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ABSTRACT: While plastic pollution threatens ecosystems and
human health, the use of plastic products continues to increase.
Limiting its harm requires design strategies for plastic products
informed by the threats that plastics pose to the environment.
Thus, we developed a sustainability metric for the ecodesign of
plastic products with low environmental persistence and
uncompromised performance. To do this, we integrated the
environmental degradation rate of plastic into established material
selection strategies, deriving material indices for environmental
persistence. By comparing indices for the environmental impact of
on-the-market plastics and proposed alternatives, we show that
accounting for the environmental persistence of plastics in design
could translate to societal benefits of hundreds of millions of
dollars for a single consumer product. Our analysis identifies the
materials and their properties that deserve development, adoption, and investment to create functional and less environmentally
impactful plastic products.
KEYWORDS: plastic pollution, biodegradation, material selection, life cycle assessment, persistence, degradable polymers, sustainability,
green chemistry and engineering

■ INTRODUCTION
Sustainability and the circular economy have become corner-
stones of corporate strategy.1,2 Today’s products must satisfy
the needs of engineering, marketing, business, regulation, and
consumer preference while also being sustainable, renewable,
and circular.3 Design decisions rely on ecodesign, green
chemistry and engineering principles, life cycle assessments
(LCA), and related methods to reduce a product’s environ-
mental impact.4−13 A recent U.S. National Academies of
Sciences, Engineering, and Medicine report identifies material
and product design as one of six key interventions to reduce
plastic pollution.14 However, plastics and their adverse effects
on humans and the environment challenge current approaches
to the design of sustainable products. In general, materials are
primarily selected by balancing trade-offs between environ-
mental impact categories, such as greenhouse gas (GHG)
emissions and resource depletion, because frameworks (e.g.,
ISO 14040:2006) and data sets (e.g., ecoinvent15) have been
established for estimating these impacts.8,12,13 However,
environmental persistence, defined as the time a plastic item
lasts in the environment as pollution, is missing from material
selection criteria (e.g., in LCA16,17).
While plastics do break down in the environment,18−27

estimates of the environmental lifetimes of plastic products
have only recently been made. These estimates vary widely and

range from months to decades or longer.20 Biotic and abiotic
processes act to fragment, degrade, transform, modify,
assimilate, and mineralize plastics.18,26,27 The efficiency and
selectivity of these processes depend on environmental
conditions, the type of plastic, and the functionality and
geometry of the product,18 i.e., on features of product design.
Thus, an opportunity exists to consider environmental
breakdown in the design of plastic products. Because some
plastic products will inevitably enter the environment as
pollution, regardless of waste management and end-of-life
strategies, it is necessary to confront their persistence.28−31

With the understanding that more persistent materials pose
greater potential threats to ecosystems and human
health,29,30,32 environmental persistence is a fundamental
principle of regulatory frameworks, and green chemistry and
engineering.6,33,34 Therefore, considering persistence during
product design by selecting materials that quickly break down
when leaked into the environment presents an opportunity to
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minimize risks to ecosystems and human health. Recent
measurements of environmentally realistic plastic degradation
rates catalyze this thinking. Here, we aggregate concepts
learned from the past decade of plastic pollution research and
integrate them into established material selection practices,
elevating a quantitative, multidimensional ecodesign frame-
work for minimizing the environmental impacts of plastic
pollution.

■ MATERIALS AND METHODS
Material property data were collated from primary sources and
databases to determine the range of density (ρ), Young’s modulus
(E), specific price, specific embodied greenhouse gas (GHG)
emissions, and specific embodied water usage for each plastic
investigated. Data sources for each property and plastic are referenced
in Tables S1−S5. Specific surface degradation rate (kd) data were
calculated from primary reports and collated from reviews in the peer-
reviewed literature. Data sources for each value of kd are referenced in
Table S6 and summarized for each plastic in Table S7. Extended
materials and methods are included in the Supporting Information.

