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Therapeutic Advances in 
Drug Safety

Introduction
Artificial intelligence (AI) is receiving increasing 
attention from major pharmaceutical and bio-
technology companies worldwide as an engine 
for new drug development. With three main 

elements: vast datasets, complex mathematical 
models, and advanced computational algo-
rithms, AI is a breakthrough in drug discovery 
and development, bringing new power to the 
R&D (research and development) of new drugs. 

Artificial intelligence in drug development: 
reshaping the therapeutic landscape
Sarfaraz K. Niazi  and Zamara Mariam

Abstract:  Artificial intelligence (AI) is transforming medication research and development, 
giving clinicians new treatment options. Over the past 30 years, machine learning, deep learning, 
and neural networks have revolutionized drug design, target identification, and clinical trial 
predictions. AI has boosted pharmaceutical R&D (research and development) by identifying new 
therapeutic targets, improving chemical designs, and predicting complicated protein structures. 
Furthermore, generative AI is accelerating the development and re-engineering of medicinal 
molecules to cater to both common and rare diseases. Although, to date, no AI-generated 
medicinal drug has been FDA-approved, HLX-0201 for fragile X syndrome and new molecules 
for idiopathic pulmonary fibrosis have entered clinical trials. However, AI models are generally 
considered “black boxes,” making their conclusions challenging to understand and limiting the 
potential due to a lack of model transparency and algorithmic bias. Despite these obstacles, 
AI-driven drug discovery has substantially reduced development times and costs, expediting the 
process and financial risks of bringing new medicines to market. In the future, AI is expected 
to continue to impact pharmaceutical innovation positively, making life-saving drug discoveries 
faster, more efficient, and more widespread.

Plain language summary
Artificial intelligence in drug development: reshaping the therapeutic landscape

The pharmaceutical industry has enormous and growing amounts of data, and in terms of 
models, the best AI pharma model is not to build pure AI processes. Combining humans 
and AI is often superior to human processes or AI processes alone. Just as in chess, the 
combination of a human and a computer algorithm can usually beat a human or a computer 
algorithm alone. AI technology methods need to be sorted out and developed. AI’s attention, 
exploration, and application trials in all sectors of society will inevitably accelerate the 
maturation and innovation of AI technology methods. When the logic of the “large data → 
more accurate models → better drugs → more and better data” cycle matures in practice, 
AI pharma will be significantly accelerated. However, the application and diffusion of any 
technology are challenging to achieve overnight, and it is the law of development that new 
things spiral and move in waves. AI and data-driven pharma models need to be explored 
and practiced more and more before they can truly demonstrate their value.
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Approximately 80% of pharmaceutical and life 
sciences researchers use AI to accelerate or sup-
port their drug discovery efforts.1 Traditional 
R&D for new medicines faces many pain points, 
such as a long cycle, high cost, high failure rate, 
and low return on investment. AI can potentially 
improve the efficiency of the new drug develop-
ment process and the accuracy of predicting 
drug efficacy and safety, thus increasing the suc-
cess rate of the drug development pipeline, 
reducing costs, and shortening the development 
cycle. AI can provide significant time and cost 
savings over traditional methods in compound 
screening and synthesis and substantial savings 
in clinical trial fees and costs during the clinical 
research phase. However, there is still some 
shortsightedness in the application of AI in drug 
development, such as uneven distribution of 
data, federated learning not yet widespread, the 
protection mechanism of algorithm property 
rights not being refined, and so on. The continu-
ous attention, exploration, and application 
attempts of pharmaceutical enterprises for AI 
are bound to accelerate the maturity and innova-
tion of AI pharmaceuticals, which will eventually 
significantly accelerate.

The history of the development of AI drugs
At the Dartmouth Conference in 1956, computer 
scientists proposed a new type of computer for 
intelligence, giving birth to the concept of AI, 
which refers to the intelligence manifested by 
machines made by humans and is a new technical 
science that studies and develops theories, meth-
ods, technologies, and applied systems to simu-
late, extend, and augment human intelligence.1–3 
AI has been developed for over 60 years and has 
successfully moved from theoretical technology 
to industrial application, leading the way in indus-
try, agriculture, healthcare, finance, etc.4 AI tech-
nology has been developed in autonomous 
driving, voice recognition, web search, and medi-
cal diagnosis.3 Its ability to perform specific tasks, 
such as language translation and face recognition, 
is comparable to or better than that of humans. 
As a result, it has been commented that “no field 
is immune to the charms and sweep of AI.” In 
March 2016, the Al program Alpha Go’s win over 
the famous South Korean chess player Lee Sedol 
was a landmark event in the history of AI devel-
opment. It caused widespread discussion in 
society.3

AI has been used in the pharmaceutical field for 
about 30 years. Since the late 1990s, the underly-
ing algorithmic logic of AI has continued to 
develop and evolve, experiencing ups and downs 
(Figure 1).3 From neural networks to deep neural 
networks, from machine learning to deep machine 
learning, continuous optimization iterations of 
algorithms and accumulation of data have con-
tributed to the development of the entire AI field.5 
From 2001 to the present, the joint development 
of algorithms, computing power, and data during 
this period has driven the continuous develop-
ment of AI pharmaceuticals. Based on different 
strategies, AI algorithms have enabled different 
areas of drug discovery, including target discov-
ery, new uses of old drugs, compound screening, 
molecular design and optimization, protein-pro-
tein interactions, crystal shape prediction, dosage 
form design, ADMET (Absorption, Distribution, 
Metabolism, Excretion, and Toxicity) prediction, 
preclinical trial outcome prediction, clinical trial 
design assistance, patient recruitment, grouping, 
and many other areas of drug discovery.3

Since 2018, the development of AI pharma has 
made the leap from “0” to “1”—the break-
through from technical concepts to practical 
application (Figure 2). In the pharmaceutical 
sector, no AI-enabled drugs have yet been 
approved for marketing by the FDA (Food and 
Drug Administration). Still, some AI-enabled 
pharmaceutical companies have been able to 
accelerate their Phase I and II clinical drug can-
didates through AI-enabled approaches.3 Dozens 
of AI-enabled drug development pipelines are 
entering the clinical phase globally. In 2017, 
reported on research using deep learning (DL) to 
design drugs for reverse synthetic routes, a break-
through hailed as the birth of AlphaGo in chem-
istry.5 Since then, many industrial companies 
have made significant breakthroughs in 
AI-enabled pharmaceuticals. In 2021, Heal-X 
used AI to find new uses for old drugs, that is, 
HLX-0201 for fragile X syndrome, advancing 
the project to Phase II clinical trials within 
18 months.5 In 2019, Deep Genomics used its 
AI-powered platform to complete novel target 
discovery and oligonucleotide candidate screen-
ing for Wilson’s disease in 18 months.7 Insilico 
Medicine applied GENTRL, a generative adver-
sarial network neurotechnology-based approach, 
to complete an AI drug discovery challenge in 
21 days, starting with data collection to build a 
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Figure 1.  AI for the pharmaceutical industry.
Image source: Hennig and Hennig.6

Figure 2.  An overview of artificial intelligence, machine learning, and deep learning.
Image source: Label Your Data.9
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model to design new molecules, generating the 
design of a highly active DDR1 (Discoidin 
Domain Receptor 1) kinase inhibitor.8 Although 
the identified compounds exhibit satisfactory 
microsomal stability and pharmacokinetic prop-
erties, further refinement may be necessary to 
enhance their selectivity, specificity, and other 
medicinal chemistry characteristics.

DeepMind’s AlphaFold 3 completes a major 
50-year biological challenge to predict the 3D 
structure of proteins.8 In March 2024, InSys 
Intelligence’s fully AI-generated drug for idio-
pathic pulmonary fibrosis (IPF) enters Phase IIa. 
This is a first-in-class drug with a new backbone 
compound generated by Chemistry42 (https://
pharma.ai/chemistry42). Currently, the AI soft-
ware PandaOmics is discovering new targets for 
IPF indications. The successful entry of this drug 
candidate into the clinic demonstrates the power 
of AI-enabled innovative drug development.3 At 
the same time, it is essential to recognize that 
analysis conducted using several AI-based meth-
ods can be misleading due to overlap between the 
testing and training sets, biases in the data sets, or 
results not being analyzed from a chemical per-
spective. These biases lead to apparently high 
accuracy, but the general usability of these analy-
ses in prospective research is poor. Undoubtedly, 
the application of AI in predicting and screening 
new therapeutic targets and drugs represents an 
up-and-coming emerging research area.5 Over 
the years, there has been a consistent assertion 
that AI is poised to become a critical tool in expe-
diting drug discovery, development, and testing, 
thereby serving as a fundamental means to reduce 
research and testing timelines.

