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Abstract

Introduction
Information on the relationship between diabetes prevalence and
built environment attributes could allow public health programs to
better target populations at risk for diabetes. This study sought to
determine the spatial prevalence of diabetes in the United States
and how this distribution is associated with the geography of com-
mon diabetes correlates.

Methods
Data from the Centers for Disease Control and Prevention and the
US Census Bureau were integrated to  perform geographically
weighted regression at the county level on the following variables:
percentage nonwhite population, percentage Hispanic population,
education level, percentage unemployed, percentage living below
the federal poverty level, population density, percentage obese,
percentage physically inactive, percentage population that cycles
or walks to work, and percentage neighborhood food deserts.

Results
We found significant spatial clustering of county-level diabetes
prevalence in the United States; however, diabetes prevalence was
inconsistently correlated with significant predictors. Percentage
living below the federal poverty level and percentage nonwhite
population were associated with diabetes in some regions. The
percentage of population cycling or walking to work was the only
significant built environment–related variable correlated with dia-
betes, and this association varied in magnitude across the nation.

Conclusion
Sociodemographic and built environment–related variables correl-
ated with diabetes prevalence in some regions of the United States.
The variation in magnitude and direction of these relationships
highlights the need to understand local context in the prevention
and maintenance of diabetes. Geographically weighted regression
shows promise for public health research in detecting variations in
associations between health behaviors, outcomes, and predictors
across geographic space.

Introduction
More than 25 million Americans have diabetes, and another 80
million have prediabetes; taken together,  approximately 1 in 3
Americans have diabetes or prediabetes (1). Diabetes is associated
with  obesity  and  physical  inactivity;  many  built  environment
factors — attributes of the proximate environment — such as ac-
cess to healthy foods (2), crime level (3), the rural–urban matrix
(4–6), and walking (4) are correlated with diabetes prevalence.
One of  the  great  challenges  in  understanding the  associations
between built  environment attributes and diabetes is  that  both
factors vary across the United States. Although studies of diabetes
have found spatial variations in incidence and prevalence, there is
a paucity of information on how the spatial prevalence of diabetes
may or may not be associated with the spatial prevalence of built
environment attributes. The importance of understanding the cov-
ariance of diabetes with its correlates was made salient by Siordia
and  colleagues  (7),  who  found  that  the  relationship  between
poverty and diabetes prevalence varied across the United States,
with poverty highly correlated with diabetes in some regions but
not in others (7). This finding provided the impetus for our hypo-
thesis  that  the  relationship  between  diabetes  prevalence  and
county-level built environment attributes is nonstationary (ie, the
relationship varies across space).
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The objective of our study was to determine how and where dia-
betes prevalence is associated with built environment attributes at
the county level in the contiguous United States. This information
could allow programs and interventions to better target popula-
tions and attributes of the built environment associated with high
diabetes prevalence.

Methods
Our study used geographically weighted regression (GWR), a tool
that is increasingly used by public health researchers to under-
stand the nuances of such issues as access to health care, disease
distribution, and spatial variation in magnitude of health outcome
predictors (8–10).

Data sources

We used county-level cross-sectional secondary data from various
publicly available sources. Geographic information systems (GIS)
shapefiles of contiguous US counties were downloaded from the
Topographically Integrated Geographic Encoding and Referen-
cing (TIGER) files available from the US Census Bureau (11) and
imported into the ArcGIS 10.2 software (ESRI). Data on diabetes
prevalence, obesity rates, and physical inactivity were collected
from the Centers for Disease Control and Prevention’s (CDC’s)
Diabetes Interactive Atlas (12), which is based on data from the
Behavioral  Risk  Factor  Surveillance  System  (BRFSS).  CDC
defines diabetes prevalence as the estimated percentage of adults
with diagnosed diabetes, after adjusting for age. BRFSS does not
differentiate between type 1 and type 2 diabetes. CDC defines
obesity prevalence as the estimated percentage of obese adults
(body mass index ≥30) after adjusting for age. The prevalence of
physical inactivity is an estimated percentage of adults who are
physically inactive. Physically inactive adults are those who have
not participated in any physical activity or exercise in the preced-
ing 30 days (http://www.cdc.gov/diabetes/library/glossary.html).
All BRFSS data are based on self-report. Data on walking or cyc-
ling to work were collected from the US Census; this variable was
defined as  the percentage of  employed adults  per  county who
stated they either walked or cycled to work in the previous week.

