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Abstract
Radiomics has achieved significant momentum in radiology research and can reveal image information
invisible to radiologists’ eyes. Radiomics first evolved for oncologic imaging. Oncologic applications
(histopathology, tumor grading, gene mutation analysis, patient survival, and treatment response
prediction) of radiomics are widespread. However, it is not limited to oncologic analysis, and any digital
medical images can benefit from radiomics analysis. This article reviews the current literature on radiomics
in non-oncologic, neurological disorders including ischemic strokes, hemorrhagic stroke, cerebral
aneurysms, and demyelinating disorders.
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Introduction And Background
While no new imaging modalities have been invented within the last few decades, technological advances
in image acquisition and analysis have greatly improved the diagnostic utility of radiologic imaging. In
recent times, the emergence of new segmentation software packages (e.g., neural networks) has led to the
rise of quantitative image analysis in radiology [1]. A more sophisticated concept is converting digital
medical images into mineable high-dimensional data, a process known as radiomics [2]. Traditionally,
radiologists use a limited number of imaging features for diagnosis such as lesion size, density, lesion border,
and enhancement. In contrast, radiomics can easily use many more quantitative features to predict and
capture specific medical information. Radiomics relies on identifying potentially non-obvious imaging
“features.” Here, “features” refers to the mathematical characteristics of the image.

Basics of radiomics
Radiomics is the high-throughput extraction of large amounts of quantifiable information from a region of
interest (ROI) in digital medical images [3]. By converting medical images into hundreds or thousands of
quantitative imaging features via data characterization algorithms, radiomics can extract information
invisible to the human eye [4]. The extracted features can then be evaluated to make predictions, and the
most predictive features are selected. Then, predictive models are built on top of these selected features to
make predictive decisions regarding various medical conditions.

A radiomics pipeline starts with image processing. In image processing, different medical images from
various centers and vendors are normalized and harmonized to neutralize the effect of different scanners
and reconstruction techniques. After normalization of the images, the area of interest (lesions) is
segmented. For segmentation, two-dimensional or three-dimensional images can be used; moreover,
segmentation can be manual (done by an expert radiologist), semi-automated, or fully automated. The
segmented area is then analyzed using a computational method, and hundreds and thousands of different
quantitative features are extracted from the segmented regions. These quantitative features are essentially
the mathematical relationship between different pixels and voxels of the segmented area. The most
commonly used radiomics features are intensity (histogram) features, shape features, and texture features
[5]. In addition, different types of filters (wavelet and Gaussian filters) can be applied to the images before
feature extraction, which can multiply the number of extracted features many times. The extracted features
are then used to train different machine learning models for different predictions such as tumor grade,
histopathologic diagnosis, gene mutations, treatment response, patient survival, complications, and many
more clinically relevant outcomes [6]. However, using hundreds and thousands of features to train the
predictive learning models is not ideal. It is well-known that if a predictive model is trained with “too many”
features, the subsequent trained model will work well on the training dataset but poorly in the real world
(also referred to as overfitting in machine learning). To avoid this challenge, only the most predictive
features must be utilized for model training, and the rest of them should be discarded. This act is referred to
as “feature selection.” There are many different approaches to finding the most predictive features, and most
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of them are mathematical-based platforms. In radiomics, one of the most commonly used feature selection
techniques is the least absolute shrinkage and selection operator (LASSO) [6].

Different machine learning models (neural networks, random forest, decision trees, support vector machine
[SVM], etc.) are then trained to utilize the selected features to predict one element of a specific clinical
question. Each trained model is then tested either on a test dataset, or an external dataset, or via cross-
validation. Performance of models is usually reported by accuracy, sensitivity, specificity, and area under
the curve (AUC). AUC is a standard metric for performance measurement, especially implemented to test the
performance of various machine learning approaches. AUC ranges from 0 to 1, with values closer to 1
suggesting a better predictive model. The most robust predictive model is then reported. It is very common
to summate different models to create a higher-performing model (ensemble techniques) [7]. A flowchart
depicting the various steps of the radiomics pipeline has been summarized in Figure 1.