A large number of drugs are under development 
based on the AI-driven discovery: acute agitation5; 
acute myelogenous leukemia5; acute-graft-versus-
host disease5; adjuvant melanoma3; advanced or 
metastatic solid tumors8; alopecia10; Alzheimer’s 
disease11; amyotrophic lateral sclerosis3; atopic 
dermatitis3; Bronchiolitis obliterans syndrome 
(BOS), pulmonary sarcoidosis3; breast cancer5; 
cerebral cavernous12; CMT1A8; COVID-198; 
Crohn’s disease7; familial adenomatous  
polyposis3; familial amyloid polyneuropathy3; 
FGFR25; fragile X syndrome13; glioblastoma3; 
Huntington chorea13; IPF3,12; lung adenocarci-
noma3; major depressive disorder, anhedonia3; 
malformation; Metastatic Castration-Resistant 
Prostate Cancer (mCRPC)8; metastatic 

castration-resistant prostate cancer3; metastatic 
colorectal cancer7; metastatic melanoma3; neu-
rofibromatosis type 28; oncology3; orexin-15; phe-
nylketonuria3; PI3Kα14; platinum-resistant 
ovarian cancer3; psoriatic arthritis7; sarcopenia15; 
SHP210; solid tumor3; ulcerative colitis.12

AI, machine learning, and deep learning
In the CASP14 competition 2020, DeepMind’s 
AlphaFold2 announced a groundbreaking break-
through in protein structure prediction with a 
score well ahead of second place.7 Due to the 
overwhelming media coverage, they used the 
terms Al, machine learning, or deep learning to 
describe this technology.3 Al includes machine/
computer vision and natural language processing 
(NLP) agents that can perceive the environment 
and then react to it to obtain a specific goal. The 
basic idea is to “train” machines using algorithms 
and data so that they learn how to perform tasks to 
make inferences or predictions about how things 
will turn out. The industry tends to use two differ-
ent groupings to illustrate the concept of machine 
learning, either by grouping algorithms according 
to learning scenarios or by grouping algorithms 
according to their form or function.5 Deep learn-
ing is an advanced type of machine learning. DL 
methods are combinatorial non-linear models that 
automatically learn compelling features at multi-
ple levels from high-dimensional, high-complexity 
raw data.3 The term “depth” refers to the number 
of layers in the network; the more layers there are, 
the deeper the network. In its structure, modules 
at each level transform their input into higher-
level, more abstract representations.16 DL models 
can be considered end-to-end learning, where the 
learning process is not divided into modules or 
stages but is simply given training data in the form 
of “input-output” pairs that can be connected 
end-to-end to optimize the task.12 The goal is to 
avoid the propagation of errors caused by tradi-
tional machine learning methods.8

The data quality and algorithms implemented are 
crucial for AI pharmaceutical R&D enterprises. 
Currently, the limited volume of data for promi-
nent molecule drugs is an essential constraint for 
AI pharmaceutical technology, leading to reduced 
accuracy of prediction models and difficulty in 
developing specific drug targets. Integrating dry 
and wet experimental data is the primary approach 
for supplementing data in AI pharmaceuticals.17 
Additionally, AI algorithms are often perceived as 
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“black boxes,” lacking interpretability, which 
poses challenges in explaining the reasons behind 
algorithm outputs and ensuring the reproducibil-
ity of algorithm results. Balancing the require-
ments of data sharing and privacy protection is a 
problem that needs to be addressed. Lastly, AI 
pharmaceuticals require a lot of training data to 
support algorithm development, but data acquisi-
tion and quality issues remain challenging.

AI in Pharmaceutical Drug discovery has long 
been highly uncertain.3 By removing some uncer-
tainty from the drug discovery process, AI prom-
ises to improve significantly the chances of 
identifying new, commercially viable drug candi-
dates, reducing costs and time. A predictive study 
in 2020 concluded that by investing heavily in AI, 
the pharmaceutical industry could increase its 
returns by more than 45%.14 The drug develop-
ment process, which aims to identify biologically 
active compounds to treat disease, begins with 
identifying molecular targets, then identifying 
active drug candidates and optimizing lead com-
pounds for preclinical and clinical trials through 
to final regulatory approval. This process is time-
consuming, high-risk, and expensive. The aver-
age cost of developing a new drug is between 
USD 100 million and USD 2 billion and can take 
between 10 and 17 years. Even if a drug candidate 
passes Phase I clinical trials, it has only a 5% 
chance of reaching the market.3

Before 1980, the discovery of new drugs was 
achieved through random screening and empiri-
cal observation of the effects of natural products 
on known diseases.5 This random screening pro-
cess, although inefficient, resulted in several 
important drugs, such as the discovery of penicil-
lin in the 1940s, which led to the effective control 
of once-incurable diseases such as tuberculosis 
and malignant bacterial infections8; the discovery 
of antihypertensives drugs such as Prilosec, lipid-
lowering drugs such as statins, and anticoagulants 
such as clopidogrel from the late 1970s, which led 
to the effective control of most cardiovascular dis-
eases. After the 1980s, the drug discovery process 
was improved by high-throughput screening 
(HTS), which rapidly automates the screening of 
thousands of compounds against molecular tar-
gets or cellular assays. Identifying the immuno-
suppressant cyclosporine A in 1988 was a 
milestone in HTS.15 Researchers continue to 
invest in new methods to improve the efficiency 
of the drug discovery process.

Generative AI in the pharmaceutical industry
Building upon the advancements in AI, genera-
tive AI (gen-AI) offers even more sophisticated 
capabilities, further enhancing the drug discovery 
and development processes (Figure 3). Gen-AI is 
transforming nearly all aspects of the pharmaceu-
tical industry, revamping how companies operate 
and potentially unlocking billions of dollars in 
value. The McKinsey Global Institute has esti-
mated that the technology could generate USD 
60 billion to USD 110 billion a year in economic 
value for the pharma and medical-product indus-
tries, primarily because it can boost productivity 
by accelerating the process of identifying com-
pounds for possible new drugs, speeding their 
development and approval, and improving the 
way they are marketed.18

Pharmaceutical companies have long been prac-
ticing AI; researchers applied complex AI models 
to unlock disease mechanisms before last year’s 
explosion of interest. For example, AlphaFold2, 
ESMFold,19 and MoLeR use deep learning to 
help predict the structures of nearly all known 
proteins, transforming our understanding of their 
underlying diseases.

The impending gen-AI-driven life-science revolu-
tion promises unquantifiable effects on human 
health and well-being. For example, an acceler-
ated drug discovery process will help cure more 
diseases quickly, opening additional resources 
that could be applied to currently underserved 

Figure 3.  Generative AI flow of the method.
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areas. The ability to generate insights and pat-
terns from vast quantities of patient data will 
spark more personalized treatments—and 
improved patient outcomes. Gen-AI tools could 
also make patient care more consistent by reduc-
ing deviations in the manufacture and delivery of 
therapeutics. Finally, by automating tedious and 
time-consuming tasks like document creation and 
record keeping, gen-AI can boost the productivity 
of researchers and medical liaisons so they can 
better serve clinicians and patients. As a result, 
gen-AI is expected to produce USD 60 billion to 
USD 110 billion in annual value across the 
pharmaceutical.

Before pharma companies can seize the opportu-
nities gen-AI presents, they must step back and 
understand exactly what it can and cannot do—in 
other words, differentiate the reality of gen-AI 
from the hype that has come to surround it. For 
instance,

•• Gen-AI, on its own, cannot deliver the bulk 
of the value to be created. This is a disrup-
tive moment for the entire field of AI, not 
for gen-AI alone. Traditional analytical AI 
models, such as those currently used to 
promote stakeholder engagement and help 
diagnose diseases, will continue to capture 
value. The difference is that new gen-AI 
applications will significantly enhance their 
capabilities.

•• Gen-AI cannot easily be plugged into exist-
ing data sets to unlock critical insights. 
Gen-AI cannot deliver results without a 
proper data architecture. Companies must 
build an intelligence layer to understand 
molecular structures, clinical operations, 
and patient data. A multipronged approach 
will be necessary to create a data infrastruc-
ture to run internal and external data sets. 
This is more than purely technical: data sci-
entists must collaborate closely with leaders 
in business strategy, medical affairs, legal, 
and risk to set priorities and execute 
strategies.

•• Selecting the suitable large language model 
is not necessarily a critical strategic differ-
entiator. Gen-AI models account for only 
about 15% of a typical project effort, and 
most of the work involves adapting models 
to a company’s internal knowledge base 
and use cases. That is particularly true in 

the pharmaceutical industry, given the 
complexity of its data and the uniqueness of 
its regulations and technology. To succeed 
with gen-AI, companies must integrate it 
across complex workflows to promote 
adoption and impact—a reality highlighting 
the need for effective change management.

•• Gen-AI will not instantly affect every part 
of the organization. As with any digital 
transformation, leaders must apply an end-
to-end lens and prioritize only the use cases 
and applications that make sense for  
overall business goals. Those leaders must 
create a strategic road map to optimize the 
overall impact, the time to impact, and 
other important considerations. A “2 × 2 
approach” is an effective strategy for com-
panies getting started: begin with two use 
cases that require minimal disruption to the 
business, can build excitement across the 
organization, and have an impact most rap-
idly, as well as two other use cases that are 
potentially more transformational as longer-
term goals.

Although the technology will affect all industries, 
it will have a powerful impact on pharmaceuti-
cals. The reason is gen-AI’s truly multimodal 
nature. Foundational models are built not just on 
language but also on images, omics, patient infor-
mation, and other types of data—and these are all 
required to explain and solve the processes of dis-
eases and how best to treat compression—the 
decreasing amount of time they must capture a 
new drug’s value.

