
energy balance that consists of attractive van der Waals (vdW) and repulsive electrostatic forces from
the overlap of the electrical double layers (EDL) of interactive surfaces [45]. On the basis of the
extended DLVO (EDLVO) theory and the von Smoluchowski’s population balance equation, different
diffusion-limited aggregation (DLA) and reaction-limited aggregation (RLA) models were established
to predict the aggregation kinetics of CeO2 NPs in solutions [46]. The predictions derived from
the established models were in close agreement with the experimental observations. The effects
of electrolyte valence and ionic strength on NP stability with respect to aggregation can be well
interpreted by classic and extended DLVO theory [44]. The model is useful for pre-evaluation of
aggregation tendency of NPs in the presence of NOM.

Nanoparticle aggregation strongly depends on the properties of primary NPs (e.g., particle size
and shape, surface coatings, chemical composition), solution chemistries (e.g., pH, ionic strength,
electrolyte patterns and NOM), and various environment conditions (e.g., temperature and dissolved
oxygen) [47].

2.1.1. Effects of Size and Shape on the Nanoparticle Aggregation

According to the DLVO theory, the interaction energy barrier decreases with decreasing particle
size. The decrease in particle size results in the presence of a higher ratio of atoms on the particle surface,
which alters the electronic structure, surface charge and surface reactivity [48]. Smaller particles with
high surface energy can aggregate more readily than larger ones since the aggregation can reduce the
free energy in the NP system.

Moreover, NPs may show many kinds of irregular shapes (e.g., nanowire, nanotube and nanorods),
which are different from the spherical shapes of particles in DLVO modeling. Both vdW and EDL
forces would be influenced by the change of shape [49]. Theoretically, EDL forces relate to interacting
orientation for irregular particles, which results in different atomic arrangements of these particles
on the surface. Some nonconventional theories, including surface element integration [50,51], may be
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used to explain the interfacial forces that cause the irregular shapes. Finally, the energies of vdW and
EDL are different, which also affects the aggregation of NPs.

Crystal lattice defects as charge carriers will definitely alter the surface charge of NPs [52,53].
Even with the same composition, different crystal structures may result in different NP surface charges.
For instance, TiO2 NPs with three phases of crystallinity, including rutile, anatase and brookite, have
different surface charge, which can also affect aggregation and deposition rates [54]. This is because
various crystallographic planes with different atomic densities can interface with the aqueous phase to
produce different extents of EDL and surface energy. Shifts could be found in exposed crystal face
compositions with rutile rod size changes [55]. Since different rutile crystal faces possess different
surface energies [56], changes in exposed crystal face composition might lead to different degrees of
surface energy and consequently affect colloidal stability.

2.1.2. Effect of Surface Coating and Surface Hydrophobicity on the Nanoparticle Aggregation

Surface coated-NPs are typically stabilized via strengthening of electrostatic, steric or electrosteric
repulsion between NPs; these forces consequently alleviate aggregation or provide other specific
surface functionality, which has a stabilizing effect [57–62]. There are three kinds of typical surface
coatings: surfactants, polymers and polyelectrolytes [63–66]. Adsorbed or covalently binding surfactants
affect aggregation stability by increasing surface charge and electrostatic repulsion or by reducing
interfacial energy between particles and solvent [67]. For example, sodium dodecyl sulfate (SDS), as
a representative of the anionic surfactant group, is widely used to stabilize NPs against aggregation via
affecting electrostatic repulsion [68]. Polymers like polyvinylpyrrolidone (PVP) display a stabilizing
effect based on steric repulsion. For instance, the CCC value of PVP-Ag NPs is four times higher
than that of bare Ag NPs [57]. Even under various chemical composition of the water matrix, the
diffusion behavior of PVP-Ag NPs still remained unchanged [69]. The interaction between the steric
repulsion and universal Coulomb attraction is caused by the surface coating layers, which may
profoundly affect the aggregation kinetics. However, a recent study showed that sodium citrate
had a more effective stability for spherical TiO2 NPs compared with PVP, SDS and polyethylene
glycol (PEG) due to the lower CCC value [70]. Moreover, poly(diallyldimethylammonium chloride)
(PDDA), one of the polyelectrolytes, is a cationic polymer that can protect NPs from oxidation and
agglomeration due to its reducing and stabilizing function [71,72]. In addition, gum arabic-coated
Ag NPs (GA-Ag NPs) have stronger stability than that of alginate-coated Ag NPs (ALG-Ag NPs) and
natural polysaccharide-coated Ag NPs [73].

The properties of surfactants, such as chain length, molecular weight, types of head groups and
the affinity of coating molecules for particle surfaces, can significantly affect the adsorbed surfactant
mass and layer conformation, which in turn can affect the ability of a surfactant to enhance NPs’
aqueous dispersion stability [74,75]. Dederichs et al. found that the chain length of a surfactant is
linearly related to the logarithm of the dispersion concentration, which defines the lowest concentration
of a surfactant necessary to disperse hydrophobic particles [76].

Surface hydrophobicity or wettability can affect aggregation via changing the Hamaker constant
(AH). AH indicates the strength of the long-range mutual attraction between two interacting materials,
which governs vdW attraction [77]. Particles with a high AH have a greater aggregation tendency
compared to particles with a low AH under the same surface and solution chemistry.

2.1.3. Effect of Solution Chemistry on the Nanoparticle Aggregation

Studies to date have addressed different solution pH and ionic strength effects on the aggregation
of various NPs in aqueous solutions [36,78,79]. pH and ionic strength (quantification of dissolved ionic
species) influence NP stability in aqueous environments, primarily because these two factors determine
their surface charge and charge density to a large extent. Most metal NPs contain surface functional
groups, such as oxide and hydroxide groups, which can be associated with H+ or OH− under aqueous
conditions. Since most surfaces are negatively charged at circumneutral pH in the environment, this
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surface charge reversal would significantly affect NP aggregation due to the decreasing electrostatic
repulsion and the vdW attraction prevailing around the pH of a zero surface charge. Aggregation of
ZnO NPs indicates pH dependence, which is in agreement with the reported point of zero charge
(pHzpc 9.2). Guzman et al. noted in their study of TiO2 NPs that as the solution pH approached pHzpc,
there was an observed increase in the hydraulic diameter of NPs within the aggregates [80].

With respect to the ionic solute effect, the elevated ionic concentration leads to a decrease in the
extent of EDL repulsion, which means the electrostatic energy barrier is reduced; thus, aggregation
can be promoted. Electrostatic destabilization is strongly affected by the valency (z) of ions [53].
The valence increase leads to the inverse of the Debye length increase, which results in lower repulsive
electrostatic energy, which will likely enhance aggregation. When the ionic concentration approaches
the CCC, the repulsion energy barrier will be completely eliminated, and rapid aggregation will occur.

Alginate-coated hematite NPs underwent aggregation via electrostatic destabilization in the
solution with NaCl and MgCl2, which corresponded to the DLVO theory, whereas the aggregation
rate was much higher in the presence of MgCl2. French et al. found that aggregation of TiO2 NP
occurred faster in solution containing divalent cations (e.g., Ca2+) than in those containing monovalent
cations, such as Na+, at the same pH and ionic strength [81]. The CCC can be estimated to be inversely
proportional to the sixth power of metal ions’ valency, which is known as the Schulze–Hardy rule.
Compared with monovalent ions, such as Na+, the CCC for a specific solution with the presence of
divalent ions (e.g., Ca2+) should be much lower. The lower CCC value demonstrates destabilization
and higher aggregation potential. For example, TiO2 NPs were significantly aggregated in the range
of 1–500 mM NaCl and 0.05–40 mM CaCl2 solutions. Especially in the divalent electrolyte solution,
TiO2 NPs had a considerably lower CCC (1.3 mM) [82]. In contrast, bovine serum albumin (BSA)-NP
conjugates became more stable with increasing ironic strength due to the enhanced steric force and the
shield of the attractive patch-charge force [83].

2.1.4. Effect of NOM on the Nanoparticle Aggregation

NOM, which is mainly comprised of humic and fulvic substances, is ubiquitous in natural aqueous
environments. NOM is expected to attach to the surface of NPs, changing the physiochemical properties
of NPs and the interfacial forces or energies between interacting NPs, thereby altering the aggregation
behavior [84]. The physical structures and molecular weights of NOM can change with solution
chemistry, such as pH, ionic strength and electrolyte type [85]. As discussed previously, there is
an increase in the aggregation of ZnO NPs with the increasing ionic strength. However, this trend could
go in the opposite direction with the addition of humic acid (HA) (up to 3 mg·L−1). NPs coated with
NOM had slow aggregation even at high ionic strengths [86]. The effect of HA on NP aggregation is
related to ionic strength and electrolyte type. It was found that HA exhibited a stabilizing effect on Au
NPs at low ionic strength and in the presence of monovalent cations; however, elevated concentrations
of divalent ions lead to enhanced aggregation [87]. For instance, at low concentrations (0.004 M) of
CaCl2, HA will inhibit aggregation of CeO2 NPs; however, HA will enhance aggregation at high
concentrations (0.08 M) of CaCl2. The sedimentation rate of ZnO NPs was found to be faster at the
lowest dissolved HA concentration (1.7 mg·L−1) than the sedimentation rate in the absence of HA [78].
In addition, the influence of HA on the NP agglomeration strongly depends on the reaction time [88].