Data for the sociodemographic variables — percentage nonwhite
population, percentage Hispanic population, percentage living be-
low the federal poverty level, education level, population density,
and  percentage  unemployed  —  were  from  the  US  Census
Bureau’s  American  Community  Survey  5-year  estimates
(2006–2010) (13). The variable for percentage nonwhite popula-
tion refers to the percentage of people who did not identify them-
selves as white and does not include Hispanics who identify them-
selves as white. Percentage Hispanic population refers to the per-

centage of people who identified themselves as Hispanic (both
white and nonwhite). The percentage of people living below the
federal  poverty  level  was  determined  according  to  income
thresholds defined by the US Census Bureau, which differ by fam-
ily composition. The education variable was defined as the per-
centage of people who reported having less than a high school dip-
loma. Population density was defined as the number of people per
square mile in a county. Unemployment was determined as the
percentage of civilians aged 16 years or older that did not have
work for the reference week. Data on food deserts were collected
from the Department of Agriculture (USDA); the food desert vari-
able was defined as the percentage of census tracts (per county)
that are food deserts (http://www.ers.usda.gov/data-products/food-
access-research-atlas/download-the-data.aspx). USDA defines a
census tract as a food desert if 33% of the population lives far
(urban, >1 mile; rural, >10 miles) from a supermarket or a gro-
cery  store.  All  variables  were  determined at  the  county  level.
There  were  3,109 counties  included in  the  study.  Counties  in
Alaska and Hawaii were excluded because we could not test the
influence of proximity; these states do not border other US states,
and in Hawaii, no county borders another.

Geographically weighted regression

We used GWR in addition to ordinary least squares (OLS) regres-
sion because the spatial data used in our study violates 2 major as-
sumptions of global regression. First, global OLS regression as-
sumes observations are independent of each other. However, spa-
tial  data  often are  clustered,  suggesting stronger  relationships
between proximate observations (14). Clustering can result in cor-
relation among regression residuals across space, or spatial auto-
correlation, and biased parameter estimates (15). Second, OLS re-
gression assumes spatial stationarity of the relationship between
independent and dependent variables (16). In other words, it as-
sumes  coefficients  will  be  constant  across  a  sample  area.
However, the context of a particular area can influence the mag-
nitude and direction of the relationship and produce a range of
coefficients (17). GWR relaxes these assumptions and enables the
analysis of spatially relevant data. Unlike OLS regression models,
which produce global models across space, GWR produces nu-
merous local models. It simultaneously conducts multiple regres-
sions so that there is one regression model per spatial data point
(eg, a county). Observations closer to a particular data point will
have  more  weight  in  the  estimation  than  observations  farther
away.
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Methodological steps in model building

The first step in the model building process is to map the depend-
ent variable and explore spatial heterogeneity. If the dependent
variable is not clustered, there is no need to build a spatially expli-
cit model. Without clustering, the global model will be similar to
the local model (17). We used the Moran’s Index (I) in ArcGIS to
map the clustering of diabetes prevalence across counties in the
United States. Moran’s I ranges from −1.0, perfectly dispersed (eg,
a checkerboard pattern), to a +1.0, perfectly clustered. A z score
and P value are generated as outputs along with Moran’s I.

Initial data exploration and model specification using OLS was
completed using SPSS 22 software (IBM Corporation).  Three
factors motivated the decision to first specify the OLS model: 1)
we wished to identify variables significantly correlated with the
dependent variable before specifying the regression model; 2) the
GWR software used for spatial analysis does not provide a vari-
ance inflation factor (VIF) to assess multicollinearity; and 3) the
GWR software does not enable the researcher to extract regres-
sion residuals to assess spatial autocorrelation for the global mod-
el.