Future of gen-AI and drug discovery
Computer-aided drug design (CADD) has now 
improved the efficiency of new drug develop-
ment.11 CADD aims to use molecular modeling 
techniques to analyze the structure of numerous 
peptic and non-peptidic drugs quickly to study 
their interaction with pharmacological targets, 
their activity, toxicity, and bioavailability, allowing 
for better planning and guidance of drug discovery 
research.10 For example, the antihypertensive 
drug captopril, the anti-HIV drugs saquinavir, 
ritonavir, and indinavir, the fibrinogen antagonist 
tirofiban, the glaucoma treatment doxorubicin, 
the antiviral drug zanamivir, the hypertensive drug 
aliskiren, and the protease inhibitor poprevir for 
hepatitis C—have all been discovered based on 
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virtual screening techniques. Over the past decade, 
AI has been widely used in CADD to obtain more 
accurate predictive models, and the new AI-DD 
(AI in Drug Discovery) concept is gaining accept-
ance in the industry; future drug research and 
innovation will undoubtedly benefit from using AI 
in CADD.20 For instance, gen-AI could help accel-
erate target identification, develop validation 
assays to test compounds, sign out of the most 
promising leads, and assist with preclinical testing 
to determine their effectiveness. Pharmaceutical 
manufacturers are already using foundational 
models for these purposes. In addition to natural 
language models such as BioGPT and Med-
PaLM, the models that researchers use include 
image models to analyze microscopy and pathol-
ogy data, chemistry models to improve predictions 
for functional readouts of small-molecule data, 
large-molecule models for protein folding and  
predictions, patient journey models to focus devel-
opment efforts on promising indications, and mul-
timodal models to combine these modalities and 
thus enable in silico experiments. Gen-AI is being 
implemented in the following ways.

Extracting scientific knowledge
Scientists spend much time extracting and sum-
marizing information in documents such as pat-
ents, scientific publications, and trial data to 
better understand disease and drug targets. That 
is arduous and often provides incomplete or inac-
curate information, given the sheer volume of 
data that must be processed. GPT-powered 
knowledge extraction—which uses AI algorithms 
to analyze unstructured data, including text, 
images, and other forms of information—can alle-
viate this burden. Unlike earlier solutions based 
on NLP, new gen-AI tools offer a much deeper 
and broader understanding of the medical con-
text and intent. Researchers can, therefore, pose 
open-ended Q&As, quickly shift between differ-
ent tasks, and frictionlessly integrate additional 
evidence through prompt engineering. Little to 
no further training is required to tailor informa-
tion to specific use cases. This capability acceler-
ates the research timeline and reduces the 
likelihood of errors caused by human oversight.

Additionally, ensuring the safety and security of 
sensitive medical data is paramount. AI tools 
must adhere to stringent data protection regula-
tions and employ advanced encryption and 

access control measures to safeguard patient  
privacy and intellectual property. One example 
of these protection regulations is GDPR  
(General Data Protection Regulation), a land-
mark European Union regulation designed to 
give individuals control over their data and 
ensure it is handled securely and transparently. It 
applies to organizations worldwide that process 
the personal data of EU residents, enforcing 
strict rules to protect privacy. Another is HIPAA 
(Health Insurance Portability and Accountability 
Act), a US law established to safeguard sensitive 
health information, ensuring it remains private 
and secure while standardizing electronic health 
records (EHRs). It applies to healthcare provid-
ers, insurers, and related entities handling pro-
tected health information.

In silico compound screening
Drug development can be hindered by the diffi-
culty of identifying and prioritizing the chemical 
compounds most likely to treat a particular dis-
ease successfully and, thus, most worthy of test-
ing in laboratories. Gen-AI accelerates the 
screening process with state-of-the-art founda-
tional chemistry models that map millions of 
known chemical compounds by their structure 
and function and overlay this information with 
known results for tested molecules. Like GPT-4, 
which is trained to predict the likely next word in 
a sentence, these models predict the next part (for 
instance, an atom) in the structure of a small or 
large molecule (such as an amino acid). The 
model learns fundamental significant and small-
molecule chemistry principles through many iter-
ations. This knowledge can then be used to train 
bespoke machine-learning models that offer still 
more precise predictions—even in largely unex-
plored areas of chemistry—that companies can 
prioritize for subsequent screening.

Optimizing strategy through indication selection
Gen-AI’s knowledge extraction capabilities can 
also help researchers determine which conditions 
or indications to target with a specific molecule—
one of the most critical decisions facing biop-
harma companies. To make these calls, 
researchers must draw information from multiple 
sources, such as opinion leaders, literature 
reviews, omics analyses, trial data, and the activi-
ties of competitors. Yet, given the vastness of this 
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information, indication selections often cover 
only part of the available evidence base, so con-
clusions may not be optimal. Gen-AI can help to 
address this issue by analyzing a wide range of 
structured and unstructured data sets. For exam-
ple, real-world data (RWD)—drawn from doctor 
visits, insurance claims, electronic medical 
records, hospital data, and other sources—is often 
underused to select indications. With gen-AI, 
foundation models that treat medical events as 
words and patient medical histories as documents 
allow researchers to uncover the semantic similar-
ity of different events, making it possible to esti-
mate the biological proximity of one indication to 
another from a patient and clinical perspective. 
Moreover, information from molecular knowl-
edge graphs can be tapped to reveal new connec-
tions (say, between entities such as proteins or 
human biological pathways) already identified in 
the literature or public data. These approaches 
can help uncover novel indications that can be 
rapidly validated through in vitro or animal mod-
els, increasing the likelihood of finding indica-
tions with a high probability of success and 
reducing the number of blind alleys (and their 
opportunity cost).

While gen-AI’s capabilities in analyzing RWD 
and molecular knowledge graphs hold immense 
potential, ensuring the safety and reliability of 
these tools is crucial. Current models rely heavily 
on the quality and bias of their training data, 
which can influence outcomes. To address this, 
robust validation protocols, algorithmic decision-
making transparency, and continuous monitoring 
of inaccuracies are essential. Additionally, these 
tools must adhere to strict data privacy standards, 
such as GDPR or HIPAA, as mentioned previ-
ously, to protect sensitive patient information. As 
the technology evolves, further development is 
needed to enhance its interpretability, minimize 
bias, and ensure ethical application in medical 
research.

Higher possibility of success
About a 10% increase in the possibility of success 
for trials, about a 20% reduction in their cost and 
duration, and time to approval accelerated by 
1–2 years—all leading to a potential double-digit 
impact on the net present value (NPV) of assets 
or portfolios.21,22 It takes, on average, 10 years 
and USD 1.4 billion in out-of-pocket costs to 

bring a single drug to market, and about 80% of 
those costs are associated with clinical develop-
ment, according to researchers at the Tufts 
Center for the Study of Drug Development who 
reported a significant rise in the cost of drug 
development.23 Clinical development is bringing 
therapies from lab to patient by rigorously testing 
a potential medication’s safety and efficacy in 
human subjects, a process characterized by 
lengthy clinical trial timelines and rigorous regu-
latory requirements. Gen-AI addresses these pain 
points by increasing efficiency across the entire 
clinical development process, unlocking eco-
nomic value across three dimensions: up to 50% 
cost reductions enabled by the streamlining of 
clinical trial processes and auto-drafting trial doc-
uments; a 12-plus month acceleration in the time 
it takes to conduct a trial; and at least a 20% 
increase in NPV, thanks to enhanced health 
authority interactions, quality control, and 
improved signal management.22 Across these 
three dimensions, we have identified four use 
cases with a strong potential for near-term impact.

Foundational approaches in drug discovery 
and development

Molecular characterization learning
A prerequisite for AI methods for drug molecule 
research is encoding molecules as fixed-length 
strings or vectors.8 The vast chemical space of 
drug molecules often requires the selection of 
suitable molecular features that can accomplish 
the target task. Molecular characterization, also 
known as molecular descriptors, and selecting 
appropriate molecular representations are criti-
cal for accurately modeling and predicting 
small-molecule characteristics and biological 
activity. Chemical molecular characterization 
has essential applications in virtual drug screen-
ing, compound search/ordering, drug ADME/T 
prediction, inverse synthetic route planning, 
and other drug discovery processes.24 Some of 
the molecular characterizations, when trans-
lated into computational space, can be pre-
sented in forms like

Simplified molecular-input line-entry system
SMILES (simplified molecular-input line-entry 
system) is one of the most used strings for drug 
representation, encoding molecular structures, 
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and geometric properties. Due to its molecular 
linear representation, the SMILES string can be 
treated directly as text and is widely used as a 
molecular representation for deep learning mod-
els in a variety of drug design scenarios, in par-
ticular for inverse synthesis prediction models 
based on the seq-2-seq (sequence-to-sequence) 
method.3 Another unique feature of SMILES is 
that by changing the atomic order, the same mol-
ecule can correspond to multiple SMILES, which 
can be used for data enhancement.12

Molecular fingerprinting
A molecular fingerprint (MFP) is a string of bits 
encoding a molecule’s structural or pharmaco-
logical properties.3 They are widely used for 
ligand-based similarity search and quantitative 
structure-activity relationship (QSAR) analysis 
in virtual screening (VS) of drugs; deep learn-
ing-based drug-target interaction prediction 
models also often use MFPs as input features.3

Molecular fingerprinting based on the substruc-
ture, hash fingerprinting, and pharmacophore 
fingerprinting are the most common. The most 
representative substructure-based MFPs are the 
molecular access system and PubChem finger-
prints for neighborhood and similarity searches; 
PubChemFP encodes 881 structural key types 
corresponding to the substructures of all com-
pound fragments in the PubChem database. 
Hash MFPs such as Daylight FP, Morgan FP, 
and Extended Connectivity fingerprints (ECFPs) 
are commonly used for the similarity analysis of 
compounds.13 Instead of using predefined sub-
structures, hash fingerprints convert all possible 
fragments into values using a hash function. One 
of these, ECFP, is a recurrent fingerprint based 
on Morgan’s algorithm. It is often used as input 
to deep neural networks for bioactivity prediction 
and has shown good stability.3 Pharmacophore 
fingerprints assign pharmacophore types to atoms 
in the chemical structure, generate multiple con-
formations, and construct binary fingerprints 
based on the resulting pharmacophore. The fin-
gerprints are used as descriptors for partial least 
square QSAR models. By describing the aroma-
ticity, hydrophobicity, charge, and hydrogen 
bond donor/acceptor of a molecule, the similarity 
between target binding sites can be assessed by 
considering a superposition of energy minimizing 
conformations of a set of molecules to extract 
pharmacophore features.25