It was determined that HA can affect the stability of NPs via steric hindrance, charge neutralization
and bridging effects [89]. For instance, TiO2 NP aggregation was enhanced with the addition of HA
only when the ionic strength was lower than CCC (75 mM) and the pH was less than the pHzpc

(pH 6) because HA reduced the zeta potential of TiO2 NPs through charge neutralization. When the
ionic strength is higher than CCC, HA can promote aggregation of TiO2 NPs via the bridging effect.
When the ionic strength is lower than CCC, aggregation can be inhibited due to steric hindrance
by adding HA. Generally, the zeta potential can be used to predict the interaction forces between
interacting particles. Zeta potential measurements have indicated that the surface charge of NPs is
sensitive to ionic strength in the absence of HA. Both NaCl and CaCl2 addition results in smaller
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zeta potential values of NPs, and divalent cations are more effective, leading to faster aggregation.
In contrast, the increase of ionic strength has much less influence on the surface charge of NPs in the
presence of HA, where the combined electrostatic and steric repulsion may make NPs stable. In the
presence of Ca2+, the divalent cations neutralized the negative surface charge of NPs imparted by
NOM and thus induced aggregation. Different NP capping agents (e.g., anionic agent citrate acid and
PVP) are thought to play a role in the colloidal stability of NPs. However, in the presence of NOM, the
adsorption of NOM is the predominating factor, not the capping agents.

Given the complex compositions of NOM, it is still important to further understand how specific
components in NOM affect the aggregation behavior of NPs [85,90,91]. The aggregation rate of ZnS
NPs was observed to decrease with the increase of the aromatic content and the average molecular
weight of NOM. When separating Suwannee River NOM fractions using ultrafiltration membranes
into filtrate NOM (NOMf) and retentate NOM (NOMr), 10 mg·L−1 of NOMf inhibited the aggregation
of Au NPs compared with that without NOM [85]. In contrast, 10 mg·L−1 of NOMr stabilized Au NPs
significantly [85]. Four other NOM isolates (i.e., small and large molecular weight Suwannee River HA
(SRHA), Suwannee River fulvic acid (SRFA) and Pony Lake FA) were investigated, and all four types
stabilized the citrate-coated Au NPs (CIT-Au NPs) in terms of aggregation, whereas different NOM
isolates showed various effects [91]. A recent study reported that at high ionic strength (100 mM NaCl),
the molecular components of NOM whose weight fraction was higher than 100 kg·mol−1 with more
aromaticity provided better stability against NP aggregation than molecular components at lower ionic
strength [84]. This effect can be explained by steric repulsion mechanisms. Moreover, compared with
the separated components, unfractionated NOM provided better stability, which suggests that there
is a synergistic effect between the high and low molecular weight fractions for NP stabilization [84].
The types and compositions of NOM likely vary in electrostatic and steric repulsion and thus influence
the stability of NPs in aqueous environments.

As a part of NOM, non-humic substances, mainly including biological macromolecules, can
also alter the NP stability by changing the NP surface charge [83]. The presence of extracellular
polymeric substance (EPS) dramatically decreased the aggregation rate and increased the CCC values
of TiO2 in the NaCl solution via steric repulsion, but enhanced aggregate growth at a high CaCl2
concentration via intermolecular bridging to link the TiO2 NPs and aggregates [82]. The addition of
cytochrome c increased the CCC value of hematite NPs in the NaCl solution due to the electrosteric
repulsion, whereas BSA accelerated the NP aggregation even at low ironic strength via the strong
attractive patch-charge interaction [83]. In addition, the presence of cystine intensified the aggregation
of citrate-Ag NPs (CIT-Ag NPs), but with a shift in the CCC to lower cystine concentrations due to the
charge and sterical stabilization [92].

2.1.5. Effect of Solution Temperature and Dissolved Oxygen on the Nanoparticle Aggregation

Temperature is an important environmental factor that can alter the NP aggregation kinetics.
However, few studies have investigated temperature as it relates to NP aggregation [93,94]. Grasso et al.
reported that temperature affects aggregation kinetics through influencing random Brownian
motion of particles [85], and Nel et al. discussed temperature and NP collision frequency [95,96].
High temperature enhances the collision frequency between particles via increasing the random
kinetic energy of NPs [97]. Thus, the aggregation rates increase substantially with the increasing
temperature [39]. However, some research indicated that the zeta potential became less positive
when the temperature increased, because increasing temperature promotes proton desorption from
the particle surface and further reduces the electrostatic repulsion force or energy barrier between
particles [98,99]. Dissolved oxygen (DO) in an aquatic environment results in the oxidation of metallic
NPs, such as Ag NPs and QDs; furthermore, rapid surface oxidation has demonstrated its influence
on the aggregation process. However, research related to the DO effect on the aggregation of NPs is
limited. Ag NPs not only aggregated, but also released Ag+ as a result of oxidation [46]. In the presence
of DO, the hydrodynamic diameters became a random distribution and fluctuated periodically, but
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without DO, the hydrodynamic diameters of Ag NPs increased stably and linearly. The Ag NP
aggregation rate with DO of 7.8 mg·L−1 was 3–8 times faster than that without DO depending on
the different sizes of Ag NPs. DO presented substantial effects on the Ag NP aggregation rate due
to the release of Ag+ [100]. Ag+ released into the solution not only increased the local ionic strength
that compressed the EDL and reduced electrostatic repulsion, but also changed the surface from zero
valent Ag (Ag0) to Ag2O and, consequently, affected aggregation.

2.2. Dissolution of Metal-Based NPs in the Aquatic Environment

Dissolution can play a critical role in the fate, behavior and toxicity of metal-based NPs in
an aquatic environment. The toxicity of NPs to organisms partly results from the metal ions released
from metal-based NPs, such as ZnO NPs and Ag NPs [101,102]. For example, CdSe/ZnS QDs can
release toxic ions, including Cd2+, SeO4

2− and Zn2+, due to the diffusion of the core-shell structure [28].
Ag NPs that released Ag+ can even completely dissolve in aqueous environments in the long term [103].
ZnO NPs can rapidly dissolve in water to form hydrated Zn2+ cations [104,105]. The dissolution is
also a common nature for CuO NPs, Fe2O3 NPs and SiO2 NPs [106,107]. TiO2 NPs are regarded as
relatively stable and almost insoluble in aquatic systems. However, dissolved titanium in aqueous
NaCl solutions have been detected [108]. Moreover, the dissolution of some general insoluble rare
oxide particles at the nano-level can also be observed. Therefore, not only the properties of metal-based
NPs, but also the environmental factors have impacts on the dissolution kinetics of metal-based NPs in
an aquatic environment.

Dissolution depends on the solubility of materials in certain solvents and the concentration
gradient from the solute surface and bulk solution [109]. The thermodynamics of material dissolution
is described by a modified Kelvin equation (Ostwald–Freundlich relation) [62], which states that the
solubility of NPs may increase exponentially with the particle size. On the other hand, the dissolution
rate of a solute will increase dramatically in a short time before the rate decreases and the concentration
in the bulk solution finally reaches equilibrium. Dissolution kinetics was previously evaluated by
experimental and modeling approaches with the Arrhenius equation to interpret the effect of oxygen,
protons and temperature on the release rate of Ag NPs [103]:

γAg+ =
3
4

(
8πkBT

mB

)1/2
ρ−1 exp

(
−Ea

kBT

)
[Ag]r−1[O2]

0.5[H+
]2 (1)

where γ is the release rate of Ag+ (mol·L−1·h−1); reactant B is either oxygen or protons; kB is the
Boltzmann constant (1.38 × 10−23 J·K−1); mB is the molecular weight of reactant B (g·mol−1); ρ is the
density of Ag NPs; Ea is the activation energy (J); T is temperature (298 K); [Ag] is the mass-based
concentration of Ag NPs (µg·L−1); [O2] and [H+] are the molar concentrations (mol·L−1) of dissolved
oxygen and protons, respectively; and r is the Ag NP radius (nm). The model shows that the release
rate of Ag+ is dependent on T, [Ag], [O2] or [H+] and is inversely proportional to particle size (r).