■ RESULTS AND DISCUSSION
Selecting appropriate materials is critical for engineers,35

industrial designers,36 and architects37 to create functional
and aesthetically pleasing products. According to Ashby,38 the
problem of choosing the “best” material can be framed as a
collection of design requirements (i.e., functions, objectives,
and constraints) for which material indices (MIs) can be
determined and optimized. MIs are material properties or
groups of properties that maximize performance for a given
objective (e.g., minimizing mass, cost, or an environmental
impact).35

A Material Index for Persistence. To date, no material
selection framework has considered or quantified environ-
mental persistence. Coincidentally, missing is an MI for
environmental persistence, i.e., a metric for optimizing the
environmental lifetime of an item after its release to the
environment as pollution. Degradation rates are material
properties and, thus, can be included as an integral part of
product design. While definitions for degradation can vary,18

herein, we limit the definition of degradation to overall mass
loss from the initial plastic item in an environmental medium
(e.g., seawater or soil).
Complementary to this, we define environmental lifetime as

the time it takes for an item’s mass to decrease to zero due to
degradative processes. Accordingly, we propose that persis-
tence can be included in material selection by considering the
design objective to minimize the environmental lifetime if
leaked into the environment. Much like other MIs (Table S8,
section S1), we developed an approach to derive MIs for
environmental lifetime by (i) defining the appropriate
objective equation and (ii) substituting relationships for the
initial geometry of the item specified by the design constraints.
To align with the methods of Ashby,38 we first demonstrate

our approach using the example of a stiff beam (Figure 1A). A
typical function of a beam is to support a load without sagging.
Rather than minimize the beam’s mass or cost, the design
objective is to minimize the beam’s environmental lifetime if it
leaked into the environment. The design constraints on the
beam define the loading conditions, the amount of tolerable
deflection, and geometry. The free, unconstrained variables are
the choice of material and some geometric features. To derive
an MI for persistence, we first defined the objective equation

by solving a degradation rate equation, establishing a
mathematical relationship between the environmental lifetime
and the geometry of the beam.
The uniform degradation rate of a plastic item in the

environment can be defined as the differential mass loss per

unit time ( )m
t

d
d
, equal to the product of the surface area (As) of

Figure 1. Designing a stiff beam with minimal environmental lifetime
if leaked into the environment. (A) Schematic of a simply supported
beam. (B) Material property chart of the specific surface degradation
rate (kd) and Young’s modulus (E). Dashed lines indicate contours of
equivalent performance for the MI. The arrow indicates the direction
of better performance. Values of kd are for seawater (marine)
conditions with and without sunlight. Values are the combination of
laboratory, mesocosm, and field experiments. Data for kd are
presented as the mean ± maximum and minimum values. Data for
E are presented as the median value. (C) Trade-off chart comparing
MIs. Note that MI3 is presented using a base 10 logarithmic scale.
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(Table S9).
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the item and the density (ρ) and specific surface degradation
rate (kd) of the item’s material (eq 1).

18

m
t

k A
d
d d s=

(1)

In this formulation, kd is a phenomenological parameter that
assumes that all mass loss is by surface erosion. Notably, this
framing implies that intrinsic properties of the material (e.g.,
density) and extrinsic properties of the item (e.g., shape, size)
control the item’s degradation rate. Additionally, kd is a
coupled material-environment property that condenses the
effects of plastic formulation and processing, and environ-
mental conditions into a single term (i.e., values of kd in
seawater and soil are different18).
Assuming a solid beam with a square cross-section, we

solved eq 1 (Section S2) to yield a relationship between
environmental lifetime (tL), the initial edge length of the cross-
section (b0), and kd (eq 2).

t
b
k2L
0

d
=

(2)