The two methods of molecule characterization 
described above provide many molecular descrip-
tors. Still, the characterization results produced 
are limited by the domain-specific expertise of the 
computational chemist and depend on the algo-
rithm used.8 It is challenging to specify which 
structures and properties of molecules to charac-
terize to obtain the desired results for subsequent 
downstream processing.3

Graph neural networks (GNNs) offer the possi-
bility of a complete and general approach to 
molecular characterization. By using graph nodes 
to represent atoms and graph edges to represent 
chemical bonds and then mapping their features 
onto a linear data structure in the form of a matrix 
or array, molecular graphs can be transformed 
from abstract mathematical concepts into con-
crete representations that can be processed on a 
computer.3 In the molecular graph of a graphical 
neural network, each atom and bond has a corre-
sponding initial feature vector as a feature matrix. 
The feature vector for an atom is the local chemi-
cal environment of the atom, including atomic 
type and formal charge number of hydrogens 
attached. The bond features can be the adjacency 
matrix, the type of bond, the shortest path, and 
the presence or absence of a particular ring.25 
GNNs can automatically learn task-specific 
molecular representations using graph convolu-
tion without the need for traditional manual 
molecular descriptors or MFPs and have a high 
degree of accuracy in predicting the properties of 
compounds.26 Predicting a molecule’s chemical 
properties or activity directly from its structure 
has been a topic of great interest to the chemical 
community.25 The graph neural network finger-
printing method, Neural FP, implements the use 
of graph convolutional neural networks to learn 
drug representations directly from molecular 
graphs; the weave model takes into account both 
atoms and chemical bonds in the molecular 
graph, further optimizing atomic features and 
atomic pair features, and demonstrates a high 
degree of accuracy in predicting water solubility, 
biological activity and toxicity of molecules, bio-
logical activity, and toxicity; Attentive FP is a 
graph neural network-based small-molecule rep-
resentation framework that introduces a graph 
attention mechanism to construct node informa-
tion that can learn local and non-local features of 
a given chemical structure, capturing fine sub-
structures such as intramolecular hydrogen bonds 
and aromatic systems, thus providing excellent 
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characterization learning capabilities for a wide 
range of different molecular properties.13 In addi-
tion to drug property prediction and drug mole-
cule characterization, GNN can also be used in 
ab initio drug design, interaction prediction, and 
inverse drug discovery.12

Target discovery and validation
Targeted drug discovery is the mainstay of drug 
development. When a drug has a known target, it 
is easy to design drug screening experiments to 
discover therapeutics that act on the protein tar-
get.27 By September 2021, of the 1619 drugs 
approved by the FDA, 1366 were small-molecule 
drugs, and 253 were prominent molecule drugs, 
involving 893 targets, of which 667 were human 
targets (the rest were pathogenic targets).3 Failure 
to hit a target can lead to the waste of substantial 
R&D investments. For example, the clinical trials 
initiated by Pfizer, Roche, and Merck Sharp & 
Dohme for cholesteryl ester transfer protein 
inhibitors, a lipid-lowering target, all ended in 
disaster5; the discovery of programmed death-1 
(PD-1) has ushered in a new phase of biomole-
cule and tumor immunotherapy, and it is expected 
that there will be more than 20 PD-1 products on 
the market worldwide in the next 2–3 years.

On the other hand, even if a novel protein target 
with druggable properties is found, bringing a 
new chemical entity to market still faces an “abso-
lute cliff” in terms of development time and cost, 
whereas discovering a new target or indication for 
a drug based on an existing disease can signifi-
cantly reduce development costs.28 The most 
famous drug redirection was sildenafil, and AI 
technology can make this serendipitous success 
tangible.12 The combination of systems biology 
and AI algorithms to mine the correlation between 
multi-omics data and patient clinical health infor-
mation, combined with NLP techniques to 
retrieve and analyze unstructured databases such 
as literature, patents, and clinical reports, can 
identify potential disease-relevant pathways, pro-
teins, and mechanisms to discover new mecha-
nisms and targets for drug development of novel 
chemical entities or drug redirection.8

Systems biology approach
By studying the interrelationships and interac-
tions between all components within individual 
biological systems at the molecular level (e.g., 

gene and protein networks associated with cell 
signaling, metabolic pathways, organelles, cells, 
physiological systems, and organisms), systems 
biology ultimately aims to build comprehensible 
models of whole systems and complete maps of 
organisms.29 Network-based approaches infer 
new protein phenotypes or associations of protein 
functions by linking proteins/genes to different 
network pathways.30 However, the high complex-
ity of biological network interactions hinders the 
construction of network-based models for disease 
classification, personalized medicine, and prog-
nosis. It often fails to provide stable pathway sig-
natures of specific phenotypes or reliable disease 
biomarkers—data-driven, unbiased networks for 
identifying biomarkers of targets and diseases.12 
Using Bayesian AI analysis to combine molecular 
profiles from multi-omics data (genomics, prot-
eomics, lipidomics, and metabolomics) with clin-
ical health information to build causal inference 
networks, the difference between the “health” 
and “disease” network graphs can be used to 
identify disease drivers (targets and biomarkers), 
which were used to discover the novel tumor tar-
get BPM 42522, its lead molecule and its antican-
cer mechanism of action.31

Combining knowledge mapping techniques with 
systems biology to build biomedical knowledge 
graphs has begun to play a critical role in medical 
practice and research. It helps to simplify complex 
biological systems and pathological processes, 
enabling researchers to understand better the 
principles involved; when combined with the con-
text of a specific disease, biomedical knowledge 
graphs facilitate accelerated drug redirection and 
mechanical analysis of emerging human diseases 
such as COVID-19.32 BenevolentAI has intro-
duced JECS, a judgment-enhanced cognitive sys-
tem that uses AI tools and biomedical knowledge 
graphs to identify potential drug candidates, ena-
bling drug redirection by discovering new connec-
tions between large amounts of unstructured data 
such as disease, drug, and trial data and helping 
scientists find new indications for which known 
drugs may be applicable.11 Similarly, MindRankAI 
is involved in building PharmKG39, a multi-rela-
tional attribute biomedical knowledge graph of 
drug-disease associations based on more than 
500,000 relationships between genes, drugs, and 
diseases using a heterogeneous graph attention 
neural network containing 29 relationship catego-
ries and over 8000 ambiguous entities. Each entity 
in PharmKG is accompanied by heterogeneous 
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domain-specific information extracted from mul-
tiple data sets, namely gene expression, chemical 
structure, and disease word embedding while pre-
serving semantic and biomedical features.33

Scientists at Insilico Medicine have developed the 
iPANDA (Insilico Pathway Activation Network 
Decomposition Analysis) method based on path-
way activation analysis.34 iPANDA is a powerful 
method for extracting biologically relevant fea-
tures from large-scale transcriptomic and prot-
eomic data. iPANDA uses gene expression data 
for biomarker identification. iPANDA takes as 
input the fold change between gene expression 
levels in tumor samples and the average expres-
sion levels of samples in the standard group and 
introduces gene importance factors to character-
ize the extent to which genes influence the path-
way. However, the measure of gene centrality 
varies from algorithm to algorithm, and different 
algorithms can lead to highly variable results.11 In 
this study, the degree of differential gene expres-
sion and the decomposition of pathway topology 
were integrated into a single network model, and 
statistical and topological weights were used to 
estimate gene importance.

Furthermore, gene modules reflecting gene co-
expression were introduced, and the topological 
coefficients of each gene module were estimated to 
obtain gene co-expression data. Gene co-expression 
data were combined with gene importance factors 
to obtain pathway activation scores. Based on 
iPANDA, Insilico Medicine has established a new 
target discovery platform, PandaOmics, to develop 
new targets for IPF. They have identified and pri-
oritized over 20 new targets by comparing histol-
ogy data from fibrosis patients with that from 
healthy individuals to find significant differences 
between the two and by using iPANDA technol-
ogy to find histology data on pathways that may 
affect these pathways. Subsequent screening for 
target safety and future value based on target 
knockout data has led to the identification of novel 
targets for treating IPF, and the project is now rap-
idly progressing to the clinical stage.25

Target structure-based approaches
Confirmation of novel targets in drug develop-
ment (i.e., target selection or prioritization) is still 
an uncertain process, and it is essential to accu-
rately map the interactions between approved 
drugs and their efficacy targets (i.e., the targets on 

which the drug exerts its therapeutic effect).8 
Structure-based computational approaches to 
target discovery can be used as a strategy to com-
plement experimental approaches such as reverse 
docking, pharmacophore, binding site similarity, 
and fingerprint-based interactions.35 Among 
these, reverse docking has become one of the 
most effective tools for identifying potential tar-
gets for a given compound, not only for target 
validation but also for predicting toxicity and 
adverse side effects and for discovering unknown 
novel targets for drugs or natural compounds.3 
Potential targets for tea polyphenols and ginseno-
sides were identified using the PDTD (Potential 
Drug Target Database), a large target protein 
database for reverse docking screening. The tar-
get structure dataset limits the reverse docking 
approach; the PDTD, released in 2008, contains 
approximately 1100 protein entries with 3D 
structures, and its data is extracted from the lit-
erature and several online databases (e.g., TTD, 
DrugBank, and Thomson Pharma) and includes 
information on 830 known or potential drug tar-
gets.36 Only about 11% of the human proteome 
has been annotated with small-molecule probes, 
and the function and role of a third of the proteins 
in human biology and disease are not yet known.