2.2.1. Effect of Primary Particle Size and Shape on the Nanoparticle Dissolution

A small particle size can always facilitate the rate of particulate dissolution. It has been reported
that small Ag NPs (20 nm) took longer than large NPs (80 nm) in Hoagland medium to reach
reaction equilibrium [103], which agrees with other studies that Ag NP dissolution shows strong
size dependence [75,110,111]. Similarly, with the reduction of CuO NP size, there is a significant
increase in dissolution rate and equilibrium concentrations [112,113]. The same size effect was also
reported for the dissolution of QDs [114,115]. In a long dissolution time, the amounts dissolved from
TiO2 NPs (28.3 nm) were smaller than those sized 4.7 nm [108]. Because the decreased size can increase
the specific surface areas and the enthalpies of formation, the solubility of NPs is higher than that in
the bulk phase [116,117]. Nonetheless, the size effect on the dissolution of ZnO NPs is not so obvious
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even between NPs and bulk or large-sized particles due to the high solubility of ZnO, which can reach
up to 80% dissolution [78,101,113,118].

The shape of NPs was shown to influence both the equilibrium concentrations and rates of their
dissolution. For instance, the Cu released from spherical, rod and spindle CuO NPs went up to
2.5%, 1.1% and 0.8% (wt % of NPs) within 72 h, respectively [119]. An apparent equilibrium Cu
concentration was observed within 24 h for spherical CuO NPs, while for rod CuO NPs, it was reached
after 60 h [112]. The dissolved rate of spherical CuO NPs was faster than that of rod and spindle CuO
NPs [119]. Similarly, both wire and rod Pt nanomaterials showed higher resistance to dissolution
than spherical NPs [120]. The dissolution rates and equilibrium concentration discussed thus far
can be traced to shape-related differences in the anisotropic structure, specific surface area and the
suspension stability induced by the differences in NP dissolution rates and the diffusion of metal
ions in solution [112,120–122]. Moreover, due to the lower coordination numbers, the {1 1 1} and the
{1 1 0} faces dissolved more rapidly than the {1 0 0} faces on PbS nanocrystals [123]. Meanwhile, the
surface dissolution of NPs whose faces were adjacent (1–2 nm or less) to other NPs was significantly
inhibited, which was attributed to the altered properties of aqueous solution and ion transport in
confined spaces [123,124]. Using high-speed atomic force microscopy (AFM), Hoshi et al. found that
the cubic Pt NPs were dissolved from the edge, while the edge of cuboctahedral Pt NPs and the top of
tetrahedral Pt NPs were dissolved, forming terrace-like structures [125].

2.2.2. Effect of Surface Coating on the Nanoparticle Dissolution

Dissolution of NPs clearly is affected by surface coating of NPs. Quite often, the release rate
of most metal-based NPs decreases significantly in the presence of surface coating. Under the same
environment conditions, bare-Ag NPs dissolved most easily compared to the coated Ag NPs [30].
The coated NPs exhibited less dissolution because the surface coating acts as a physical barrier or
shield, preventing electrons or photons from transferring to the NP surface [75]. Even in the high
NaCl solution (1 M), both the alginate- and gum arabic-coated Ag NPs had a low dissolution, which
less than 10% of total Ag [73]. However, compared to bare ZnO NPs, organic coating delayed
the dissolution equilibrium, but led to an increased concentration of Zn ions at equilibrium [126].
In addition, the composition of coating agents can have different effects on the dissolution of NPs.
Li et al. found that electrostatically-stabilized CIT-Ag NPs dissolved faster than sterically-stabilized
PVP-Ag NPs [30]. Yang et al. also reported that PVP-Ag NPs contained 1.6% dissolved silver, while
CIT-Ag NPs contained 0.1% with the same size, probably due to the availability of citrate to reduce
dissolved silver via chelation [102]. Tween 80 (polysorbate 80) inhibited dissolution of Ag NPs better
than the SDS due to the thicker and more rigid Tween coating layer [75]. The dissolution rate of
polydiallyldimethylammonium chloride (PDDA)-coated QDs was lower than that of poly(ethylene
glycol) (PEG)-coated QDs due to the higher chain length and structural complexity of PDDA [28].
As for modified iron oxide NPs, only the citrate-iron oxide NPs released free iron ions in the 14-day
test, and dextran-iron oxide NPs dissolved slowly in one-year-aged solutions, but the free iron could
not be checked in the solutions of ascorbate-iron oxide NPs and PVP-iron oxide NPs [127].

2.2.3. Effect of Solution pH, Electrolyte and Redox Conditions on the Nanoparticle Dissolution

As shown in Equation (1), the dissolution kinetics of metal NPs are affected by pH [103]. The solubility
of Ag, QDs, ZnO, CeO2, Cu and CuO NPs is enhanced with the decreasing pH [75,113,128–130].
The addition of electrolytes varies the dissolution of NPs due to the potential chemical reactions and
impacts on aggregation states. After the addition of electrolytes, Ag NPs dissolved immediately due to
electrolyte-induced perturbations [131,132]. Moreover, the dissolution of Ag NPs strongly depends on
the types and concentrations of electrolytes. When NaCl as a electrolyte was introduced in the aquatic
system, the released Ag+ would combine with Cl− to form AgCl precipitate as a coating layer, and
then, the dissolution rate might be decreased [132]. The enhanced NPs’ release rate after replacing
NaCl with NaNO3 can be attributed to both the perturbation in solution and the nitrate-promoted
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oxidative corrosion [132]. ZnO NPs released most Zn ions in seawater with a higher ionic strength as
compared to fresh water [133]. However, the dissolution of Tween-coated Ag NPs was higher in NaCl
than in NaNO3, which might be caused by the nucleophilicities difference between Cl− and NO3

−

ions [75]. Additionally, little change on the solubility of CuO NPs can be found before and after the
addition of NaCl to deionized water [121].

Anaerobic or aerobic conditions are significantly different in the way they influence the dissolution
of metal NPs [134]. One example is that the released contents of Cd and Se are much higher in
air-saturated water than in the anaerobic condition [28]. In contrast, the release of Ag+ from the
Ag NPs in deoxygenated water was terminated even at the lowest pH as opposed to the increased
dissolution of the air-saturated condition. Clearly, dissolution of metal NPs is a cooperative oxidation
process involving both dissolved oxygen and protons [75,135]:

Me(s) +
n
4

O2(aq) + nH+
(aq) ⇔ Men+

(aq) +
n
2

H2O (2)

where Me and n are the metal element and the charge number of Me.

2.2.4. Effect of NOM on the Nanoparticle Dissolution

Our previous study revealed that at a low concentration of HA, the release process of Cd and Se
from QDs was facilitated due to the sensitization effect of HA, whereas when the HA concentration
was up to 50 mg·L−1, the release rate of Cd was reduced because of the complexation of HA and
metal ions [28]. The presence of dissolved NOM such as SRFA promoted the dissolution of CuO
NPs and Ag NPs in aquatic environments resulting from the enhanced stability via adsorption of
NOM onto the Ag NP surface and the displacements of electrostatic surface coating [33,69]. However,
in the presence of SRFA, the release rate of Zn2+ from ZnO NPs slowed down, and their dissolved
concentration was slightly decreased [129]. Furthermore, SRFA and Pahokee peat fulvic acid (PLFA)
reduced the dissolution of sulfidized Ag NPs [136]. It was speculated that SRFA may have dual roles
on the dissolution of metal-based NPs [129]. On the one hand, SRFA was adsorbed on the NPs surface
by electrostatic attraction and ligand exchange, so that the metal ions’ release was blocked [137]. On the
other hand, the complexation of metal ions and SRFA caused more metal ions to be liberated into the
bulk media [129]. Besides, for Ag NPs, humic/fulvic acids played the role of reductants to reduce
the released Ag+ to Ag0 in a reversible reaction [138]. Furthermore, the presence of citric acid clearly
promoted the release extent of ZnO NPs, which was caused by the interaction between complexing
ligands and NPs, including the polarization and weakening of the metal-oxygen bonds of NPs [139].
Similarly, the amino acids and peptides in the culture medium accelerated the release rate of ZnO
NPs [105]. For instance, ZnO NP dissolution was significantly accelerated, and its solubility was
enhanced by cysteine [129]. Gondikas et al. also reported that the presence of cysteine increased the
dissolution of coated Ag NPs. The sulfhydryl group of cysteine plays a vital role in the reactions [140].
Both the surface complexation and solution coordination induce the increased dissolution of NPs [129].