FIGURE 1: The radiomics pipeline.
MRI: magnetic resonance imaging; CT: computed tomography; PET: positron emission tomography; SPECT:
single-photon emission computed tomography; MS: multiple sclerosis; NMOSD: neuromyelitis optica spectrum
disorder

Review
Applications in neurological disorders
The first applications of radiomics in imaging were in the field of oncology. This was also due to the support
from various genomic projects and abundant biomolecular research data, which motivated researchers to
devote their efforts to oncologic applications [8]. So far, the most common application of radiomics
regarding oncologic imaging is the prediction of histopathology, tumor grading, genetic mutations,
prediction of treatment response, the chance of recurrence, and patient survival. However, the application of
radiomics is not limited to oncologic imaging and can essentially be extended to any clinical condition [5-7].
Taking inspiration from successes in the field of oncologic imaging, researchers have started to apply these
techniques in non-oncologic diseases. The non-oncologic applications of radiomics in neurology are now
emerging. The most common neurologic conditions (ischemic strokes, hemorrhagic stroke, cerebral
aneurysms, and demyelinating disorders) are the most evaluated neurologic diseases by radiomics.

In this paper, we review the most common applications of radiomics in the field of neurology. After a
comprehensive search within the PubMed database, the related published studies in English were selected.
After reviewing the articles, only studies with a complete radiomics pipeline (clear information about the
patient population, segmentation techniques, radiomics software, number of total features, feature
selection model, number of selected features, machine learning models, and model performance) were
selected for this review. Applications regarding cerebral infarction and hemorrhage, cerebral aneurysms, and
demyelination disorders are included. Radiomic applications for neurodegenerative and psychiatric disorders
are beyond the scope of this review.

Ischemic stroke
Stroke is the leading cause of disability and the fifth most common cause of death in the United States, with
the majority (80%) of cases attributed to an ischemic etiology. Detection of ischemic stroke in the early
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hyperacute (0-6 hours) and late hyperacute stage (6-24 hours) is critical in the selection of patients for
intravenous or mechanical thrombectomy [9]. Predicting the outcome of the intervention, including accurate
identification of the Alberta Stroke Program Early CT Score (ASPECTS), penumbra tissue, successful
revascularization, and risk of hemorrhagic transformation after treatment, are crucial in the long-term
outcome and prognosis [10,11].

Infarction Detection

Time is a critical factor for stroke management. Early intravenous (IV) tissue plasminogen activator injection
and/or thrombectomy are required to prevent cell death. Comprehensive stroke programs expedite the
timely transportation of the patient from the Emergency Department (ED) to the computed tomography (CT)
scanner. Patients with stroke symptoms undergo brain CT as per the modern stroke guidelines. Brain CT
during this hyperacute phase usually has no appreciable finding for radiologists. However, preliminary
studies have indicated that the difference between the normal and infarcted brain tissue can be detected by
radiomics techniques and texture analysis [12]. In another study on 139 non-contrast brain CT scans of
hyperacute brain infarction (within eight hours of infarction), texture analysis differentiated between
normal and infarcted brain tissue with an AUC of 0.82. Interestingly, radiomics for hyperacute infarct was
not time-dependent, and performance in two hours after symptom onset was the same as eight hours after
symptom onset. Further, radiomics performance did not depend on the infarction size [13].