Three methods, Nuclear Magnetic Resonance 
(NMR), X-ray crystallography, and cryoelec-
tronic microscopy, are now widely used for the 
structural resolution of proteins and have pro-
vided much information about the structure of 
proteins and drug receptors, and many drugs, 
such as angiotensin-converting enzyme inhibi-
tors, have entered clinical practice based  
on structural information.37–39 Cryoelectron 
microscopy equipment costs around USD 20–60 
million, and the synchrotron light source required 
for crystallography costs hundreds of millions to 
build.40 Experimental methods to decipher a pro-
tein structure can take anywhere from a few weeks 
and months to several years, depending on factors 
such as sample availability and protein complex-
ity.41 Therefore, AI protein structure prediction 
algorithms will be an essential adjunct to protein 
information-based target validation methods. 
AlphaFold2 achieved a median global distance 
test (GDT) score of 92.4 across all targets, close 
to the quality provided by gold-standard experi-
mental techniques such as X-ray crystallography.8 
AlphaFold2, developed by DeepMind, uses a 
DNN (deep neural network) architecture trained 
on 170,000 protein structures from the PDB 
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(Protein Data Bank) to predict the distribution of 
distances between pairs of amino acids and the 
torsion angles between the chemical bonds con-
necting these amino acids in proteins.42 The 
methods and architecture behind AlphaFold2 
have recently been published, and, in collabora-
tion with EMBL-EBI (European Molecular 
Biology Laboratory-European Bioinformatics 
Institute), AlphaFold2 predicted 3D structures 
providing structural coverage of 98.5% of  
the human proteome have been made freely avail-
able to the scientific community.5 Although 
AlphaFold3 does not yet provide a good descrip-
tion of the side chain structure and dynamics of 
proteins, and it is difficult to predict the struc-
tures of multi-structured domain proteins, multi-
meric protein complexes, and membrane proteins, 
the AlphaFold3 protein structure library provides 
us with a library of reverse docking structures that 
almost covers the human proteome, providing a 
list of potential target proteins for further studies 
and helping to address the limitations of target 
structure data sets in reverse docking, reverse 
docking has the potential to become a handy tool 
for drug discovery and thus advance drug 
discovery.43

Small-molecule drug discovery
In recent years, deep learning has significantly 
impacted fields such as image analysis and NLP. 
Inspired by these successes, computational chem-
ists increasingly use generative models to gener-
ate new molecules and predict their properties.32 
The chemical space contains approximately 1060 
to 10,100 possible small molecules. Drug discov-
ery efforts need to find molecules that meet mul-
tiple criteria, such as biological activity, metabolic 
stability, and potency-like finding a needle in a 
haystack. As a result, only a tiny fraction of the 
theoretically possible chemical space can be 
explored in wet experimental studies. Computer 
modeling techniques can further enhance the bio-
logical screening of large compound sets and the 
design of synthetic routes to complementary 
compounds, and they are an essential component 
of early drug discovery.5

Molecular generator techniques
One of the keys to compound design and predic-
tive modeling is the choice of molecular represen-
tations. On the one hand, text or string encoding 

of molecules is computationally inexpensive and 
commonly used data structure in molecular gen-
erators. For generative modeling, SMILES-based 
string encoding typically generates a token for 
each atom, then converted to a “one-hot” string 
representation.44 A generative model using one-
hot string representations generates a distribution 
of each token, which is then sampled to generate 
a new structure for the SMILES encoding. On 
the other hand, graph-based generative modeling 
is an emerging area of research, for example, 
using graph convolutional policy networks or 
deep learning to generate molecular structures. 
Rule-based graph generative models often pro-
duce formally correct structures but are computa-
tionally expensive. The combination of flexible 
neural network architectures and various molecu-
lar representations has led to various architectures 
and solutions for molecular generative models.45

Synthetic route planning
The use of computer-aided synthetic planning 
(CASP) can be traced back to the pioneering work 
of E. J. Corey, who formalized the concept of 
“inverse synthetic analysis” in the late 1960s.46 
CASP incorporates the ideas of inverse synthetic 
analysis to help synthetic organic chemists select 
the most efficient and cost-effective synthetic 
routes. It can be used to predict selectivity and by-
products and to suggest and evaluate reaction 
conditions. Over the decades, computational 
methods have evolved from expert systems based 
on hand-coded reaction rules and templates to 
data-driven AI-assisted synthesis planning.30 
Some AI algorithms are now available to recom-
mend feasible synthetic routes for various reac-
tions: with or without reaction templates, 
operating at the mechanical or global reaction 
level, and using molecules represented as finger-
prints, graphs, or SMILES strings. CASP can 
help chemists make better decisions, increasing 
efficiency and productivity by reducing synthetic 
failures and accelerating the drug discovery cycle’s 
DMTA (Design-Make-Test-Assess) phase.3

Rule-based approaches use expertly coded rules 
and heuristics extracted from reaction databases 
and literature to suggest synthetic routes, often 
called “template methods.” In a rule-based 
approach, reaction rules are manually extracted 
and coded, which is limited by the inability to 
expand with the exponential growth of the 
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chemical literature and by the fact that its knowl-
edge base is limited and cannot be fully covered. 
Synthia (Chematica) is an inverse synthesis soft-
ware that uses a library of expertly coded rules 
for chemical synthesis planning.5 To overcome 
the limitations of the rule base, Synthia uses 
computational methods to automate the extrac-
tion of reaction rules from reaction datasets. Its 
template extraction algorithm is based on Ambit-
SMIRKS, defined explicitly for describing 
chemical reactions. It has collected an expert-
coded reaction rule base of approximately 
50,000 rules over 15 years.10 Synthia’s core algo-
rithm is a decision tree in which various condi-
tions specify the range of possible substituents or 
atom types; a scoring function and dynamic 
planning algorithm are then used to construct 
complete synthetic pathways, making decisions 
for each inverse synthetic step, allowing syn-
thetic routes to be proposed for all targets in 
15–20 min. In 2016, Szymkuc et al. used Synthia 
to design synthetic pathways for eight structur-
ally diverse and synthetically challenging target 
molecules, marking the first successful use of 
synthetic planning software to guide multi-step 
synthetic routes.40 They selected the highest-
scoring synthetic route to synthesize the targets, 
achieving up to 98% yields.

Interestingly, the synthetic route proposed by 
Synthia differs significantly from the original syn-
thetic route disclosed in the patent, providing 
higher yields with fewer synthetic steps.36 AI tech-
niques have also been used in recent years to 
extract reaction rules. Segler et  al. pioneered 
using a neural-symbolic approach to extract 
inverse synthesis rules from the Reaxys database 
autonomously, without expert input.47 These 
rules were combined with modern Monte Carlo 
tree search algorithms for reaction prediction to 
select the most promising inverse synthesis routes. 
However, using templates brings disadvantages 
such as high computational costs and incomplete 
rule coverage, limiting scalability.48

Given the shortcomings of the template 
approach described above, the template-free 
approach draws inspiration from NLP and treats 
forward or inverse synthetic prediction as a 
Seq2Seq mapping problem.10 Since molecules 
can be represented as SMILES strings, each 
chemical reaction can be encoded as a sentence 
and treated as a chemical language translation 

problem.11 The first template-free approach to 
inverse synthesis analysis is based on the 
Seq2Seq model, which is entirely data-driven, 
trained end-to-end on a subset of experimental 
reactions with labeled reaction types, and con-
sists of a bidirectional LSTM (long short-term 
memory) encoder and decoder with an addi-
tional attention mechanism that maps the 
SMILES of the reactant representation to the 
SMILES of the product representation.49 The 
method’s performance is comparable to that of 
a baseline model of a rule-based expert system.