2.2.5. Effect of Inorganic Species on the Nanoparticle Dissolution

Other inorganic ions or groups, such as phosphate (PO4
3−) and sulfide (S2−), can still change the

dissolution of metal-based NPs via some chemical reactions. For example, the release concentration of
Zn2+ in solution decreased dramatically with a low concentration of added phosphate [141]. Similarly,
the release rate of CeO2 NPs was inhibited in the presence of phosphate [130], which could complex
with heavy metals ions [141]. In the presence of Na2S, the dissolution of Ag NPs was inhibited because
the formation of sulfuric coatings can suppress the release of Ag+ from the surface of Ag NPs [122].
Yet, Ag NPs are rapidly dissolved with the addition of OCl− [142].
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2.2.6. Effect of Temperature and Light Irradiation on the Nanoparticle Dissolution

Temperature also affects the dissolution rate of NPs. The dissolution rate of QDs for both Cd and
Se increased significantly when the temperature increased from 0 ◦C to37 ◦C, which was attributed to
the accelerated mass transfer of dissolved oxygen and the reduced reaction activation energy by high
temperature [28]. The temperature influence on the dissolution kinetics of NPs is shown in Equation (1)
relating to the Arrhenius-based kinetics model [103].

Light exposure should be considered as another important environmental factor. Light irradiation
can promote surface oxidation so that the physicochemical processes of metal-based NPs may be
changed in aquatic environments [30]. Ultraviolet (UV) enhanced the release rate of Ag NPs and
shortened the equilibration time [143], but no significant influence on the Ag release was observed after
Ag NPs were exposed to sun light [61]. We found that the dissolved Ag+ concentration clearly increased
with the irradiation exposure when compared to their response in a dark condition. Moreover, higher
irradiation intensity obviously induced increasing release rates of QDs for both Cd and Se [28].

2.3. ROS Generation by Metal-Based NPs in the Aqueous Environment

One of the major toxicity mechanisms of metal-based NPs is related to the generation of ROS
and subsequent ROS-induced cell damage or injury [29,43,105,144–146]. Many previous studies have
demonstrated that three types of ROS, including singlet oxygen (1O2), hydroxyl radical (·OH) and
superoxide radical (O2·−), may jointly contribute to and enhance the cytotoxicity of metal-based
NPs in water [144,147–149]. Among these ROS, rather long-lived 1O2 (3.8 µs in water) is the most
detrimental to cells because it reacts broadly with amine acids, such as methionine, vitamins, such as
beta-carotene, unsaturated fatty acids, proteins and steroids [150,151], causing biomembrane oxidation
and degradation [152]. Similarly, although short-lived (10 µs in water), ·OH is highly reactive and
can nonspecifically oxidize virtually all types of macromolecules, including carbohydrates, nucleic
acids, lipids and DNA [150,153]. Although O2·− is slow in reaction with macromolecules, dismutation
reaction of O2·− produces hydrogen peroxide (H2O2), which can be transformed into ·OH and
1O2 [154]. Consequently, the three types of ROS (1O2, ·OH and O2·−) may coexist and contribute to
the major oxidative stress in biological systems [29,105].

The electronic structure of metal-based NPs plays a key role in their ROS generation [155].
Metal-oxide NPs and metallic NPs have a distinct electronic structure, leading to their different ROS
generation mechanisms. The electronic structure of metal-oxide NPs is characterized by the band
gap (Eg), which is essentially the energy interval between the valence band (Ev) and the conduction
band (Ec), each of which has a high density of states [155]. Metallic NPs (e.g., Ag, Au and Ni)
distinguish themselves from metal-oxide NPs by their unique surface plasmon resonance (SPR), which
can significantly affect the photogenerated ROS by metallic NPs [156,157].

For metal-oxide NPs, the general principle is that when illuminated by light where the incident
photon energy is greater than the band gap, the electrons (e−) of metal-oxide NPs are promoted across
the band gap from the valence band to the conduction band, with the concomitant generation of a hole
(h+) in the valence band [158]. Electrons in the conduction band and holes in the valence band exhibit
high reducing and oxidizing power, respectively [159,160]. The photoexcited electrons can reduce
molecular oxygen to O2·− through a reductive process [158]. The hole can oxidize water and hydroxyl
ions to generate ·OH through an oxidative process [161]. 1O2 is mostly produced indirectly from
aqueous reactions of O2·− [159].

The production mechanism of a specific type or a combination of ROS in metal-oxide NP
suspensions was previously elucidated by comparing the electronic structures (i.e., band edge energy
levels) of the metal oxides with the redox potentials of various ROS generation [29,146,155,162].
For example, the Ec values of TiO2 and CeO2 are −0.28 and −1.69 eV with respect to normal hydrogen
electrodes (NHE; all Ec and Ev values are with respect to NHE) [163,164], which are less than the EH of
O2/O2·− (−0.2 eV) (Figure 2a) [29]. This indicates that the reductive power of the electrons in TiO2

and CeO2 is great enough to reduce O2 and lead to O2·− generation. The reductive power of the
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electrons in CuO conduction band (Ec value of 0.69 eV) is insufficient to reduce O2 (Figure 2a) [163],
so the CuO suspension could not generate O2·−. The Ev values of TiO2, ZnO and Fe2O3 are 2.92, 3.08
and 2.66 eV, respectively [163], which are greater than the EH of H2O/·OH (2.2 eV) (Figure 2a) [29],
Thus, the holes of these NPs can oxidize H2O and generate ·OH. The Ev value of CeO2 is 1.6 eV [164];
thus, CeO2 cannot generate ·OH (Figure 2a). Similarly, the Ev values of TiO2, ZnO, SiO2 and Al2O3

are 2.92, 3.08, 5.48 and 5.58 eV, respectively [163,165], which are greater than the EH for 1O2/O2

(1.88 eV) (Figure 2a) [166]. Thus, these metal-oxide NPs have enough oxidizing power to facilitate 1O2

generation, which performed distinct antibacterial activities (Figure 2b).

Nanomaterials 2017, 7, 21  12 of 32 

 

2.92, 3.08, 5.48 and 5.58 eV, respectively [163,165], which are greater than the EH for 1O2/O2 (1.88 eV) 
(Figure 2a) [166]. Thus, these metal-oxide NPs have enough oxidizing power to facilitate 1O2 
generation, which performed distinct antibacterial activities (Figure 2b). 

  
Figure 2. Mechanism of photogenerated ROS (a); and correlation with the antibacterial properties of 
metal-based NPs (b) (reproduced with permission from [29], Copyright American Chemical Society, 
2012). 

However, comparison between the electronic structures of metal oxides with the redox 
potentials of various ROS generation cannot explain the ROS generation mechanisms for all  
metal-oxide NPs. For example, although the Ev values of CuO and Fe2O3 (2.39 and 2.66 eV) are greater 
than the EH for 1O2/O2 (1.88 eV) [163], 1O2 is not detected in their suspensions. This is primarily because 
the released Cu2+ or Fe2+ could consume the produced 1O2. ZnO and Fe2O3 unexpectedly generated 
O2·−, which is probably because both of them are n-type semiconductors, whose conduction band 
could be bent upward when dispersed in water owing to the accumulation of positive charge within 
the space charge region of the Helmholtz layer [163]. Thus, their actual Ec could become lower than 
the EH of O2/O2·−, which allows the generation of O2·− by these NPs in water. In conclusion, the 
dissolution and Ec change of metal-oxide NPs in water should be taken into consideration when 
elucidating their ROS generation mechanisms. 

Metallic NPs contain many free mobile electrons that can interact strongly with light by either 
absorbing or scattering the photons [156,157]. When metallic NPs are excited by light with 
wavelengths longer than the size of NPs, the oscillating electric field of the incoming radiation 
induces coherent collective oscillation of the free electrons (conduction band electrons) on the metal 
surface [156,157]. When the surface electron oscillation frequency is equal to the photon frequency, 
SPR is generated [156,157]. SPR induces a strong absorption of the incident photon energy, which can 
be transferred to O2 and lead to 1O2 generation [157,167,168]. The photoelectrons transferred to O2 are 
responsible for the generation of O2·− [157], which can further promote the generation of ·OH under 
light irradiation [157,167,168]. Our group has demonstrated that Ag NPs produced both O2·− and ·OH, 
but no detectable 1O2, whereas Ni NPs only produce 1O2 [31]. Not all three types of ROS were 
detected, which was primarily because the pronounced released Ag+ and Ni2+ led to the consumption 
of ROS [31]. Ni NPs are a type of magnetic transition metal and have damped plasmon resonance 
owing to their relatively large optical absorption coefficients [31,169]. This leads to less ROS 
generation by Ni NPs when compared to that for Ag NPs. Similar to metal-oxide NPs, the dissolution 
of metallic NPs could also influence ROS generation. 

ROS generation of metal-based NPs could be influenced by many factors, including the 
characteristic parameters of NPs (e.g., particle size and surface coating), solution chemistry (e.g., pH 
and aqueous media) and experimental conditions (e.g., light conditions and NP concentration). In the 

Figure 2. Mechanism of photogenerated ROS (a); and correlation with the antibacterial properties of
metal-based NPs (b) (reproduced with permission from [29], Copyright American Chemical Society, 2012).