Thrombosis Characterization

Appropriate selection of patients for mechanical thrombectomy is a major clinical dilemma, especially in
patients presenting six hours after symptom onset and in cases presenting with wake-up stroke when the
time of symptom onset cannot be ascertained. Recent stroke trials have shown increased indications to offer
mechanical thrombectomy to these patients. In this context, the RAPID automated CT perfusion platform
(iSchemaView, Inc., Menlo Park, CA, USA) is widely used and helps physicians design the treatment plan by
providing a relatively accurate estimation of the volume of infarction and ischemic penumbra, especially for
patients presenting late [14]. Radiomics may play a role in patient selection for ischemic stroke treatment.
The composition of intraluminal thrombus is an active area of scientific research as it can have a direct
bearing on the first-attempt recanalization and the number of passages required for a successful
recanalization (thrombolysis in cerebral infarction [TICI] grading system of 2c and 3 on cerebral
angiography). It has been shown that segmentation of the vascular thrombosis on non-contrast brain CT
with subsequent feature extraction and feature selection can predict the difficulty of the endovascular and
thrombolytic treatment in patients with ischemic stroke. In a previous study, nine features extracted from
the intraluminal thrombus were predictive of the successful recanalization with an AUC of 0.88 [15]. In
another study, internal carotid artery/M1 thromboses in 67 patients were analyzed using radiomics. A total
of 326 features were extracted from thrombosis on both non-contrast CT and CT angiography (CTA). SVM,
built on top of the most predictive features, achieved an AUC of 0.85 to predict recanalization after IV
alteplase treatment [16].

Identification of High-Risk Carotid Plaque

It is well-known that not all carotid atherosclerotic plaques causing less than 50% stenosis are associated
with an increased risk of brain infarction. Traditionally, the presence of intraplaque bleeding and lipid-rich
necrotic core are considered indicators of unstable plaques. In one study, radiomics was used to extract
multiple features from the carotid plaques on T1, T2, and magnetic resonance angiography (MRA) (time of
flight). The most predictive features were selected by LASSO and used to predict the symptomatic
atherosclerotic plaques in carotids. In the study, traditional techniques utilized by radiologists had an AUC
of 0.80, while the radiomics approach achieved an AUC of 0.98 for this task [17].

Prediction of Malignant Middle Cerebral Artery Infarction

Malignant middle cerebral artery (MCA) infarction is one of the most severe complications of cerebral
infarction. It presents with rapid deterioration of neurologic status after large MCA infarction, mainly
because of severe edema and mass effect with an associated mortality of approximately 80% without
appropriate treatment. At this time, there is no accurate technique to predict this catastrophic complication
in advance. In one study, radiomics was used on non-contrast brain CT scans within 24 hours after initial
symptoms. The selected features could predict a malignant MCA infarction with an AUC of 0.91 [18].

Intracranial hemorrhage
Intracranial hemorrhage (ICH) is the second most common type of stroke, with a fatality rate of
approximately 40% at one month and 54% at one year after bleeding. Only 12-39% of patients with ICH can
achieve long-term functional independence [19]. The standard diagnostic technique for the detection of ICH
is the non-contrast head CT. Differentiation between expansile versus non-expansile ICHs is crucial for
patient management and decompressive craniotomy. Prediction of the early expansion of intraparenchymal
hemorrhage on traditional imaging remains a challenge at this time. Radiomics has been used for this task
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using logistic regression models. Early promising results have shown that radiomics-based models can be
more accurate than the current clinical-radiologic models. Adding new radiomics features to the clinical-
radiologic models can improve the accuracy for predicting the chance of early expansion for each
intraparenchymal hemorrhage on non-contrast CT [20]. Another similar study was performed involving over
1,153 patients with ICHs to predict hematoma expansion between the initial presenting head CT (within the
first six hours of the admission) and the follow-up CT (performed after 72 hours). Three different prediction
models were developed using the clinical and radiomics features (clinical model, radiomics model, and a
hybrid model). The final assessment demonstrated that the hybrid model outperformed the other prediction
models with an AUC of 0.820 [21]. Similar promising results have been reported for the radiomics technique
in predicting the expansion of the hypertensive ICHs. In this pure radiomics analysis, a total of 576 features
were extracted from the hypertensive ICHs on non-contrast CT. The subsequent LASSO model selected five
features to be significantly associated with future expansion. The final model differentiated non-expansile
from expansile hematoma with the sensitivity, specificity, and accuracy of 0.808, 0.835, and 0.820,
respectively, on the test cohort [22]. In another similar study, the radiologist-based prediction model did a
fair job in differentiating non-expansile from expansile parenchymal hematomas on non-contrast CT. The
radiologist-based prediction model used the classical features for brain hematoma, including
location, shape, density, hypodensities within hematoma, swirl sign, blend sign, black hole sign, and island
sign with an AUC of 0.81. On the other hand, the radiomics pipeline developed with 1,942 extracted features,
subsequent feature selection by the LASSO model, and logistic regression prediction had a higher AUC of
0.89 [23]. The ability of radiomics to predict hematoma expansion was evaluated in the other study
involving 167 patients; 1,227 texture features were extracted from parenchymal hemorrhages on non-
contrast CT. After feature selection, four features were found to be significantly associated with expansile
parenchymal hematoma. A total of 23 different machine learning models were developed from these selected
features. The best performance was with the linear support vector classifier with an AUC and accuracy of
72% [24].