Thus, minimizing tL requires minimizing b0 and maximizing kd.
However, this relationship is incomplete. The predefined
design constraints dictate b0. From beam theory (section S1),
b0 can be defined in terms of the tolerable deflection (δ) of the
beam, the beam’s initial length (l0), the supported load (F), the
loading and support configuration (C1), and the Young’s
modulus (E) of the beam’s material (a measure of a material’s
resistance to elastic deformation) (eq 3).
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Substituting eq 3 into eq 2 relates the environmental lifetime
in terms of the design constraints (eq 4). For more complex
items, numerical methods (e.g., finite element simulations) can
be used to solve eq 2 for determining relationships between
environmental lifetime and material properties, as done for
other MIs.39
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Grouping the terms for material properties expressed in eq 4,
the MI for minimizing the persistence of a beam with a solid
square cross-section is

k E
1

d
1/4 . This MI implies that designing a

beam optimized for environmental lifetime requires consider-
ing a material’s kd and E. While this MI for persistence was
derived with respect to a mechanical constraint, these MIs can
be derived with respect to any design constraint (e.g., thermal,
electrical, etc.).
By using the reported values for kd and E of several plastics,

the materials that yield a functional beam optimized for
environmental persistence can be determined. Functionally
equivalent beams made from polycaprolactone (PCL) and
polyhydroxyalkanoates (PHA) could be the least persistent,
followed by cellulose diacetate (CDA), polyamide (PA), and
polyurethane (PUR) (Figure 1B). Conversely, functionally
equivalent beams made from commodity polyolefins and
several compostable polyesters would be expected to persist
much longer.

Trade-offs between Competing Design Objectives. In
practice, products must satisfy multiple, often competing
design objectives. For the ecodesign of a plastic product,
design objectives must aim to optimize function, cost, and
metrics related to environmental impact and circularity (Table
1).

Comparing Material Indices. To illustrate the trade-offs
between common design objectives (cost and embodied GHG
emissions) and the new objective to minimize environmental
lifetime, we calculated MIs for the beam example presented in
the previous section using literature data for several plastics.
The choice of material had a much greater effect on the
environmental lifetime than on cost or embodied GHG
emissions. The median MIs for cost or embodied GHG
emissions spanned less than 1 order of magnitude. In contrast,
the MI for environmental lifetime spanned nearly three (Figure
1C). While poly(ethylene terephthalate) (PET), polylactic
acid (PLA), and polypropylene (PP) optimized indices for cost
and embodied GHG emissions relatively well, these materials
were poor choices for minimizing environmental lifetime.
Polybutylene adipate terephthalate (PBAT) was one of the
poorest choices for each MI. Comparatively, CDA, PA, PCL,
PHA, and PUR had greater values of the MI for cost (i.e., more
expensive than polyolefins) and variable values of the MI for
embodied GHG emissions (i.e., CDA and PCL were lower and

Table 1. Sustainability Metrics for the Ecodesign of Plastic
Products

theme metric
green design
principles11,a

persistence (this
work)

MI for minimizing environmental
lifetime

GC: 10

form efficiency GE: 1, 7
energy efficiency40 MI for minimizing embodied

energy12
GC: 6
GE: 3, 4, 10

material
efficiency41,42

MI for minimizing mass GE: 4, 8
form efficiency43,44

waste reduction production efficiency11,45 GC: 1
GE: 4

global warming
potential

MI for minimizing embodied GHG
emissions13

GC: 1

LCA metrics11 GE: 2
resource depletion MI for minimizing embodied water

usage45
GE: 4

MI for minimizing embodied land
usage45

LCA metrics11

toxicity46 plastic hazard ranking47 GC: 1, 3, 4, 5
microplastic index48 GE: 1, 2
LCA metrics11

renewable
feedstocks11

fraction of renewable feedstock
used

GC: 7

distance to feedstocks GE: 10, 12
recyclability45 material complexity (e.g., number

of materials)49
GE: 4, 6, 9, 11

form factor (e.g., solid, film,
foam)49

fraction of recycled content in
current supply
recycling efficiency

end-of-life
management

fraction recoverable GE: 3, 6, 11
availability of infrastructure for
circularity

aGC = green chemistry; GE = green engineering.