However, comparison between the electronic structures of metal oxides with the redox potentials
of various ROS generation cannot explain the ROS generation mechanisms for all metal-oxide NPs.
For example, although the Ev values of CuO and Fe2O3 (2.39 and 2.66 eV) are greater than the EH

for 1O2/O2 (1.88 eV) [163], 1O2 is not detected in their suspensions. This is primarily because the
released Cu2+ or Fe2+ could consume the produced 1O2. ZnO and Fe2O3 unexpectedly generated O2·−,
which is probably because both of them are n-type semiconductors, whose conduction band could be
bent upward when dispersed in water owing to the accumulation of positive charge within the space
charge region of the Helmholtz layer [163]. Thus, their actual Ec could become lower than the EH of
O2/O2·−, which allows the generation of O2·− by these NPs in water. In conclusion, the dissolution
and Ec change of metal-oxide NPs in water should be taken into consideration when elucidating their
ROS generation mechanisms.

Metallic NPs contain many free mobile electrons that can interact strongly with light by
either absorbing or scattering the photons [156,157]. When metallic NPs are excited by light with
wavelengths longer than the size of NPs, the oscillating electric field of the incoming radiation
induces coherent collective oscillation of the free electrons (conduction band electrons) on the metal
surface [156,157]. When the surface electron oscillation frequency is equal to the photon frequency,
SPR is generated [156,157]. SPR induces a strong absorption of the incident photon energy, which can
be transferred to O2 and lead to 1O2 generation [157,167,168]. The photoelectrons transferred to O2 are
responsible for the generation of O2·− [157], which can further promote the generation of ·OH under
light irradiation [157,167,168]. Our group has demonstrated that Ag NPs produced both O2·− and
·OH, but no detectable 1O2, whereas Ni NPs only produce 1O2 [31]. Not all three types of ROS were
detected, which was primarily because the pronounced released Ag+ and Ni2+ led to the consumption
of ROS [31]. Ni NPs are a type of magnetic transition metal and have damped plasmon resonance
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owing to their relatively large optical absorption coefficients [31,169]. This leads to less ROS generation
by Ni NPs when compared to that for Ag NPs. Similar to metal-oxide NPs, the dissolution of metallic
NPs could also influence ROS generation.

ROS generation of metal-based NPs could be influenced by many factors, including the
characteristic parameters of NPs (e.g., particle size and surface coating), solution chemistry (e.g., pH
and aqueous media) and experimental conditions (e.g., light conditions and NP concentration). In the
following sections, the effects of the abovementioned parameters on ROS generation and types are
discussed in detail.

2.3.1. Effect of NP Concentrations on the ROS Generation

Many works have demonstrated that increasing NP concentrations led to their higher ROS
generation concentrations [157,170,171]. A prevailing explanation for this is primarily because higher
concentrations of NPs provided more surface area for reaction with oxygen and photons [157,170,171].
For example, higher concentrations of Au NPs showed a higher generation amount of ROS under UV
or X-ray irradiation [157]. A significant increase in ROS generation was detected in Ag NP aqueous
suspension when NP concentrations were increased from 10 to 50 mg·L−1 [170]. However, when
the TiO2 concentration was increased from 0.1 to 1.0 g·L−1, the concentrations of ·OH only increased
by approximately two times, but further increasing TiO2 concentration from 1.0 to 2.0 g·L−1 did
not enhance the ·OH concentrations [161]. While the higher dosage of TiO2 provides more surface
sites, it also decreases the effective light transmission into the NP suspension due to increased light
scattering [161].

2.3.2. Effect of Particle Size and Crystal Structure on the ROS Generation

As the particle size decreases, the surface areas of NPs exponentially increase, and a greater
proportion of the atoms or molecules will be displayed on the surface and exposed to oxygen or
photons [170,172,173]. In general, as the particle size decreases, ROS generation increases due to the
increased surface areas and reactive sites for ROS generation [170,172,173]. For example, Misawa et al.
investigated ROS production by Au (5–250 nm) under UV and X-ray irradiation, concluding that ROS
generation concentrations almost linearly increased with the inverse of particle diameter (1/d) [157].
ROS generation of Ag NPs was also dependent on the size and increased with the decrease in their
sizes [172].

Our group has compared ROS generation by a number of metal-oxide NPs and their bulk
counterparts under UV-365 irradiation [29]. Metal-oxide NPs were found to yield more ROS than their
bulk counterparts at equal-mass doses primarily due to larger surface areas of NPs providing more
available reaction sites for UV absorption and oxygen exposure. Other potentially size-dependent
properties (e.g., light absorption or scattering, defect sites and structural disorder) may also lead to
a difference in photoactivity of NPs. The crystal phase of metal-based NPs also plays a critical role in
their ROS generation [173]. TiO2 in anatase crystal structure produced higher amounts of intracellular
ROS in Escherichia coli cells than possible in their rutile phase, thereby causing a propensity toward
higher cytotoxicity [173].

2.3.3. Effect of Surface Coating on the ROS Generation

Surface coating can change the characteristics of light absorption on metal-based NPs and will
eventually enhance or reduce their ROS generation. It has been demonstrated that bare-Ag NPs
generated O2·− and ·OH; CIT-Ag NPs yielded only O2·−; whereas PVP-Ag NPs did not generate any
type of ROS [156]. This was because PVP coatings shielded the active electron donor and acceptor sites
on the NP surface, while the citrate coating, with its shorter chain length, less structural complexity and
lower molecular weight, can inhibit the interaction between the electron donor and the Ag NP surface
less efficiently than PVP coating [156]. In the biomedicine field, the photosensitizer was coated on the
metal-based NP surface to enhance ROS generation for photodynamic treatment of cancer [167,168].
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However, Wang et al. investigated that bio-extract capped Ag NPs decreased intracellular ROS
production in hepatocellular liver carcinoma cells (HepG2) and human cervical cancer cells (HeLa),
especially for ginger-Ag NPs and mint-Ag NPs. This could mostly be attributed to the antioxidant
activity of biocapping agents on the surface of Ag NPs [29].

2.3.4. Effect of Aqueous Medium Types on the ROS Generation

The physicochemical properties of the aqueous medium (i.e., pH and ionic strength) can
significantly affect the ability of metal-based NPs to take advantage of ROS photogeneration [158,159].
It has been demonstrated that O2·− production is enhanced at neutral and basic pH values that are more
favorable to ROS formation through charge effects at the surface of TiO2 [162]. No significant pH effect
on ·OH generation was observed in TiO2 aqueous suspension, as pH increased from 5.6 to 8.1 [161].
In addition, the solutes in aqueous media may affect the lifetime and reactivity of ROS [158], leading
to the varied ROS generation types and concentrations of metal-based NPs in different aqueous media.
Li et al. found that ZnO NPs generated three types of ROS (1O2, ·OH and O2·−) in deionized (DI)
water, NaCl, phosphate-buffered saline (PBS) and minimal Davis (MD) medium, but only generated
1O2 and O2·− in Luria–Bertani (LB) medium [159]. ROS production capacity could be reduced not only
by the decreased surface area of ZnO NPs due to fast aggregation, but also by the organic components
(e.g., citrate, glucose, tryptone and yeast extract) in the media [159].

Brunet et al. also demonstrated that TiO2 generated 1O2 in DI water, but not in the MD
medium [158]. This resulted from the lesser reaction between ·OH and O2·− (·OH + O2·−→ 1O2 + OH−)
in MD as ·OH is consumed by citrate and glucose and more conversion in acidic conditions
(2H+ + 2O2

·−→ 1O2 + H2O2) [158]. Yet, the O2
·− concentration produced by TiO2 was significantly

higher in the MD medium than in DI water because O2·− production is more favorable at neutral
and alkaline conditions through charge effects at the TiO2 surface [158]. In addition, the electron
donors, such as hydroxyl and carboxylate groups on glucose and citrate, reduce the recombination of
photoexcited electron-hole pairs [158].

2.3.5. Effect of NOM on the ROS Generation

Sorption of NOM also interferes with ROS generation by metal-based NPs. However, controversial
and inconsistent results on the effect of NOM on ROS generation by metal-based NPs exist, which merits
more specific investigation. For example, Dasari and Hwang have demonstrated that both terrestrial
HA and SRHA promote intracellular ROS generation by TiO2 in aquatic bacterial assemblages under
natural sunlight irradiation. However, ROS generation by TiO2, ZnO and CuO NPs was inhibited by
HA under natural sunlight irradiation, which was primarily because HA may act as effective quenchers
of the produced ROS [174]. Another study has demonstrated that the intracellular oxidative stress of
Ag NPs was not affected by the presence of HA since NOM could complex with Ag+ released by Ag
NPs via a skeleton of HA comprised of alkyl and aromatic units [172]. The released metal ions could
efficiently deactivate the triplet states of HA, leading to their decreased sensitization capacity for ROS
generation by metal-based NPs [175]. Moreover, NOM can absorb photons in the 300–500 nm range
of the solar spectrum because they contain conjugated unsaturated bonds and free electron pairs on
heteroatoms [176–178]. Thus, they may act as a reducing buffer and UV filter for NPs [172].