Radiomics analysis has also been used to evaluate small intraparenchymal hemorrhages (less than 10 ccs).
Adding the radiomics-extracted features from non-contrast CT to clinical features has significantly
improved the model’s accuracy to predict poor outcomes in patients with small intraparenchymal
hemorrhages with an AUC of 0.95 [25]. In another study, 129 patients from two different institutions with
ICH were evaluated. The initial hematoma was manually segmented on non-contrast CT, and radiomics
features were extracted from the segmented hematomas. The most important extracted features were
selected using the LASSO model. Four radiomics features were found to be the most useful to predict
expansile hematomas. Adding the selected features to the presence or absence of satellite lesion around a
hematoma improved the performance of the logistic regression model to predict expansile hematomas with
an AUC of 0.85, a sensitivity of 95%, and a specificity of 76% on the external validation cohort [26].

Neoplastic Versus Non-neoplastic Intracranial Hemorrhages

Differentiating between neoplastic and non-neoplastic brain parenchymal hemorrhages (e.g., hypertensive
hemorrhage) is challenging in conventional radiology, especially on non-contrast head CT. In one study, the
parenchymal hemorrhage and associated edema were segmented on non-contrast CT for radiomics
evaluation. After feature extraction and feature selection, 100 most predictive radiologic features were
selected to train random forest models. The subsequent trained model differentiated neoplastic and non-
neoplastic intraparenchymal hemorrhages with an AUC of 0.89 using head CT images, significantly
outperforming two radiologists [27].

Intracranial aneurysm
Intracranial aneurysms are frequently found in patients undergoing brain imaging for unrelated indications
such as stroke, multiple sclerosis, headache. These aneurysms can have an inherent risk of rupturing,
resulting in life-threatening subarachnoid hemorrhages and even death. These are typically followed by
serial MRA or CTA to assess for interval change in size. Aneurysms vary in size and morphology and have a
variable risk of rupture depending on multiple factors that are invisible to radiologists’ eyes [28]. Radiomics
may have an application in the prediction of the chances of future rupture of these aneurysms. In one study
on brain CTA, comparing the predictive models based on the morphology of aneurysm (radiologist
diagnosis), models based on the morphology of aneurysm plus the “shape” radiomics features, and
predictive models based on only multiple radiomics features, the last predictive model based on various
radiomics features was significantly better than other models for prediction of aneurysm rupture with an
AUC of 0.87 [29]. In one study on 719 aneurysms, 12 morphologic features were extracted from three-
dimensional-digital subtraction angiography (3D-DSA) angiogram. The LASSO regression demonstrated that
“flatness” is the most crucial predictive feature for aneurysm stability. The subsequent model based on the
radiomics morphology and clinical feature predicted the aneurysm stability with an AUC of 0.85 [30]. As is
evident, only morphologic radiomics features (a subset of radiomics features) were used to predict aneurysm
stability. There are no data about the other types of radiomics features (e.g., texture analysis). Not all studies
are promising; in one study on 3D-DSA, the radiomics morphology features (extracted by Pyradiomic) were
inferior to traditional morphology analysis (done by MatLab software) for predicting aneurysm stability [31].
In the future, radiomics analysis of aneurysms may help physicians design a better follow-up strategy and
reduce the patients’ radiation dose.
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Demyelination
Inflammatory demyelinating disorders are a heterogeneous group of conditions characterized by acute or
chronic inflammation involving the myelin, followed by reactive astrogliosis. There are different subtypes of
demyelination such as multiple sclerosis (MS), neuromyelitis optica spectrum disorders (NMOSD), Marburg-
type MS, concentric sclerosis of Balo, and acute disseminated encephalomyelitis [32].