The small-molecule drug design and 
optimization
Structure-based virtual screening (SBVS), also 
known as target-based virtual screening (TBVS), 
is a robust, effective, and promising CADD tech-
nique.45 The SBVS approach predicts the interac-
tion of a target protein with many compounds 
from a database based on its 3D structure and 
then scores. It ranks the compounds according to 
their affinity for the target receptor binding site, 
thereby identifying compounds that are more 
likely to be of interest to the molecular target. 
This leads to identifying ligands that are more 
likely to be pharmacologically active against the 
molecular target.25

The SBVS technique, molecular docking, which 
explores the geometric fit between ligand and tar-
get, attracted attention for its low computational 
cost and good performance as soon as it appeared 
in the 1980s and became widely used in the 1990s 
as computational power increased and structural 
data on target molecules accumulated time and 
cost; the presence of solid molecules is not 
required; and computational testing can be per-
formed before molecular synthesis. However, 
existing SBVS are often system-specific and inef-
fective in more general situations; the high com-
plexity of ligand-receptor binding interactions 
makes it difficult to parameterize them to accu-
rately predict the correct binding site and classifi-
cation of compounds, resulting in high 
false-positive and false-negative rates for SBVS.12 
Docking protocols are essential to achieve accu-
rate SBVS and consist of two main components: 
a search algorithm and a scoring function. The 
search algorithm, which systematically searches 
for ligand orientation and conformation at the 
binding site, and the scoring function, which 
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predicts the binding affinity between the target 
and its candidate ligands, are critical to the suc-
cess of docking.40

In general, scoring functions have three impor-
tant applications in molecular docking

•• to determine the binding/alteration sites of 
targets and ligands as well as the binding 
confirmation

•• to predict the binding affinity between pro-
teins and ligands

•• to optimize potential ligands.32

There are three main types of traditional scoring 
functions, namely force field-based, empirical, 
and knowledge-based scoring functions, with 
machine learning-based scoring functions, which 
have emerged in recent years, being considered as 
a fourth type.50

Traditional scoring functions have well-known 
limitations—they do not adequately consider 
conformational entropy (the flexibility of the pro-
tein) and solvation energy.51 Based on a large 
amount of experimental data available, AI algo-
rithms can build non-predefined scoring func-
tions that are data-driven by implicitly learning 
the eigenvectors of protein-ligand binding and 
their non-linear relationship with affinity. Many 
researchers have used machine learning scoring 
functions to improve SBVS algorithms, such as 
RF-Score-VS and SFCscoreRF based on RF 
(random forest), SVR-KB/-EP and ID-Score 
based on SVM (support vector machine), and 
NNScore 2.0 and CScore based on early artificial 
neural networks.52

While traditional machine learning approaches 
still rely on expert knowledge and feature engi-
neering, the rise of deep learning algorithms offers 
a new direction for scoring function modeling.16 
CNNs (convolutional neural networks) can auto-
matically extract features directly from 2D or 3D 
structures to predict the binding affinity of pro-
teins to ligands. The 3D lattices of protein-ligand 
structures generated by docking can be used as 
input to CNN models, from which relevant fea-
tures such as complex atom types, partial atomic 
charges, and distances between atoms are auto-
matically learned and extracted to build regres-
sion models for predicting affinity or classification 
models for predicting binding or non-binding, 

with better predictive performance than other 
docking methods.12 Deep learning techniques, 
particularly CNNs, have breathed new life into 
SBVS. Classical scoring function approaches use 
predefined theories to design functions based on 
linear relationships, and the introduction of AI 
techniques can implicitly capture intermolecular 
binding interactions that are difficult to model 
explicitly. Although scoring functions generated 
by deep learning techniques may not always be 
more predictive than established machine learn-
ing methods, and further optimization of training 
efficiency and interpretability is required, existing 
docking tools continue to see practical improve-
ments by introducing deep learning. SBVS will be 
one of the most promising techniques in the drug 
discovery process in the coming years.45

Ligand-based virtual screening (LBVS) assumes 
structurally similar compounds have similar bio-
logical activities. QSAR, pharmacophore, and 
structural similarity matching have long been the 
most used LBVS methods.47 The QSAR model 
has been developed over half a century as one of 
the significant computational molecular modeling 
approaches and aims to find a mathematical rela-
tionship between the molecular properties of a 
compound (e.g., polarity, lipophilicity, electrical 
and spatial properties or specific structural fea-
tures) and certain activity indicators (affinity to 
receptor sites, inhibition constants, rate con-
stants, etc.). As a modification of QSAR, 
3D-QSAR calculates binding affinity by reading 
parameters directly from the 3D structure of the 
compound. Comparative molecular field analysis 
(CoMFA) is an essential method for 3D confor-
mational analysis. The 3D pharmacophore is a 
conformational analysis and molecular stacking 
of known active compounds to obtain informa-
tion about the moieties that play a key role in their 
activity. In pharmacophore-based VS, 3D phar-
macophores developed from a set of active 
ligands, target-ligand complexes, or protein tar-
gets are screened against a virtual library of mol-
ecules, from which molecules that meet the 
requirements of the query pharmacophore are 
retrieved.53 VS models based on AI algorithms 
take as input descriptors based on the physico-
chemical properties of molecules and/or finger-
prints based on the topology to build regression 
or classification models of activity, providing a 
more flexible approach to LBVS that is no longer 
dependent on program-specific functionality. 
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Bayesian algorithms, SVM, RF, and artificial 
neural networks have been widely used to build 
QSAR models and have provided many compel-
ling applications in LBVS.3 DNNs have demon-
strated superior predictive performance compared 
to machine learning methods such as Bayesian, 
RF, and SVM, and multi-task DNNs have shown 
further performance improvements, with multi-
task DNNs on 200 different targets emerging for 
large-scale applications. A QSAR model built 
using multi-task DNNs for 15 different tasks won 
the 2020 Kaggle challenge sponsored by Merck 
Sharp & Dohme.54 DeepTox, a multi-task DNN-
based toxicity prediction method, won the 2014 
Tox21 dataset challenge, which required the pre-
diction of compound toxicity using a dataset of 
12 high-throughput toxicity assays for 12,000 
compounds.8 Schrödinger, Inc. has integrated its 
AutoQSAR with DeepChem (https://deepchem.
io/), making it easy for non-computing experts to 
build and apply high-performance deep learning 
QSAR models on large datasets.55 Recently, 
molecular prediction models for antimicrobial 
activity based on the MPNN (message passing 
neural network) model have identified eight anti-
microbial molecules with structures different 
from conventional antibiotics from a large data-
base of over 107 million molecules and identified 
a novel antibiotic, halicin, which inhibits the 
growth of Escherichia coli.5

The combination of the pharmacophore concept 
with AI techniques is still in its infancy, and future 
research will focus on using pharmacophore fea-
tures as molecular descriptors for AI models or 
using AI methods to generate pharmacophores 
from large amounts of data. For example, when 
Pharm-IF, a pharmacophore-based interaction 
fingerprint, was used as input to several machine 
learning algorithms to rank small-molecule dock-
ing poses, the models combined with SVM 
showed the best enrichment rates over other 
machine learning algorithms and docking scor-
ing.56 It is believed that AI algorithms combined 
with increasingly sophisticated molecular charac-
terization methods will soon become the domi-
nant LBVS technique.

Advances in ADMET prediction for drug 
development
ADMET is a crucial indicator for assessing 
whether a small-molecule compound can become 

a drug, covering pharmacokinetic and toxicologi-
cal issues such as whether the drug can be effec-
tively absorbed into the body and reach the target 
tissue. It covers pharmacokinetic and toxicologi-
cal issues, such as whether the drug is effectively 
absorbed into the body and reaches the target tis-
sue. Many clinical trial failures have been attrib-
uted to deficiencies in the ADMET properties of 
drug candidates. Conducting ADMET property 
evaluation studies at an early stage of drug devel-
opment can effectively address the safety and effi-
cacy issues of drug candidates and improve the 
success rate of drug development.29 However, the 
experimental methods used for ADMET prop-
erty evaluation are expensive and time-consum-
ing, limiting the understanding of early 
compounds and affecting further biological vali-
dation. With the development of computer tech-
nology and cheminformatics and the accumulation 
of experimental drug data, ADMET prediction 
models represented by machine learning and 
deep learning can learn the association between 
chemical structures and pharmacokinetics from 
ADMET data, preventing medicinal chemists 
from exploring the poor and unknown chemical 
space and thus finding the best molecules.57

It can be argued that ADMET prediction is 
essential to drug discovery and development. 
Major companies and institutions at home and 
abroad are committed to combining conven-
tional wet experiments with computer experi-
ments to help drug developers analyze the 
ADMET profile of compounds from a compu-
tational perspective, resulting in several com-
puter-aided ADMET software, databases, and 
online services.8 For example, the QikProp 
module of Schrödinger software can predict the 
log P, log S, Caco-2 cell permeability, serum 
protein binding activity, hERG-Kion channel 
blocking, etc.51 GastroPlus has been widely 
used by the FDA, NMPA (National Medical 
Products Administration), and other national 
drug regulatory authorities. It can predict phar-
macokinetic parameters such as physicochemi-
cal properties, absorption, distribution, and 
metabolism, as well as the in vivo course of the 
drug after ocular and pulmonary administra-
tion.11 The SwissADME molecular modeling 
team, developed by the Swiss Bioinformatics 
Institute, can calculate physicochemical descrip-
tors to predict pharmacokinetic properties such 
as oral bioavailability, blood-brain barrier 
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permeability, and the potential of compounds to 
bind to metabolic enzymes, drug formation, and 
drug chemistry friendliness. They have also 
independently developed a range of online pre-
diction tools for ADMETs that are widely used 
by researchers in the United Kingdom and 
abroad.46 ADMETlab uses molecular finger-
printing features such as MACCS and ECFP4 
to train machine learning models such as RF, 
SVM, and Plain Bayes for classification and 
regression prediction of multiple ADMET 
properties; ADMET SAR also uses MACCS to 
construct MFPs to train machine learning mod-
els such as SVM and achieves better prediction 
performance in 22 classification tasks, which 
DrugBank, a drug database, has adopted. 
Currently, machine learning-based prediction 
tools are the most widely used, but the use of 
MFPs and molecular descriptors as features can 
cause a significant loss of molecular structure 
information and may limit the prediction per-
formance of the models.58