2.3.6. Effect of Light Condition and Temperature on the ROS Generation

Light exposure is an important environmental factor affecting ROS generation by metal-based
NPs in water [156,159,179]. Previous studies have demonstrated that light exposure, such as irradiation
by UV lamp, xenon lamp, solar and X-ray, could all promote ROS generation by metal-based
NPs [156,159,179]. No measurable amount of ROS was detected by all metal-oxide and metallic
NPs in the dark, while at least one type of ROS (1O2, ·OH and O2·−) was detected in their aqueous
suspensions when exposed to UV-365 light [29,31,156]. This is because the light irradiation induces the
generation of surface plasmon resonance (SPR) on the metallic particle surface and electron-hole pairs
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in metal-oxide NPs. Similarly, Masaki and Junko demonstrated that the ·OH and O2·− generation by
Au NPs under X-ray irradiation was enhanced by factors of 1.46 and 7.68 compared to that without
light irradiation [157].

Light sources with different wavelengths vary ROS generation types and concentrations by
metal-based NPs [156,157]. For example, under X-ray irradiation, Au NPs dispersed in water
could produce ·OH and O2·−, while under UV irradiation, Au NPs could only generate O2·− [157].
Another study demonstrated that bare-Ag NPs and CIT-Ag NPs did not generate any type of ROS
under UV-254 and xenon lamp irradiation owing to the lesser extent of photoabsorption of the two
types of Ag NPs; however, the bare-Ag NPs generated ·OH and O2·−, and the CIT-Ag NPs yielded
O2·− under UV-365 irradiation [156].

Solution temperature may also vary the ROS generation [161]. Increasing temperature generally
enhances the mass transfer rates of dissolved oxygen to the reaction sites on the surfaces of metal-based
NPs and also lowers the reaction activation energy, which leads to faster reaction kinetics according to
the transition state theory. Higher temperature could result in more ·OH generation by TiO2 [161].

2.3.7. Toxicity Implications of ROS Generation

Bacterium is one of the most commonly-used model organisms for studying the toxicity
implications of ROS from NPs. The photocatalytic ·OH concentration generated from TiO2 under UV
illumination was linearly correlated with the rates of E. coli inactivation (R2 = 0.97), which indicates
that ·OH is the primary oxidant species responsible for E. coli inactivation in the UV/TiO2 system [161].
However, not all ROS (i.e., 1O2 and O2·−) were taken into account when correlating the antibacterial
activity of TiO2 in this study. It has been demonstrated that the average concentration of total ROS
(1O2, ·OH and O2·−) generated by seven types of metal-oxide NPs under UV-365 irradiation followed
the order of TiO2 > ZnO > Al2O3 > SiO2 > Fe2O3 > CeO2 > CuO [29]. A linear correlation was
established between the average concentration of total ROS (1O2, ·OH, and O2·−) generated by these
NPs and the bacterial survival rate of E. coli cells (R2 = 0.84). Li et al. found that the bacterial
mortality rate monotonically increases with the increasing concentration of total ROS generated by
ZnO NPs [159]. Another linear relationship was established with statistical significance between the
total concentrations of the three types of ROS and the bacterial mortality rates of ZnO toward the
E. coli cells in the five media (R2 = 0.92) [159]. Similarly, Ag NPs induced intracellular ROS generation
in nitrifying bacteria, which correlated well with the antibacterial activity of Ag NPs (R2 = 0.86) [171].
However, there was a poor correlation between the inhibition of nitrifying bacteria by Ag NPs and
their photocatalytic ROS concentrations (R2 = 0.53–0.72) [171].

The quantitative relationship between ROS generation by metal-based NPs and their toxicity
has also been established in human cells. In addition to E. coli cells, the inverse correlation between
declined cell viabilities and elevated ROS level was also observed in human HeLa cell, demonstrating
that oxidative stress seems to be the key event by which CdS induces intracellular toxicity [180].
Shen et al. have demonstrated a strong inverse correlation between ZnO-induced cytotoxicity and O2·−
concentration (R2 = 0.80, p < 0.0001) in human immune cells, indicating a requirement for NP oxidative
stress to precede cytotoxicity [181]. Dasari et al. [144] and Horev-Azaria et al. [182] investigated the
toxicological effects of cobalt-ferrite (CoFe2O4) NPs on the viability of seven cell lines, which represented
the different organs of the human body [182]. A high linear correlation (R2 = 0.97) was found between
the toxicity of CoFe2O4 and the extent of ROS generation following their exposure to CoFe2O4 NPs,
suggesting that oxidative stress is one possible mechanism for the toxicity of CoFe2O4 NPs [182].

3. Environmental Impacts of Metal-Based NPs on Aquatic Organisms

3.1. Adsorption of Metal-Based NPs at Cellular Interfaces

Adsorption is the first and an important step of interaction between metal-based NPs and aquatic
species [37,183–185]. Since adsorption of NPs onto cellular interfaces is highly related to the toxicity of
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NPs, it is important to understand the mechanisms, equilibrium and kinetics of adsorption processes
in the aquatic environment.

Interaction force boundary layer (IFBL) theory is a useful approach for describing adsorption
kinetics of NPs at the interfaces [186]. According to this theory, the region adjacent to the surface can be
divided into two different layers, including the inner layer (namely IFBL) and the outer layer. The inner
layer thickness (δF) corresponds to that of the EDL, while the outer layer thickness (δD) corresponds to
the diffusion boundary layer. The IFBL approach assumes that δD is much thicker than δF and that
adsorption of NPs because interception and gravitational sedimentation is negligible. In fact, the total
interaction energy between the NPs and cell surfaces, which determines the spontaneity of adsorption,
can also be described by the EDLVO. Three major interfacial forces are involved in the calculation
of surface interaction energy, which includes vdW, attraction, EDL repulsion and Lewis acid-base
interaction (AB) [187]. EDLVO theory combined with the IFBL theory was applied in the calculation of
the total interaction energy between NPs and cells [185], which was used to determine the adsorption
rate constant (ka).

Once adsorption begins, the processes are mediated by several different colloidal forces.
When NPs approach organism cells, the total interaction energy between NPs and cells is a function
of the interaction distance and properties of cells and NPs, such as particle size and surface coating.
Schwegmann et al. studied that the sorption process of NPs on E. coli was completed as short as a few
minutes. In contrast, the concentration of NPs on S. cerevisiae increased continuously for 20 h [188].
Adsorption of NPs on cells was also shown to be particle size dependent [37,183,185]. The adsorption
of large NPs (76 and 98 nm) on E. coli cells reached pseudo-adsorption equilibrium faster (30–40 min)
than small NPs (60–90 min). While expressed as the number of adsorbed NPs per unit area of cells,
it was found that small NPs had faster adsorption rates than large NPs [185], because smaller NPs tend
to have a lower energy barrier [37], which made them easier to adsorb onto the cells; moreover, smaller
NPs carry the greater surface energy, which induces more free energy (e.g., heat), which can be released
through adsorption, and the thermodynamics is more favorable for small NP adsorption [185].

The surface properties of NPs and cells, surface coating, pH and ionic strength that could affect
the zeta potential or surface charge largely determine the extent of the process [53,66,189]. The solution
pH and ionic strength affect adsorption of NPs onto cells due to the change of surface charge [190–192].
Khan et al. found that the amount of adsorbed Ag NPs on bacterial cell surfaces decreased with
an increase of pH with the maximum adsorption at pH 5. Moreover, a high concentration of NaCl
could cover the surface of both NPs and bacterial cells and form an ionic shield that could decrease
the attractive forces between NPs and bacterial cells [193]. Adsorption of Ag NPs onto bacterial
cells was decreased with increasing NaCl concentration and then vanished until the concentration
of NaCl was higher than 1 M, which was caused by the different zeta potentials of Gram-positive
and Gram-negative bacterial cells [189]. Therefore, different adsorption behaviors of NPs can occur in
different bacterial species even in an identical environment.

3.2. Impacts of Metal-Based NPs on Single Aquatic Organisms

Following adsorption, NPs may accumulate on cell surfaces or undergo translocation into the
intracellular environment via diffusion or endocytosis [188]. For instance, the radius of NPs is
approximately 25–30 nm, as the rate of endocytosis reaches the maximum value [194]. The behavior
of NPs at cellular interfaces will potentially induce adverse effects, which are discussed in details on
plankton, fish and benthic organisms.