ACS Sustainable Chemistry & Engineering pubs.acs.org/journal/ascecg Letter

https://doi.org/10.1021/acssuschemeng.3c05534
ACS Sustainable Chem. Eng. 2024, 12, 1185−1194

1187

https://pubs.acs.org/doi/suppl/10.1021/acssuschemeng.3c05534/suppl_file/sc3c05534_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acssuschemeng.3c05534/suppl_file/sc3c05534_si_001.pdf
pubs.acs.org/journal/ascecg?ref=pdf
https://doi.org/10.1021/acssuschemeng.3c05534?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


PA, PHA, and PUR were higher than polyolefins). These same
materials, however, had properties that reduced the MI for
environmental persistence (i.e., shorter lifetimes than poly-
olefins).

Evaluating Value Functions and the Cost of Plastic
Pollution. While MIs are helpful, they cannot express the
trade-offs in economic value between competing design
objectives. To address this, value functions can be used to
systematically weigh the relative value of any given
combination of MIs by forming a compound objective for
optimization.50,51 Value functions are defined by converting
the performance (e.g., mass, energy, and time) to value (e.g.,
monetary value or cost) using exchange constants (e.g., price
per kg). Despite the challenges in determining them, several
exchange constants for environmental impact have been
proposed (Table S10).
To evaluate the trade-offs between persistence and other

design objectives requires creating a value function that
quantifies the cost of a plastic product persisting in the
environment. Because plastic products can persist in the
environment as pollution, their impact is cumulative every year
that they remain. Therefore, we propose that the cost of plastic
pollution (CP), i.e., its value, can be defined as a performance-
exchange constant pair of environmental lifetime and the cost
of plastic pollution per mass of material per year in the
environment. Accordingly, the cost of plastic pollution is
realized as the product of the exchange constant (αL) and the
integrated mass over a product’s environmental lifetime (eq 5),
where m is the instantaneous mass of the product from when it
first entered the environment (t = 0) to when it is wholly
degraded (t = tL).

C f m td
t

t

P L P P 0

L
=

= (5)

For the value of αL we propose using the decline in marine
ecosystem services due to plastic pollution, estimated to be
between $3300 and $33000 per metric ton of marine plastic
per year (2011 $USD)52 as an initial exchange constant for the
cost of plastic pollution. This term underestimates the total
cost of plastic pollution, as it considers only the toll on marine
ecosystems, not the complete biosphere. Presently, society, not
the manufacturer, bears the cost of plastic pollution, requiring
discussions of policies for extended producer responsibility to
acknowledge this cost.
As others have acknowledged that not every item leaks into

the environment,53 we adjusted CP by multiplying it by the
total fraction of plastic leaking into the environment (χP) and
the fraction with which a given type of item would contribute
to the total amount of leaked plastic ( f P).

54,55 Thus, for items
that rarely leak into the environment, their associated value of
f P is small, reducing the cost of plastic pollution. Therefore, the
contribution to the total cost of the item due to its persistence
will be little. In such a situation, the need to address
persistence in the design of such an item will be less compared
with an item that has a much larger value of f P.
For most geometries (those that retain the same

morphology as they degrade), eq 5 can be approximated by
eq 6 where m0 is an item’s initial mass, and n is a dimensionless
’shape factor’ (n is 1 for films, 2 for solid cylinders and beams,
and 3 for spheres) (section S3).

C f
m t

n
( )

1P L P P
0 Li

k
jjj y

{
zzz=

+ (6)

Application to Single-Use Plastics: Disposable Coffee
Cup Lids. Currently, billions of disposable coffee cup lids are
used each year56 and account for ∼5% of plastic debris in
nearshore waters.55 Thus, any economic savings from their
environmental impact can yield significant benefits. In this
section, we use several sustainability metrics (Table 1) and a
multicomponent value function to evaluate which on-the-
market lid material reduces the environmental impact the most
and determine which next-generation plastics are best and thus
warrant adoption (Supporting Information).