In the OLS regression we included only variables significantly
correlated with the dependent variable, diabetes prevalence. Resid-
uals from the global OLS model were mapped and analyzed for
spatial autocorrelation using Moran’s I. The same set of variables
was then used to specify a GWR model using the GWR4 software
(http://geodacenter.asu.edu/gwr).  While  conducting GWR, we
used the adaptive kernel, which was produced using the bi-square
weighting function. The adaptive kernel uses varying spatial areas
but a fixed number of observations for each estimation, a method
most  appropriate  when the  distribution of  observations  varies
across space. In our case, observations (counties) are much smal-
ler and closer together in the Northeast and Southeast than they are
in the Midwest and West Coast. Finally, a process that minimizes
the Akaike Information Criteria (AIC) was used to determine the
best kernel size. The parameter estimates and t values produced by
the  software  were  exported  and  mapped  using  ArcGIS  10.2
(ESRI).

The residuals of GWR models are assumed to be normally distrib-
uted; a further assumption is that they are not spatially autocorrel-
ated or clustered across space. Such clustering suggests that the
local model underestimates or overestimates diabetes prevalence
in particular areas. The residuals from the GWR model were ana-
lyzed using Moran’s I to assess spatial autocorrelation. The clus-
tering of residuals for OLS and GWR models were compared to
assess the value of using GWR.

Comparison of OLS and GWR model performance

We used 3 tools to compare the OLS and GWR models. First, we
compared the adjusted R2 of the basic OLS model and the GWR
model. A higher adjusted R2 in the GWR model than in the OLS
model for the same set of variables suggests that location plays an
important role in explaining the variance of diabetes prevalence.
Second, we compared the corrected AIC (AICc) for both models.
AICc is a widely used measure of goodness-of-fit that adjusts for
degrees of freedom (18). It can be used to compare models with
the same dependent variable but different independent variables.
AICc can also be used to compare a global model with local mod-
els (17) because AICc does not assume models must be nested
(18). The values of AICc are not absolute, but relative, so that they
are meaningful only when compared between models. The model
with a smaller AICc is deemed a better fit. The final analytical
step was to compare residuals of both models for their distribution
and spatial autocorrelation.

Results
Diabetes prevalence in the United States at the county level ranged
from 3.8% to 17.8% and was significantly clustered (Moran’s I =
0.35; z = 540.2; P < .001). We found clusters of high diabetes pre-
valence in the Southeast and clusters of low diabetes prevalence in
Colorado. Diabetes prevalence was significantly correlated with
numerous independent variables. Because the percentage of neigh-
borhood food deserts was not significantly correlated at the county
level, it was not included in the OLS model. The following 9 vari-
ables were included in the OLS model: population density, per-
centage nonwhite, percentage Hispanic, percentage living below
the federal poverty level, percentage with less than high school
education, percentage unemployed, percentage obese, percentage
physically inactive, and percentage that walked or cycled to work.
The OLS model was significant (F9,3099 = 495.87, P < .001). The
model explained 58.8% of the variance in county-level diabetes
prevalence. The VIF for all variables was less than 4.0, a com-
monly used cutoff point, suggesting no multicollinearity (Table 1).

The residuals  of  the OLS model  were spatially  autocorrelated
(Moran’s I = 0.13; z = 26.4; P < .001). The OLS model overestim-
ated diabetes prevalence for Colorado and New Mexico counties.
Similarly, it underestimated the outcomes for Alabama and West
Virginia counties.

The GWR model produced coefficients for each county (Table 2,
Figure 1, Figure 2). The change in both magnitude and direction of
the coefficients suggests spatial nonstationarity of the relationship
between the predictors and diabetes prevalence. The direction of
the relationship in most counties was as expected.  Only a few
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counties had opposite relationships for the predictors in the GWR
model. In most counties, walking or cycling to work was associ-
ated with lower diabetes prevalence. However, a few clusters of
rural  counties  in  Minnesota,  North Dakota,  and South Dakota
show an association between walking or cycling to work and high-
er diabetes prevalence. Such nonstationarity demands a more nu-
anced analysis with a contextual focus. For example, high rates of
walking or cycling to work are often associated with multimodal
transportation that also includes public transit, which is less likely
to be available in rural communities (19).