Differentiating NMOSD and MS remains challenging in the clinic as well as on neuroimaging. Radiomics
techniques have been implemented on T2-weighted sequences for this task. After extraction of 273 features,
the LASSO-based logistic regression model selected 11 characteristic features with significant predictive
capability. The final model based on these features and five clinical features (age, gender, antibodies to
aquaporin-4, oligoclonal band, and spinal lesions) could differentiate NMOSD from MS with an AUC of 0.93
[33]. In another study, 485 radiomics features were extracted from spinal cord lesions. From the extracted
features, nine were significantly different in MS and NMOSD. The final model, based on the nine extracted
features, the size of the lesion, patients’ age, and expanded disability status scale, was able to differentiate
multiple sclerosis from NMOSD with an AUC of 71.95 [34]. Radiomics has been used for the prediction of
visual accuracy and outcomes in patients with optic neuritis. Seven radiomics features have been reported
to be useful for predicting the patients’ visual accuracy and prognosis with the first episode of optic neuritis
[35]. Estimating the age of removing plaques is also important in managing patients with demyelination and
evaluating treatment response. Radiomics have been used for this task, and the features have been extracted
from the T1, T2, fluid-attenuated inversion recovery, post-contrast T1, and quantitative susceptibility
mapping sequences. The subsequent random forest models were able to estimate the age of the plaques with
a median absolute error of 5.98 months [36].

Limitations
The common non-oncologic neurologic disorders studied by radiomics are summarized in Table 1. As shown
in Table 1, the performance of radiomics analysis is promising in many different neurologic conditions.
However, there are significant limitations as well as most of the publications are retrospective and based on
small datasets from single medical centers. Moreover, there is significant heterogeneity in the radiomics
pipeline design. There is no agreement regarding the radiomics software, the number of extracted features,
the number of selected features, and the machine learning models. In addition, trained models are often not
accessible to other researchers and many times not reproducible by other investigators. Such models end in
publications and get cited, but unfortunately, have been unable to reach clinical implementation yet.

Reference

number
Target Imaging

Number of

patients

Extracted

features

Selected

features

Software

for feature

extraction

Software for

feature

selection

AI model Findings Limitations

[13]

Detection of

hyperacute infarction

on non-contrast CT

NCCT 139 10 6
Run-length

matrix
NA

SVM, DT,

AdaBoost

AUC of 0.82 for the detection of hyperacute

infarct. No difference between two and eight

hours from symptom onset. The performance of

the classifiers did not depend on the size of the

infarction

No external validation group and

the study considered the

contralateral hemisphere as

normal

[15]

Prediction of

successful

thrombectomy by

radiomics analysis of

thrombosis

NCCT

109 patients:

retrospective

training; 47

patients:

prospective

validation

1,485 9 Pyradiomics

Univariate

feature

selection

SVM

AUC of 0.88 to predict the successful first

passage. AUC of 0.76 to predict the number of

passages required for successful recanalization

Single-center study, the target

was radiologic recanalization and

not patients’ prognosis; manual

segmentation

[16]

Prediction of

recanalization after IV

alteplase treatment

from radiomics

analysis of

thrombosis

NCCT

and CTA
67 326 38 MatLab

Linear

discriminative

analysis

SVM

AUC of 0.85 for prediction of recanalization after

IV alteplase treatment using a combination of

radiomics features of NCCT and CTA. The

performance of radiomics was superior to

traditional analysis of thrombosis (thrombosis

length, thrombosis volume, etc.)