Comparing Materials on-the-Market. Today, disposable
coffee cup lids are made from PLA, PP, or PS (Figure 2A);

which material “best” reduces environmental impact, however,
is not obvious. Considering material circularity, each plastic
can be produced using renewable feedstocks and diverted from
a linear end-of-life disposal route. However, the majority of PP
and PS are derived from petroleum sources, and most of these
materials are disposed of in landfills or by incineration.14,57

PLA can be industrially composted, opening up a greater
possibility for circularity, as it is almost exclusively synthesized
using renewable feedstocks. Yet, this is hampered by a lack of
access to and availability of a composting infrastructure.58

Comparing MIs for several environmental impact categories
included in LCAs4,11,59 indicated that of the three materials, PP
was the best. PP minimized MIs for GHG emissions and water
use (Figure 2B). Though abridged, the result is not expected to
change, given that conventional LCA impact categories trend

Figure 2. Selecting materials for disposable coffee cup lids using MIs.
(A) Image of current lids on the market. Logos and other text have
been digitally blurred. (B) Radar plot comparing MIs for mass, cost,
embodied GHG emissions, embodied water usage, and environmental
lifetime of current and potential alternative plastics. Data are
presented as median values. Data used for the calculations are
available in Tables S1−S7. For the derivation of the MI for the
environmental lifetime of a lid, see section S4.
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well with GHG emissions.59,60 Thus, overall, no material was
much better than another when evaluated using current
metrics for ecodesign (Table 1).
Lid design should account for persistence because a

substantial number of these items leak into the environment.55

Of the three materials, PS was optimal for environmental
lifetime (Figure 2B). From a value perspective (Supporting
Information), the sum of the cost of material and the social
cost of CO2 per 1000 lids expressed in 2016 $USD for PP, PS,
and PLA ranged from $9.17 to $10.72 for PP, $11.61 to $16.46
for PS, and $6.99 to $11.60 for PLA (Figures 3A-B). Including
persistence (cost of plastic pollution) could increase these
costs for PLA and PP to over $200 while increasing the cost for
PS to ∼$20 (Figure 3C). Based on the available data and the
proposed metrics, our analyses suggest that PS may be the least
impactful of the three materials on the market for disposable
lids. As noted, this is based on what we know now and is
subject to change.

Identifying Less Impactful Alternatives. Our framework
provides an opportunity not only to compare materials in use
but also to identify less environmentally impactful alternatives.
CDA, PBAT, PBS, and PHA are championed by many as
alternative, more sustainable, degradable plastics for making
consumer products.61−63 Comparing MIs, disposable lids made
of CDA or PHA could provide more than an order of
magnitude better performance for environmental lifetime while
being comparable in other categories (Figure 2B). Addition-
ally, CDA and PHA can be derived from renewable feedstocks
and integrate into a circular economy.61 PBAT and PBS were
worse than the current plastics for nearly all MIs (Figure 2B).
This result underscores the idea that biobased, biodegradable,
or compostable plastics are not a panacea for addressing the
environmental impacts of plastics.64−66 Instead, our results
suggest that a more nuanced understanding is needed, whereby
some biobased plastics are robust alternatives (i.e., CDA and
PHA), and others appear to exacerbate the problem (i.e.,
PBAT and PBS).
Notably, without accounting for persistence, the incentive to

switch to these alternative plastics is weak, given their
increased cost and limited reductions in GHG emissions (if
at all) compared to current plastics (Figures 3A-B). Other
properties captured by green engineering principles, such as
the ease of material recovery, recyclability, and circularity, may
also provide incentives to switch;67−69 however, the broad
implementation of these favorable attributes in ecodesign is
currently hindered by a lack of waste recovery and recycling
infrastructure14,57,70 and global disparities in waste manage-

ment practices.54,71−73 Instead, adopting alternatives could be
incentivized by the inherent value gained by reducing the cost
of plastic pollution (Supporting Information). Savings to the
cost of pollution per 1000 lids from switching to CDA or PHA
compared to current plastics were estimated to range from
$1.48 to $220.14 and −$0.40 to $220.49, respectively (Figure
3C). Given the billions of lids consumed annually,56 these
savings could translate to societal benefits of hundreds of
millions of dollars for this one item, implying even greater
benefits by applying this approach more broadly to the
collection of frequently mismanaged plastic products.
Current Limitations and Research Needs for the