Figure 1. Spatial variation in parameter estimates and t values in US counties
for the percentage of people living below the federal poverty level (maps A and
B) and the percentage of nonwhite population (maps C and D). Data sources:
American Community  Survey (2006–2010) (13)  and Centers for  Disease
Control and Prevention (12).

 

Figure 2. Spatial variation in parameter estimates and t values in US counties
for percentage of employed population walking or cycling to work (maps A and
B) and the percentage of the population that is physically inactive (maps C
and D);  local R-squared for full  geographically weighted regression model
(Map E). Data sources: American Community Survey (2006–2010) (13) and
Centers for Disease Control and Prevention (12).

 

The adjusted R2 for the local GWR model ranged from 0.06 to
0.94; the adjusted R2 in the OLS model was 0.58. Explicitly, the
global OLS R2 of 0.58 masks a wide distribution of local associ-
ations between the predictors and diabetes prevalence. Without
GWR, we would have been unable to estimate local models. In
counties in North Dakota, South Dakota, and Montana, the GWR
model explained up to 94% of the variance in diabetes prevalence.
However, in Washington and Oregon, the model did not explain
much of the variance (6%–37%), a spatial variation that would
have been missed with the OLS model alone. Residuals for the
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GWR model, although significant, were less spatially autocorrel-
ated than residuals for the OLS model (Moran’s I = 0.01; z = 3.74;
P  <  .001).  Compared  with  OLS,  the  GWR model  greatly  im-
proved model fit. The GWR model explained more variance in
diabetes prevalence and reduced the AICc (ΔR2 = 0.22; ΔAICc =
2,008.4).

Discussion
Poverty level, physical inactivity, and walking or cycling to work
were each significantly associated with county-level diabetes pre-
valence, relationships that were spatially nonstationary across the
United States. The variation in parameter estimates from GWR
suggests the need to apply this spatial analysis tool to other dia-
betes studies that have been restricted to global models (2,4). In
the global OLS model, 58.8% of county-level diabetes prevalence
was explained by race, poverty, obesity, physical inactivity, and
walking or cycling to work.  However,  at  an individual county
level, the explanatory percentage ranged from 6% to 94%, and the
individual county-level models were significantly clustered. This
clustering suggests that local contexts, policies, programs, and
built environment attributes are associated with diabetes preval-
ence and that the amplitude of such contexts, policies, programs,
and environments varies across the nation.

The dissimilarity in variable coefficients was not a factor of one
county alone but was a factor of multiple proximal counties, per-
haps because of policy and programmatic spillover from neighbor-
ing counties and diffusion of innovation (20). The percentage of
nonwhite population in a county had the greatest  effect  in the
Southeast  and the Rockies,  from Arizona and New Mexico to
Idaho and Montana. States in these regions have a high proportion
of African Americans, Hispanics, or Native Americans, races/eth-
nicities with disproportionately high rates of diabetes (21). In sev-
eral regions (including the Midwest, the Ohio Valley, and New
England), poverty had a greater association with diabetes preval-
ence than any other variable. Physical inactivity had the greatest
effect in the Southeast and the Southwest, a pattern similar to that
of obesity prevalence (22). Walking or cycling to work was most
associated with diabetes prevalence in the Mississippi Valley, the
panhandles of Texas and Oklahoma, and south Florida, areas not
generally associated with walking or cycling because of their hot
summers.

The relationships among nonwhite populations, poverty, physical
inactivity, and diabetes are not new (3,4,7). Others found these re-
lationships have a spatial component (23). With the exception of
recent work by Siordia and colleagues (7), there has been no in-
vestigation into the nonstationarity of these relationships. Simil-
arly, the strong association between walking or cycling to work

and diabetes is consistent with findings of other studies (24), but it
has not been investigated for spatial heterogeneity or nonstationar-
ity. That there is a significant association between nonwhite popu-
lations, poverty, physical inactivity, and diabetes and that this rela-
tionship has a spatial but nonstationary association highlights the
need for local, context-specific diabetes prevention programs.