Small dataset. The results were

reported by cross-validation, and

there was no external validation

cohort; manual segmentation

[17]

Detection of high-risk

carotid

atherosclerosis

T1, T2,

T1+C,

dynamic

contrast-

enhanced

162 788 33 ITK-SNAP LASSO LASSO

AUC of 0.989 in the training cohort and 0.986 in

the test cohort for detection of high-risk plaques.

Radiomics model and radiomics+ traditional

model were better than traditional (human-

based) model alone

Small dataset. No external

validation. Manual segmentation.

Radiomics analysis was based on

single axial (2D) images at the

largest plaque area, and 3D

analysis was not performed

[18]

Prediction of

malignant acute

middle cerebral artery

NCCT

CTA

Train: 87 Test:

39
396 8

Artificial

intelligence LASSO

Multivariate

logistic
AUC of 0.91 on test group to predict malignant

infarcts

Retrospective. No clinical data

were used. No external validation
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infarction
kit regression dataset

[20]
Prediction of the

hematoma expansion
NCCT

Train: 182

Validation: 79
322 9

Artificial

intelligence

kit

LASSO +

regression

Multivariate

logistic

regression

AUC of the clinical-radiologic model of 0.766.

AUC of radiomics model for validation cohorts of

0.850. AUC of radiomics + radiologic model in

validation cohorts of 0.867

Single-center retrospective study.

No clinical data, just radiomics

from hematoma. No external

validation dataset

[21]
Prediction of the

hematoma expansion
NCCT

Train: 864

Test: 389
396 3

Artificial

intelligence

kit

LASSO
Logistic

regression

The radiomics model was better than the

human-based model. Radiomics + human-

based model was superior to each of model

individually

Retrospective single-center

study. No external validation

[22]
Prediction of the

hematoma expansion
NCCT

Train: 149

Test: 105
576 5 Pyradiomics LASSO

Regression

analysis

Accuracy of 82% in the test group to

differentiate expansible versus non-expansible

hematomas

Single-center retrospective study.

No external validation dataset

[23]
Prediction of the

hematoma expansion
NCCT

Train: 177

Test: 74
1942 22 MatLab LASSO

Univariate

analysis and

multivariable

logistic

analyses

Better performance of the radiomics model in

comparison to the radiologist-based model

Single-center study. Only

supratentorial hematomas were

included. Retrospective study. No

external validation. No clinical

data were used. Manual

segmentation

[24]
Prediction of

hematoma expansion
NCCT 167 1,227 4 MatLab

Pearson

correlation

23 different

ML models

Best performance by linear SVM: accuracy of

72.6%

Single-center retrospective study.

Radiomics was done on 2D

images. Manual segmentation

[25]
Prediction of

hematoma expansion
NCCT  313 396 58

Artificial

intelligence

kit

LASSO

Multivariate

logistic

regression

Addition of radiomics to clinical factors

significantly improved the prediction of

hematoma expansion

Single-center retrospective study.

Only small hematomas <10 ccs

were included. No external

validation dataset

[26]
Prediction of

hematoma expansion
NCCT

Train: 68

External

validation: 61

396 4

Artificial

intelligence

kit

ANOVA-

Kruskal-

Wallis test

and LASSO

Multivariate

logistic

regression

AUC of 0.85 in external validation. (This number

appear realistic because it was tested on an

external dataset of another medical center)

Retrospective study

[27]