Specific Surface Degradation Rate (kd). Our framework
shows promise for designing more ecocompatible74 plastic
products; however, informed decisions will only be as good as
the data used to make them. While many studies have
investigated degradation, a limited number have reported
information sufficient to calculate kd. Additionally, several
studies were conducted using closed-system bottle incubations,
which can lack environmental relevance because the plastic in
question is used as the sole nutrient source of carbon.75 Results
of these studies often differ substantially from more realistic
mesocosm and field experiments (Table S6). Moreover, the
few reports of kd pale compared to the vast number of plastic
formulations contributing to the large variability within and
across plastic types. For example, in the case of PHAs (Figure
1), values of kd span nearly 2 orders of magnitude.
Consequently, while PHAs could be materials with the least
cost of pollution (Figure 3C), they could also be some of the
more costly choices. In the case of PA, PC, and PUR, only two
to three studies have measured kd for each plastic (Table S6),
making any estimate of their lifetimes and costs of pollution
highly uncertain. Such tremendous variability and uncertainty
pose significant challenges to material selection, making
measurements of kd conducted under environmentally relevant
mesocosm and field conditions a research priority moving
forward.
Moreover, while some studies demonstrate that kd

represents the mineralization of plastic to carbon dioxide,
dissolution to dissolved organic carbon, or assimilation to
biomass,19 many studies present no evidence of complete or
partial transformation.18 This poses challenges in knowing
whether kd represents the chemical degradation (depolymeri-
zation) of the polymer or merely the physical degradation
(disintegration) to microplastics. Future research should
prioritize the relative importance and controls of plastic
degradation processes and products, as well as the environ-

Figure 3. Selecting materials for disposable coffee cup lids using value functions. Comparison of (A) the cost of material, (B) the social cost of
CO2, and (C) the cost of plastic pollution for current and potential alternative plastics. The social cost of CO2 is estimated societal damage due to
anthropogenic CO2 emissions. Materials, methods, and data used for the calculations are available in the Supporting Information and Tables S1−
S7, S11−S12. Data are presented as the minimum and maximum calculated values (Table S13).
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mental impacts (e.g., ecotoxicity) of any degradation products
and leachable compounds released from plastics into the
environment.76,77

Finally, a key challenge is that the molecular and
microstructural features underpinning polymer degradation78

also control many other polymer properties (e.g., Young’s
modulus).79,80 Of the studies reporting data sufficient to
calculate kd, less than half included characterization of any
physical and mechanical properties or provided enough details
to determine them after the fact. Because the environmental
lifetime of an item can depend on kd and other material
properties, making effective material selection decisions will
require reporting comprehensive details of the material’s
properties, along with kd. Moreover, MIs for environmental
persistence identify the material properties, along with kd, that
should be prioritized when designing novel polymers.
The metric we propose for minimizing environmental

lifetime applies to mitigating terrestrial plastic pollution and
waste destined for landfill or composting, although similar data
limitations exist for kd in these environments.