3.2.1. Aquatic Plants

The algal growth test is widely used to assess the risk of metal-based NPs in the aquatic
environment. Generally, the metal ions released from metal-based NPs play an important role in
the toxicity of NPs to aquatic organisms, especially for ZnO NPs. Franklin et al. reported that
a significant toxicity of ZnO NPs to the freshwater algae Pseudokirchneriella subcapitata was solely
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caused by dissolved Zn [101]. However, both aggregation and ROS generation of ZnO and TiO2 NPs
may induce toxicological impacts on Chlorella sp. [195]. Wang et al. pointed out that physical effects,
including the TiO2 NP adsorption on the cell surface and algae entrapment inducing cell wall damage,
caused a severe acute toxicity for algae Phaeodactylum tricornutum [196]. Furthermore, internalization
is a common pathway for the uptake of NPs by algae [197]. TiO2 NPs inhibited the population growth
of marine microalgae Dunaliella tertiolecta due to the NP internalization in algae cells inducing the
destabilization of the DNA structure [198]. Leclerc and Wilkinson indicated that Ag bioaccumulation
in C. reinhardtii increased significantly upon exposure to Ag NPs [199]. At the same exposed Ag+

concentration, the toxicity of Ag NPs to C. reinhardtii was higher than that of Ag+ as indicated by the
photosynthetic yield of algae. Ag NPs induced more copper transport protein 2 (CTR2) upregulation
than that exposed to the released Ag+ [199,200].

As for macrophytes, the Cu content in fronds of duckweeds exposed to CuO NPs was much higher
than that exposed to a comparable dose of soluble Cu [106,201]. After taken up by the plant tissues,
NPs may be translocated into vacuole (an organelle used to bind metals inside the cell) [202,203].
Furthermore, the growth of duckweeds was inhibited 50% by CuO NPs at the concentration of
1.0 mg·L−1. Exposure to CuO NPs induced a significant decrease of chlorophyll in plants [106],
which may be caused by the reduced number of active photosystem II reaction centers and electron
transport [201]. Both TiO2 NPs and ZnO NPs negatively affected the algal growth and chlorophyll a
concentration at an early time [204].

3.2.2. Zooplankton

Zooplanktons mostly feed on phytoplankton and, in turn, form food for animals at higher trophic
levels, playing an important function in the food chain. NPs (such as TiO2 NPs and Al2O3 NPs) at high
concentration (about 100 mg·L−1) were observed adhering to the external surface of Daphnia magna
(D. magna) within 24 h from the beginning of the exposure [205]. Large amounts of NPs (i.e., TiO2 and
Al2O3) were present in the gut tract of D. magna after being treated with NPs [205], because D. magna as
a filter-feeder can ingest particles with sizes ranging from 0.9 to 18,000 µm3 [206]. Both TiO2 NPs and
ZnO NPs negatively affected the algal growth and chlorophyll a concentration at an early time [204].
Meanwhile, bioconcentration factors (BCFs, L·kg−1) in D. magna were enhanced with increasing TiO2

NP concentrations with a low depuration [207]. Similarly, the Ag NP uptake was concentration
dependent, but the efflux rate constants of Ag NPs in daphnia were much lower than those of Ag, also
suggesting the difficulty of eliminating Ag NPs by daphnia [208]. In addition, Ceriodaphnia dubia from
various treatments (1–50 mg·L−1 Fe2O3 NPs) accumulated Fe2O3 NPs with maximum values ranging
from 0.043 to 0.133 µg·dubia−1 after being exposed for 6 h [209].

The composition of metal-based NPs significantly mediates their adverse ecotoxicological effects
on freshwater zooplankton. Previous work showed that among three varieties of metal oxide NPs, ZnO
NP suspension had the highest toxicity, while Al2O3 NPs were the least toxic to D. magna; meanwhile,
both TiO2 and Al2O3 NPs were more toxic to D. magna than their bulk or large-sized particles [205].
Nevertheless, TiO2 NPs displayed no toxicity to Daphnia pulex adults, and Ag NPs and Cu NPs still
caused toxicity with 48-h LC50s as low as 40 and 60 µg·L−1, respectively [210]. Another acute test
showed the adverse effect of TiO2 NPs on the swimming behavior of aquatic animals [211]. Moreover,
the acute toxicity of metal oxide NPs to Paramecium multimicronucleatum has shown that the 48-h LC50

values of these NPs decreased as follows: Al2O3 < TiO2 < CeO2 < ZnO < SiO2 < CuO < Fe2O3 NPs
(Figure 3a), suggesting a positive correlation between the bonding strength of metal oxide NPs and
the cell surface and the toxicity in unicellular organisms (Figure 3b,c) [212]. Furthermore, a recent
study on the toxicity of CeO2 NPs to 14 ciliated protist species showed that the CeO2 NP adsorption
on the protist surface rather than phylogenetical conservation induced the toxicity due to a negative
correlation between LC50 values and the surface-to-volume ratio of protists [213]. In addition, based on
the chronic exposure to 1 and 5 mg·L−1 of TiO2 NPs for 21 days, severe growth retardation, mortality
and reproductive capacity reduction were all observed in D. magna. Even at a low concentration
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(0.1 mg·L−1), TiO2 NPs significantly reduced the number of offspring. When the TiO2 NPs were
increased to 5 mg·L−1, the reproduction of D. magna was completely inhibited [207]. These results
highlight the long-term risk of metal-based NPs to aquatic ecosystems.Nanomaterials 2017, 7, 21    18 of 32 
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3.2.3. Nektonic Organisms (Fish)

Nektonic organisms, such as fish, are the active swimmers in aquatic systems (usually oceans or
lakes). Fish may contribute to the transfer of contaminants, including NPs, to human beings and are one
of the recommended groups for baseline toxicity studies of pollutants in the environment. It has been
reported that zebrafish (Danio rerio) exposed to 0.1 and 1.0 mg·L−1 of TiO2 NPs could bioaccumulate
TiO2 NPs with 25.38 and 181.38 of bioaccumulation factors (BCFs), respectively [214]. Similarly,
after 25 days of exposure to 3 and 10 mg·L−1 of TiO2 NPs, the BCFs in carp (Cyprinus carpio) were
found to be 675.5 and 595.4, respectively [215]. TiO2 NPs can have sublethal effects in fish (Piaractus
mesopotamicus) [216], inhibit the growth of zebrafish (D. rerio), decrease the liver weight ratio in fish and
accelerate the hatching of the larvae of zebrafish embryos [217,218]. Ferry et al. demonstrated that the
corresponding concentration factor (Cf) expressed as the ratio of the Au concentration (mg·kg−1) in the
organisms to that in the water column (mg·kg−1) for Cyprinodon variegatus organs was 4.74 × 102 [219].
The modified Au NPs killed all of the Japanese medaka (Oryzias latipes) within 24 h, showing significant
toxicity to fish [220]. Jung et al. further found that the accumulation of CIT-Ag NPs and PVP-Ag NPs
in Japanese medaka (Oryzias latipes) were lower than that of AgNO3 with respective BCF values [221].
The liver is the primary organ for bioaccumulation in Japanese medaka, which was independent of
surface coating or released sliver ions [221]. In addition, Wang et al. found that salinity along with
a nonionic surfactant (Tween 20) could promote the bioaccumulation of CIT-Ag NPs [222], indicating
the importance of dispersion in bioavailability of Ag NPs in ionic environments.

3.2.4. Benthos

In higher salinity (15‰–35‰) waters, such as marine environments, NPs likely aggregate and
settle down in the sediment or benthic zones [223]. Benthic organisms are organisms that reside in
the sediments and bottom waters and have the potential to interact with NPs or their aggregated
forms [224–227]. However, so far, only a few studies have focused on the toxicity of metal-based NPs
to benthic organisms. Buffet et al. reported that the Cu uptake was higher in clams (S. plana) exposed
to soluble Cu than those exposed to CuO NPs, whereas in the worms (H. diversicolor), the opposite
trend of Cu uptake was observed, owing to the different lifestyles of the species [224]. Moreover,
Montes et al. demonstrated that mussels preferentially accumulated more Zn than Ce from the water
column, but rejected more Ce than Zn in pseudofeces. The differences in NP solubility affects the
NP uptake, excretion and accumulation in mussels [225]. Both ZnO and CuO NPs, except NiO NPs,
were toxic to an estuarine amphipod (Leptocheirus plumulosus) [228]. It has been found that ZnO NPs
had a different fate within the organs of benthic organisms. Furthermore, TiO2 NPs were mainly
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localized in endosomes and lysosomes, as well as the digestive system and significantly reduced the
lysosomal membrane stability in the mussels [229]. Additionally, the aggregation of NPs may reduce
bioavailability, but not eliminate it. For instance, the uptake rates in Peringia ulvae were lower than
those reported for the freshwater snail Lymnaea stagnalis, probably because the bioavailability of Ag
was reduced by the complexation of Ag+ in estuarine water and the aggregation of Ag NPs in saline
conditions [230].