Differentiation

between neoplastic

and non-neoplastic

hematoma

NCCT 77 2,713 100 Pyradiomics
Gini impurity

measures

Random

forest

Radiomics and machine learning yielded equal

or superior performance in comparison to

radiologists

Small dataset. Single-center

retrospective study

[29]
Prediction of

aneurysm rupture
CTA 122 107 89 Pyradiomics LASSO

Multivariate

analysis

The radiomics model was better than the

traditional (morphologic) model. The

combination was better than each model

individually

Small dataset. Retrospective

single-center study. No clinical

data were built to build the

models. Aneurysms were

followed for only 2 years

[30]
Prediction of

aneurysm rupture
3D-DSA

420

(aneurysms)
12 4 Pyradiomics LASSO

General

linear, ridge,

and LASSO

AUC of 0.85 to predict aneurysm rupture. No

difference between the different models

Retrospective single-center

study. Only aneurysm between 4

to 8 mm included. Most of the

aneurysms ruptured

[31]
Prediction of

aneurysm rupture
3D-DSA 353 aneurysms 13 13 Pyradiomics NA

Univariate

analysis

Traditional models were better than radiomics-

based models
Retrospective single-center study

[33]

Differentiation

between MS and

NMOSD

T2 (3 T)
NMOSD: 77

MS: 73
273 11

Not

mentioned
LASSO

Multivariable

analysis

Model based on selected radiomics features + 5

clinical features: AUC of 0.93 to differentiate

between MS and NMOD

Only T2 sequences. Optic nerves

were not evaluated. Only 2D

images were used

[34]

Differentiation

between MS and

NMOSD

T2
MS: 67

NMOSD: 68
485 9

Not

mentioned
LASSO

Multivariable

logistic

regression

analysis

The model was built on radiomics + clinical

features: AUC of 0.88 in the training dataset.

AUC of 0.71 for the prospective validation group

Only T2 images of the cord were

used. Cross-sectional study and

no follow-up was performed.

Single-center study

[35]

Prediction of visual

function on the first

episode of optic

neuritis

STIR and

T1 fat

sat+C

25 91 7 Pyradiomics LASSO

Multivariate

logistic

regression

Radiomics may predict the visual outcome in

optic neuritis
Small dataset

T1, T2,
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[36]

Estimation of the age

of demyelination

plaques

FLAIR,

T1+C,

QSM

32 44 NA
RIA R

package
NA

Random

forest

Estimation of plaque age with a median

absolute error of 5.98 months

Different MR scanners. Small

dataset

TABLE 1: Non-oncologic radiomics applications in neurology disorders.
AI: artificial intelligence; NCCT: non-contrast computed tomography; NA: not applicable; SVM: support vector machines; DT: decision trees; AUC: area
under the curve; IV: intravenous; CTA: computed tomography angiography; LASSO: least absolute shrinkage and selection operator; 2D: two-dimensional;
3D: three-dimensional; ANOVA: analysis of variance; DSA: digital subtraction angiography; MS: multiple sclerosis; NMOSD: Neuromyelitis optica
spectrum disorder; STIR: short tau inversion recovery; QSM: quantitative susceptibility mapping; FLAIR: fluid-attenuated inversion recovery; RIA:
radiomics image analysis

Conclusions
Radiomics is an emerging research field in radiology based on the extraction of image information beyond
obvious visible information. Although oncologic imaging is the most widely studied field, preliminary results
regarding the applications of radiomics in non-oncologic neurological disorders are promising. Based on our
current knowledge, radiomics solutions have been used for infarct detection on non-contrast brain CT,
thrombosis characterization on CTA, identification of high-risk carotid plaque on MRI, prediction of
malignant MCA infarction on CT, prediction of early expansion for cerebral hemorrhage on CT,
differentiation of neoplastic versus non-neoplastic cerebral hemorrhages on CT, prediction of cerebral
aneurysmal rupture on CTA, and characterization of demyelination lesions on MRI with acceptable
performance. However, this field is still in its infancy and many challenges must be resolved before
widespread clinical application. The main challenges are the lack of a uniform approach in radiomics
pipeline design, small datasets, lack of external validation datasets, and the inability of investigators to
reproduce published work in diverse research and clinical environments. Further randomized controlled
studies are needed before widespread clinical applications of radiomics in neurological disorders.
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