Deep learning-based ADMET prediction meth-
ods automatically extract feature representations 
of the input to fit more complex associations. As 
reported in the 2020 Kaggle competition, DNNs 
improved performance by an average of 10% over 
RF models on 15 large analytical datasets.59 
Researchers at major pharmaceutical companies 
Vertex Inc., Eli Lilly & Co, and Bayer AG found 
DNNs comparable to or slightly better than 
mainstream machine learning models when 
trained on their large private ADMET data-
sets.60–64 The recent emergence of GNNs has 
added a new dimension to the design space of 
ADMET models. These graph neural networks 
use graph structures to represent molecules and, 
through data-driven training, convert molecular 
structure information into continuous low-
dimensional dense vectors, an information repre-
sentation superior to the use of high-dimensional 
sparse MFPs.65 The superiority of graph neural 
network models for predicting drug properties 
has been demonstrated by models such as 
Molecule-Net and Chemi-Net. Chemi-Net, an 
entirely data-driven, domain-knowledge-free 
deep graph convolutional network approach 
developed in collaboration with Amgen, was 
compared with Amgen’s Cubist machine learning 
program for large-scale ADME property predic-
tion. The results showed that for all 13 datasets, 
Chemi-Net was significantly more accurate in 
ADME prediction than the Cubist benchmark, 

helping to accelerate drug discovery.28 In addi-
tion, graph neural networks can use built-in  
interpretable methods such as SAMPN, a mes-
sage-passing neural network based on a self-
attentive mechanism. Self attention-based 
message passing network (SAMPN) outperforms 
both graph neural networks and RF without add-
ing an attention mechanism in predicting lipophi-
licity and water solubility, and it can visualize the 
contribution of each atom to the predicted prop-
erties through the attention coefficient.66

Currently, the application of machine learning in 
predicting ADMET properties is still constrained 
by the compounds available in publicly disclosed 
training data. Despite the successful application 
of some AI models in ADMET and activity pre-
diction, a key challenge is the availability of data 
and the generalizability of data-dependent mod-
els. Furthermore, the methods mentioned above 
often only measure the similarity of physicochem-
ical properties between approved drugs without 
fully considering the characteristics of drugs in 
biological systems (such as permeability and 
clearance rate). Therefore, a single score cannot 
fully encompass the complex property space of 
drugs, significantly limiting the guidance for com-
pound optimization.

Accelerating clinical trials
Despite promising advances in systems biology 
and a significant increase in the availability of 
high-throughput biological data, the pharmaceu-
tical industry is experiencing a decline in R&D 
efficiency, with clinical trial failure rates of up to 
95% in oncology and other disease areas. High 
clinical trial failure rates lead to high costs and 
inefficiencies in drug development: bringing an 
entirely new chemical entity to market can take 
up to 7–10 years of clinical trials at a capitalized 
cost of USD 1.46–2.56 billion. Losses per failed 
clinical trial range from USD 800 million to USD 
1.4 billion, including the investment in the trial 
itself and the loss of preclinical development 
costs. Applying AI technology to critical steps in 
the design of clinical trials can help achieve more 
accurate patient stratification and improve 
recruitment efficiency, thereby increasing the 
success rate of clinical trials.67–70

Over 75% of the cost of developing new chemical 
entities is spent on in vivo studies, which means 
that improvements in calculation methods made 
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early in drug development have a limited impact 
on overall development costs. Phase III clinical 
trials would involve testing large numbers of 
patients, and the financial cost of failure at this 
stage would be catastrophic. Ideally, AI models 
should be used to predict late-stage trial out-
comes. In silico clinical trials (ISCT) could sig-
nificantly reduce clinical trial costs while 
increasing overall success rates.71 In 2005, a white 
paper first described virtual physiological human, 
which aims to develop patient-specific computer 
models to support clinical decision-making and 
models to form virtual patient groups to test the 
safety and efficacy of new drugs and medical 
devices.72 In addition, it is conceivable that a vir-
tual patient group could complement clinical tri-
als (reducing the number of patients enrolled and 
increasing statistical power) and suggest clinical 
decisions. ISCT typically integrates physiological 
and pathological information about patients at 
different spatial and temporal scales, aiming to 
generate patient-specific predictions and treat-
ment plans for diagnosis, prognosis, dose selec-
tion, or specific patient groups.25 However, using 
ISCT to reduce, improve, or partially replace in 
vivo experiments remains challenging.

On the one hand, Big Pharma and research insti-
tutions must continually address the inherent 
complexities associated with accurate, quantita-
tive modeling of organisms; otherwise, clinical tri-
als alone will not provide sufficient information 
on structural and design properties to explain the 
failure of drug candidates, and their reliability 
remains to be proven.5 As a result, current AI 
technologies are primarily designed to improve 
clinical success by intervening in several critical 
aspects of clinical trials. Linking patient genetic 
characterization data, EHRs, medical literature, 
and clinical trial databases can predict clinical 
toxicity and trial success, improve trial design, 
assist with patient-trial matching and recruit-
ment, and monitor patients during trials to 
improve patient adherence.25

Prediction of clinical trial results
Deep learning models based on the analysis of 
drug response and side effects to predict the out-
come of phase I/II clinical trials can significantly 
improve the success rate of clinical trials and help 
to improve the drug development process.8 With 
many clinical trials likely to fail due to toxicity, 

ProCTOR uses a combination of chemical fea-
tures of drugs and target-based features to model 
the distinction between FDA-approved drugs and 
FTT (failed for toxicity in trials) drugs. The 
method uses a 48-feature set of 10 molecular fea-
tures, 34 target-related features (e.g., target tissue 
selectivity), and four drug-like rules to construct 
an RF classifier that directly predicts the likeli-
hood of a drug being toxic in clinical trials.73 In 
addition to toxicity, more than two-thirds of clini-
cal trials fail for other reasons, including efficacy, 
strategic, and financial reasons. Efficacy is a very 
complex issue, and combining in vitro cellular 
models with data on drug side effects can directly 
predict the success or failure of clinical trials.74 
Insilico Medicine built a deep neural network 
based on pathway analysis techniques to predict 
the side effects of compounds based on the tran-
scriptional changes they cause in cell lines and the 
success or failure of the associated clinical trials. 
The study thoroughly analyzed transcriptomic 
data from drug-induced perturbations in cell cul-
ture and used pathway activation scores estimated 
by the iPANDA algorithm as input to build neu-
ral networks to predict clinical trial outcomes for 
each of the 46 side effects.8

Clinical trial design
Using AI technology to support clinical trial 
design and enable efficient patient stratification, 
recruitment, and monitoring can help improve 
the efficiency and success of clinical trials. In col-
laboration with Johns Hopkins University and the 
National Cancer Institute, rational clinical trial 
design presented the iPANDA pathway analysis 
algorithm for head and neck squamous cell carci-
noma (HNSCC). iPANDA was applied to tran-
scriptomic data from 359 oral squamous cell 
carcinomas (OSCC) and 86 white spot samples 
(precancerous lesions) to identify differentially 
dysregulated pathways between these tumors and 
normal oral mucosal tissue and to elucidate the 
signaling pathways from white spots to OSCC.25 
This work will contribute to a better understand-
ing of the complex signaling networks behind 
HNSCC and may help to develop new preven-
tive, diagnostic, and therapeutic approaches. 
Furthermore, with the advent of immune check-
point inhibitors for the treatment of HNSCC, 
there is a need for more reliable characterization 
of the tumor microenvironment, signaling path-
ways, and genetic alterations associated with 
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CD8+ T-cell infiltration in HNSCC. The study 
used RNA sequencing, 10 chemokine signatures 
to classify HNSCC patients into high and low 
CD8+ T-cell infiltration subgroups (Tc-cell 
inflammed phenotype-H ( TCIP-H) and Tc-cell 
inflammed phenotype-L (TCIP-L), respectively), 
and iPANDA analysis to analyze differences in 
signaling pathways, somatic mutations, and copy 
number aberrations between TCIP-H and 
TCIP-L tumors. The study found that TCIP-H 
HNSCC tumors are rich in multiple immune 
checkpoints and are promising candidates for 
potential combination immunotherapy, providing 
a rationale for designing rational combination 
immunotherapies.3

Extraction of electronic medical records using 
NLP techniques can be used to match patients to 
clinical trials. For example, IBM Watson has 
developed a clinical trial matching system that 
uses structured and unstructured data from 
patients’ electronic medical records and available 
trials to create detailed patient clinical profiles. 
Comparing a patient’s clinical profile with the 
required clinical trial eligibility criteria can help 
optimize clinical trial protocols for eligible 
patients or find patients who meet the require-
ments for a particular trial.75

However, limited data from clinical trials and elec-
tronic medical records are insufficient to describe 
the intrinsic complexity of organisms, and the lack 
of interpretability casts doubt on the reliability of 
protocols and poses some ethical risks. The fur-
ther introduction of systems biology approaches 
based on medical data is now the dominant 
research direction, with systems biology helping to 
provide biological insights into the mechanism of 
action of drug candidates. For example, Insilico 
Medicine’s iPANDA used a microarray analysis 
quality control (MAQC) dataset based on multi-
ple sources of paclitaxel-based neoadjuvant breast 
cancer therapy to identify a highly robust set of 
biologically relevant pathway features that were 
successfully used to characterize breast cancer 
patients according to their sensitivity to neoadju-
vant treatment. GNS Healthcare’s REFS (Reverse 
Engineering and Forward Simulation) machine 
learning platform combines longitudinal elec-
tronic medical records, pharmacy and medical 
claims, next-generation sequencing, and other 
medical treatments. GNS Healthcare’s machine 
learning platform, REFS, combines patient data 

such as longitudinal electronic medical records, 
pharmacy and medical claims, next-generation 
sequencing, and other “histological data” into 
computational models and applies machine learn-
ing techniques to answer complex healthcare 
questions, to uncover hidden drivers of cancer 
progression and drug response at the patient level, 
thereby identify new targets and biomarkers of 
disease, which can then be used to stratify patient 
populations76 more accurately.