18,81 Moreover, kd
will be a significant parameter for the reliable design of
biodegradable plastic products (e.g., transient electronics82−86

and biomedical devices87−89), in which the end-of-life disposal
is the partial or complete degradation of the item. For these
applications, kd is paramount to the prediction and design of
their useful lifetime in degrading environments.90 Overall, a
greater understanding of the environmental controls (e.g.,
sunlight exposure, temperature, nutrients, microbial commun-
ities) and structure-property-formulation relationships govern-
ing plastic degradation will improve predictions of kd and
resulting estimates of environmental lifetime and cost of
pollution.31

Optimizing the Environmental Degradation of
Plastics by Considering Formulation and Form Factor.
Regardless of any improvement in our waste management
systems, leakage of plastics into the environment is
unavoidable. Addressing the persistence of a product early in
the design stage can alleviate its potential impact due to
accidental leakage by inherently reducing its residence time in
the environment and thus its associated ecological risks.
Nevertheless, it is critical to communicate to consumers that
the design of plastic products for minimal persistence does not
justify their disposal in the environment. By designing plastic
products for minimal environmental persistence, the reduction
in their potential ecological risk changes from being circum-
stantial (i.e., relying on uncertain consumer behavior and
varying waste management systems) to being inherent (i.e.,
addressing the risks posed by improper disposal directly
through product design).29

Plastic products can be designed for environmental
degradation by optimizing their materials and form. Plastics
are polymers modified with organic and inorganic additives,
constituting their formulation.91 Throughout, we have only
considered plastics composed of a single polymer type;
however, evidence shows that polymer blends and copolymers
can synergize or antagonize environmental degradation,
broadening the range of potential kd.

92−94 Various compounds
added to plastics or included in them as nonintentionally
added substances can facilitate or inhibit the environmental
degradation of plastics. For example, antioxidants and
ultraviolet-light stabilizers are added to plastics to limit thermal
degradation during processing and photochemical degradation
during outdoor use.95,96 Because plastics are typically thermally

processed, most plastic products contain antioxidants,97 which
can prolong plastic lifetimes compared to additive-free plastics.
Other additives can intentionally (e.g., pro-oxidants,98 photo-
catalysts,99 enzymes,100 or microbes101) or inadvertently (e.g.,
pigments,77 catalyst residues, and unsaturated bonds26)
enhance degradation. Additionally, the amount of polymer
used to make a product can be reduced by using fillers. While
plastic formulations can be designed to control degradation
rates, their complexity must be balanced with the challenges
that ever more complex and diverse formulations pose to
recycling methods.49 Developing MIs that relate a plastic
product’s function to its recyclability will enable the design of
more circular items. While additives may prove helpful for
reducing environmental lifetimes, their potential harm to
human health and the environment must also be appreciated.46

Moreover, the intrinsic toxicity of plastic will require an MI to
inform design decisions. Ecocompatible plastics must be
formulated from ecocompatible polymers and ecocompatible
additives.
The degradation rate of a plastic product is expected to be

controlled by material and form (i.e., surface area). It should
be standard practice for engineers to use topology optimization
techniques102 and additive manufacturing to design and
fabricate products that maximize surface area and thus
minimize environmental lifetime. Such strategies have already
begun to be applied to some single-use items (e.g., cutlery103)
by redesigning them to remove structurally unnecessary
material. Lattice-filled or foamed structures also achieve this
objective. For example, it was recently demonstrated that a
foamed CDA drinking straw has at least 2-fold lower
persistence in the coastal ocean than its solid counterpart.104

Foamed items may also have added benefits by keeping them
in conditions more favorable to degradation because of their
buoyancy and thus exposure to sunlight. Nonetheless, product
form affects many sustainability metrics (Table 1); thus, design
changes that reduce a product’s environmental lifetime must
be balanced alongside form factors that enable circular designs.
Scientists, engineers, and designers have an opportunity to

intervene in curbing plastic pollution. The metrics (Table 1)
and methods put forth can direct their design decisions and
research priorities toward these ideals. This framework will
continue to improve with further research on the environ-
mental impacts of plastics, particularly through the robust
measurement of plastic degradation under realistic environ-
mental conditions. Ultimately, minimizing the persistence of
mismanaged plastic products will require innovative plastic
formulations and product form factors, along with concerted
effort across the plastic life cycle to mitigate leakage.
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