3.3. Impacts of Metal-Based NPs on Aquatic Organisms at Multiple Trophic Levels

The previous studies have shown that metal-based NPs can be ingested and accumulated in
single aquatic organisms at different trophic levels from phytoplankton to benthos. Notably, it is highly
possible that NPs are transferred from lower trophic organisms to higher trophic organisms through
the food chain and biomagnified in the food web, considering that some aquatic organisms, such as
fish and clams, are human food sources and also provide food for wildlife.

Since 2008, many studies have been investigating the transfer of metal-based NPs in the food chain.
For instance, Bouldin et al. verified the transfer of QDs from algae (Pseudokirchneriella subcapitata) to
zooplankton (Ceriodaphnia dubia) after algae were treated with QDs for 24 h [231]. Werlin et al. reported
that CdSe QDs accumulating in bacteria (Pseudomonas aeruginosa) were transferred to Tetrahymena
thermophile [232], leading to a significant biomagnification. The high Au content in primary producer
species consequently led to the high Au content in the primary consumer D. magna [233]. In addition,
three-level trophic transfer of QDs in an aquatic food chain was demonstrated [234]. Significant
amounts of TiO2 NPs were also detected in the dietary exposure groups, indicating that dietary
intake may constitute a major route of trophic level [214]. Yet, negative biomagnification of TiO2

NPs was revealed in the simplified food chain due to the uptake and depuration profile for TiO2

NPs in the food [214]. However, a recent study still demonstrated the biomagnification of TiO2 NPs
through microalga-scallop transfer [235]. QDs were transferred from ciliates to predatory rotifers
through dietary uptake. Nonetheless, there was no evidence showing significant bioconcentration
or biomagnification of QDs in this bacteria-ciliate-rotifer food web [236]. Similar transfer of Au NPs
was found from the water column to the estuarine food web [219]. In a complex estuarine mesocosm,
the photosynthetic biofilm fixed approximately 60% of the mass of NPs; Au was only found in the organ
and gut of Cyprinodon variegatus without translocation to the circulatory system or absorbed by skin or
gill contact; the filter feeders (M. mercenaria) taking up about 5% of the total NPs were the most effective
sink for NPs [237], which is a potential route for metal-based NPs to enter the human food chain. Thus,
it is clear that metallic NPs could be accumulated in aquatic organisms and transferred to different
trophic levels, including alga, fish and benthic animals. However, there are still some controversial
results for the biomagnification of NPs in aquatic environment, which deserves further investigation.

3.4. Genetic Impacts

Genetic effects may be produced by direct bindings of NPs with genetic materials (e.g., DNA
and RNA), by indirect damage from ROS generated on NPs or by toxic ions released from soluble
NPs [238,239]. The overall uptake of NPs that could reach the nucleus through diffusion across the
nuclear membrane or be transported through nuclear pore complexes represents a danger of subsequent
direct interaction with DNA molecules [240,241]. Particularly, single NPs of a small size could reach
the nucleus through nuclear pores (~10 nm in diameter) [240,242]. Large NPs may also have access to
DNA molecules when the nuclear membrane dissolves due to dividing cells during mitosis [243,244].

The significance of direct binding of NPs to DNA has not received as much attention as oxidative
stress induced by NPs [43,96,241,245,246]. Our previous study showed that small QDs with a radius
of 10 nm could permeate into bacterial cells and bind to DNA [247]. NP binding changed the normal
conformation, as well as the local electrical properties of DNA molecules [247,248]. The binding of
Au NPs also caused structural changes, including local denaturation and compaction of DNA [249].
Such changes may adversely interfere with the genetic functions of DNA, such as transcription,
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replication and repair processes that are crucial to maintaining the normal metabolism of a living
cell [250–254]. Specifically, NPs that bind to DNA with a high affinity could inhibit the normal
functions of some critical DNA-binding proteins, such as RNA polymerase and DNA polymerase,
by occupying protein-binding sites and impeding the movement of protein along the DNA, which
could result in competitive inhibition of genetic functions [250,251,253,255]. It has been reported that
functionalized Au NPs completely inhibited DNA transcription in vitro owing to the electrostatic
interaction of NPs with DNA [250,251,253]. A computational simulation study also showed that C60

strongly bound to DNA and might adversely impact the conformation and biological functions of
DNA [254]. Furthermore, the binding of NPs to DNA might intervene in long-range charge transport
through DNA and, thus, interfere with signaling processes [256]. Hence, the interaction between NPs
and DNA has the potential to play important roles in the toxicity of NPs, and a complete elucidation
or delineation of the underlying principles involved is essential to the safety of our ecosystem.

High-quality atomic force microscope (AFM) was employed to investigate the binding affinity of
12 types of NPs for DNA [248]. On the one hand, the QDs (+), Ag NPs, Fe2O3 NPs, Au NPs (citrate),
CeO2 NPs, ZnO NPs and TiO2 NPs were observed to bind to DNA. On the other hand, the SiO2

NPs, Si NPs, QDs (−), Au NPs (COOH) and latex beads did not bind to DNA molecules. NPs with a
high affinity for DNA may interfere with normal DNA functions. The binding of single NPs to DNA
has the potential to change the DNA conformation dramatically, including DNA bending or looping
capabilities in the presence of QDs (+) [257].

The PCR method can be employed to probe the effect of NPs on DNA replication [257]. The agarose
gel electrophoresis revealed that QDs (+) completely inhibited DNA replication at the concentration
of 0.15 nM, which agreed with a previous study wherein cationic QDs caused genotoxic effects [258].
Au NPs (citrate) affected DNA replication at 0.3 nM and completely impeded the replication process
at the concentration of 0.5 nM. CeO2 NPs significantly inhibited DNA replication at 0.05 nM.
ZnO suppressed the DNA replication process at 0.2 nM. This agrees with a previous study showing that
Au NPs associated with DNA and subsequently induced DNA bending and strand separation [249].
In contrast, other NPs (e.g., QDs (−), TiO2 and SiO2 NPs) did not show any signs of inhibition at the
highest concentration employed in this study (1.4–1.6 nM). The relation between the ability of NPs
to inhibit DNA replication and the interaction energy between NPs and DNA can be computed by
the DLVO theory [257]. NPs with predicted high binding affinity (i.e., low interaction energy barrier)
with DNA molecules also had a high potential to inhibit DNA replication (Figure 4). This implied
that: (1) the binding of NPs to DNA is likely an important mechanism for causing the adverse genetic
effects of NPs; and (2) the interaction energy modeling approach could serve as a simple and effective
tool for predicting the genetic effects of NPs induced by the direct binding activity of NPs with DNA.
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4. Future Perspectives

NPs or ENMs exhibit remarkable properties that radically promote their applications [259].
Meanwhile, they pose emerging environmental impacts at an ever-increasing pace. Numerous crosscutting
issues related to the safety assessment of ENMs have been identified that need to be addressed in order
to promote sustainable growth of the nanotechnology industry. However, we are still facing many
challenges to scientifically assess the environmental implications of metal-based NPs.

Firstly, most studies on the environmental behaviors of metal-based NPs have been conducted
under laboratory conditions [29,81,130,156], which may hardly represent the realistic natural
environments. Recently, some studies investigated the aggregation, dissolution and transformation
of metal-based NPs in the natural water body by collecting lake water and seawater [133,260,261].
However, the knowledge on the environmental fate of metal-based NPs in the real environment is
still limited. In fact, it is possible for NPs in the natural environment to be impacted simultaneously
by various environmental factors, which makes the NP transformation more complicated. Thus,
more experiments under realistic environmental conditions should be conducted to analyze the
impact factors.

Secondly, a thorough understanding of the casual relationship between nanomaterial properties
and toxicity is still largely unclear. Although many studies have been done on the implication of
metal-based NPs to aquatic organisms, there is insufficient characterization of material properties
and their relationship with the observed cytotoxicity and specific nanomaterial properties, such as
the ROS generation. Thus, establishing a quantitative correlation between the ROS concentration and
toxicity of metal-based NPs would facilitate the future evaluation and prediction on the toxicity of
metal-based NPs.

Finally, many previous studies tend to attribute the toxicity of NPs to one or two major components
of material properties (e.g., particle size effect) or solution factors. Nevertheless, it is worth noting
that material properties are often interrelated and independent. For instance, when the particle size
of NPs changes, other material properties (e.g., surface atom density, crystal facets, surface charge,
surface hydrophobicity, mobility or diffusivity) may vary significantly. Moreover, it is well known that
aquatic NPs are unstable, and after undergoing the above-mentioned processes, they may also undergo
a transformation that will dramatically affect their size distribution and surface properties. However,
tracking the dynamic aggregation or disaggregation to pinpoint the actual fractions of nanometer-sized
ENMs (rather than aggregated or agglomerated particles) at cellular interfaces remains the most
difficult task so far. At the same time, a tsunami of new ENMs should undergo testing or screening
for toxicity.
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