Traditional adherence measures, such as pill 
counts and other self-reported data, are suscep-
tible to patient manipulation and data distor-
tion. Abbvie uses the facial and image recognition 
algorithms of the AiCure mobile SaaS platform 
to monitor users by having patients record a 
video of themselves swallowing pills with their 
smartphones, and the AI platform verifies that 
the right person has swallowed the right pills. 
Adherence increased from 50% to 90% in the 
group of patients with schizophrenia within 
6 months.77

Drug repositioning: Unlocking new 
therapeutic potential
Bringing new chemical entities to market faces an 
“absolute cliff” regarding development time and 
cost; discovering new indications for a drug based 
on an existing drug for one disease and using it for 
another can significantly reduce development 
costs. Drug repositioning, or drug repurposing, is 
a drug discovery strategy to identify new therapeu-
tic effects of an approved or candidate drug out-
side its original therapeutic use.78 This allows 
retargeted drugs to rush into Phase II and Phase 
III clinical studies, and the associated develop-
ment costs can be significantly reduced, given that 
the drug’s pharmacokinetic, pharmacodynamic, 
and toxicity profiles have already been established 
in the initial preclinical and Phase I studies. 
Traditionally, success stories of drug repositioning 
have come primarily from an understanding of 
drug pharmacology or retrospective analysis of the 
clinical effects of a drug. For example, sildenafil 
citrate was originally developed as an antihyper-
tensive drug but was later repositioned by Pfizer 
for the treatment of erectile dysfunction based on 
retrospective clinical experience; the use of tha-
lidomide for the treatment of erythema nodosum 
leprosum and multiple myeloma was based on 
serendipitous discovery.28 Rapidly evolving AI 
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drug design methods can make such serendipitous 
successes traceable.

Using a combination of systems biology and NLP 
techniques, the study of patients’ off-label drug 
use is a retargeting approach favored by pharma-
ceutical giants, using large-scale histological data 
and patients’ EHRs.3 BenevolentAI’s judgment-
enhancing cognitive system, JACS, uses AI tools 
and biomedical knowledge graphs to identify 
potential drug candidates by discovering new con-
nections between large amounts of unstructured 
data, such as disease, drug, and trial data, to ena-
ble drug redirection and help scientists discover 
more valuable indications for drugs. Johnson & 
Johnson has entered into a collaboration with 
BenevolentAI and signed an exclusive licensing 
agreement for some clinical-stage drug candidates 
to redevelop Bavisant, a highly selective histamine 
H3 receptor inverse agonist previously developed 
by Johnson & Johnson for failed attention deficit 
hyperactivity disorder, for extreme daytime sleepi-
ness in patients with Parkinson’s disease and has 
opened Phase II clinics.79 In February 2020, 
shortly after the World Health Organization 
declared the COVID-19 outbreak a public health 
emergency of international concern, BenevolentAI 
used knowledge mapping to identify Baricitinib, a 
drug developed by Elli Lily for the treatment of 
rheumatoid arthritis, as a potentially effective 
COVID-19 drug within days, TwoXAR used its 
DUMA™ drug discovery platform to mine the 
relationships between multi-omic data, protein 
interactions, chemical structures, and patient clin-
ical data for new uses of old drugs and found that 
exenatide and olopatadine were more effective in 
animal models of rheumatoid arthritis.80

In summary, AI technology has generated numer-
ous typical application cases in the pharmaceuti-
cal field. In drug development, AI can learn and 
comprehend patterns and rules of chemical reac-
tions, efficiently identify targets, and design and 
screen candidate molecules, providing strategies 
and pathways for drug synthesis and predicting 
drug kinetics and adverse reactions, thereby 
shortening the drug development cycle.81 
However, AI faces technical challenges in pre-
dicting adverse drug reactions and interactions, 
such as low data quality and prediction accuracy. 
Moreover, drugs solely generated by AI technol-
ogy have not yet been marketed; thus, the effec-
tiveness of AI applications in the development 
field remains to be tested in the market.

Application Challenges of AI in the 
pharmaceutical industry
We have long believed that introducing new tech-
nologies, such as the digitization of drug discov-
ery and development and AI, will be an irreversible 
trend. According to the above analysis, we must 
acknowledge that the difficulty of accessing the 
various elements of resources varies greatly and 
that the maturity of AI macromolecule drug 
development in each segment will be pulled apart. 
Based on the above judgment, we believe that at 
this extremely uneven data distribution stage and 
immature data sharing models, current AI macro-
molecular drug discovery companies must build 
their data asset production capabilities to estab-
lish true differentiation. The latitude of data pro-
duction could be antibody screening (single B-cell 
analysis), target protein-function relationships 
(proteomics), target epitope structures, peptide 
structures, etc. The data production platform 
must be unique and closely related to drug 
development.

Regarding data sharing, federated learning will be 
easier to implement on the ground than partici-
pating in or building a DAO (decentralized 
autonomous organization). Forming a federation 
will focus more on the standardization of data 
and the degree of digitalization of the companies 
involved, and flexible cooperation between two or 
three companies will be easier to implement on 
the ground. The barriers formed at the data level 
through the volume of data or the way data is cre-
ated will be more reliable.

Based on current observations, it is relatively 
challenging to protect the property rights of algo-
rithms, and therefore, the construction of barri-
ers is relatively short-lived. Based on the 
perspective of combining wet and dry experi-
ments, AI macromolecule drug development 
companies still need some innovative algorithm 
development capabilities, which are concentrated 
on the application side. Innovation on the appli-
cation side of the algorithm should be under-
stood as development needs to be systematic and 
continuously iteratively updated. The output 
should make it as easy as possible for life scien-
tists to understand and smoothly interface with 
wet experiments (e.g., whether the data predicted 
by the algorithm has realistic meaning, whether it 
is interpretable, whether it can give corrections 
based on predictions, etc.). In the algorithm  
and arithmetic part, we support companies 
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collaborating more and polishing their capabili-
ties with an open attitude.

In terms of business model, no matter what path is 
chosen, it needs to be based on the company’s 
deep understanding of drug development; other-
wise, the CRO (contract research organization) 
business will not be able to standardize its business 
and will be limited in expanding its categories and 
increasing the number of customers. In the drug 
development business, wet experiments (accumu-
lated over several months) take up much more 
time than dry experiments (accumulated over sev-
eral days), and the team’s lack of understanding of 
drug development will ultimately dilute the effi-
ciency gains of dry experiments by the inefficiency 
of wet experiments. From the current develop-
ment of public companies, it is easier to realize the 
value of a company’s direct involvement in drug 
development than CRO services. The core reason 
is that downstream customers lack evaluation cri-
teria for the quality of AI algorithms as CRO ser-
vices and have a low willingness to pay, a 
particularly evident feature in China. Drug devel-
opment companies need at least two dimensions of 
life sciences and algorithms talent pool and, more 
importantly, develop their methodology to string 
wet and dry experiments (i.e., choose what kind of 
data set to stock, what link model training has 
good prediction results after, combined with pre-
diction results how the team decides to advance 
the project), to achieve achievements beyond tra-
ditional drug development, which is AI macromol-
ecule drug development companies A sufficient 
condition for success. To achieve the above, the 
company needs to master technologies that may 
not only be strictly defined as machine learning 
algorithms and biopharmaceuticals but also incor-
porate knowledge from fields such as synthetic 
biology (solving the synthesis of artificial proteins) 
and engineering automation (digital adaptation of 
laboratory automation).

Because of the current challenges, pharmaceuti-
cal companies have a huge demand for advanced 
technologies to facilitate discovering and validat-
ing new drugs. There have been hundreds of col-
laborations between pharmaceutical and AI 
technology companies worldwide. It is fair to say 
that the traditional pharmaceutical industry is 
experiencing a shift from skepticism to interest in 
AI. But how far is it from interest to trust? The 
use of AI in pharma is expected to bring the entire 

AI ecosystem into pharma. So, will computa-
tional pharma and traditional pharma become 
parallel models in the future, like online and 
offline (online shopping is essentially VS)? That 
remains to be seen. Can the myriad variables of a 
complex biological system be quantified and ana-
lyzed accurately enough to identify new drug tar-
gets and better assess the effects of drugs? There 
are still many unknowns to be explored. However, 
whether AI can reshape and transform the drug 
discovery process, extracting value from all data 
across the drug discovery cycle is the way for-
ward. Data is not the same as science, but almost 
all scientific advances are identified and deter-
mined from data. As the volume of data contin-
ues to grow, drug development data is evolving 
into big data. And AI is currently the most ideal 
and effective way to handle big data.

Conclusion
The pharmaceutical industry has enormous and 
growing amounts of data, and in terms of models, 
the best AI pharma model is not to build pure AI 
processes. Combining humans and AI is often 
superior to human processes or AI processes alone. 
Just as in chess, the combination of a human and a 
computer algorithm can usually beat a human or a 
computer algorithm alone. AI technology methods 
need to be sorted out and developed. AI’s atten-
tion, exploration, and application trials in all sec-
tors of society will inevitably accelerate the 
maturation and innovation of AI technology meth-
ods. When the logic of the “large data → more 
accurate models → better drugs → more and bet-
ter data” cycle matures in practice, AI pharma will 
be significantly accelerated. However, the applica-
tion and diffusion of any technology are challeng-
ing to achieve overnight, and it is the law of 
development that new things spiral and move in 
waves. AI and data-driven pharma models need to 
be explored and practiced more and more before 
they can truly demonstrate their value.
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