There are limitations to GWR and our analyses. GWR equates the
local regression coefficients based on those geographic areas (eg,
counties) most proximate to the area of interest. That is, the re-
gression equation and coefficients for a county in Missouri are
most influenced by bordering counties and other nearby counties,
but not influenced by counties in Colorado or North Carolina. This
concept is essential for local planning and related to Tobler’s first
law of geography, that “everything is related to everything else,
but  near  things  are  more  related  than  distant  things”  (25).
However, the distance of influence (of predictors or potential in-
terventions) is theoretically unknown and perhaps inconsistent
across a geographic area (eg, the continental United States). We
chose to use an adaptive kernel bandwidth, which accounted for
differences in the size of counties and therefore the distance of in-
fluence. This choice should have helped adjust for the fact that, for
example, North Carolina has 100 small counties and California
has 58 larger counties spread over 3 times the landmass of North
Carolina. Because of this discrepancy, the data point (county) was
an estimate based on proximate counties as defined by the kernel
type. GWR is also limited by the edge effect, whereby counties
located on the edges of the United States (ie, coastal regions and
the borders with Canada and Mexico) do not have the 360° influ-
ence of counties in the nation’s interior.

There are also limitations to our findings. The local R2s accounted
for 6% to 94% of county-level diabetes prevalence. In large geo-
graphic areas in the Mid-Atlantic, upper Midwest, and Northwest,
the 9 variables included in the model explained less than one-third
of the variance in diabetes prevalence, which means that most
factors associated with county-level diabetes prevalence in these
geographic areas must have been missing from our model.

The primary strength of this study is the use of GWR in the ana-
lysis of the spatial distribution and correlates of diabetes preval-
ence. Siordia and colleagues (7) introduced the concept of spatial
nonstationarity to the relationship between poverty and diabetes.
Here, we extend their work by incorporating additional socioeco-
nomic variables and built environment correlates with diabetes.
GWR adds value to public health research and practice by em-
phasizing  location-specific  theories  of  health  outcomes  and
tailored policies for intervention. It scrutinizes the assumption of
global relationships between various predictors and health out-
comes. Using GWR, public health researchers and practitioners
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can gain a nuanced understanding of health-related issues and re-
spond to the notion that “all health is local” (25,26). In doing so,
they can provide clarity for designing and funding context-specif-
ic public health programs and policies, especially for national pro-
grams that have local reach, including those of the CDC and the
American Diabetes Association (ADA). Our analyses could also
be used by local public health departments and ADA offices for
resources such as MIYO (Make It Your own - http://www.miy-
oworks.org/) to tailor messages and materials for their target audi-
ences. The use of GWR is a key advancement in public health re-
search and practice because many health behaviors and outcomes
vary spatially (eg, obesity) as do many common predictors (eg,
race/ethnicity) (27).

Shedding light on spatial variations can provide new insights into
well-established relationships. The methodology of GWR needs to
be expanded to additional public health efforts to understand the
impact of environment and place on health and how these relation-
ships may vary across space. For diabetes prevalence, we presen-
ted an initial step in this direction, but much work remains before
we understand why these variations exist and why race/ethnicity,
poverty, physical inactivity, and active commuting have little ex-
planatory effect in some regions but explain up to 94% of dia-
betes prevalence in other regions.
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Tables

Table 1. Results From Ordinary Least Square Model of US County-Level Diabetes Prevalence, 2009–2010

Characteristic β SE t Value P Value Variance Inflation Factor

Intercept 4.80 0.190 24.94 <.001 —

Population density 0.000192 0 8.93 <.001 1.45

Percentage nonwhite population 0.043 0.002 26.22 <.001 1.42

Percentage Hispanic population −0.03 0.002 −18.32 <.001 1.11

Percentage living below federal poverty level 0.10 0.004 23.65 <.001 1.46

Percentage unemployed −0.89 0.360 −2.48 .01 2.95

Percentage with less than a high school education 0.44 0.110 3.97 <.001 3.00

Percentage obese 0.063 0.009 6.99 <.001 2.22

Percentage physically inactive 0.03 0.007 5.86 <.001 2.15

Percentage that walks or cycles to work −12.46 0.580 −21.38 <.001 1.47

Abbreviation: SE, standard error.
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Table 2. Results From Geographically Weighted Regression Model of US County-Level Diabetes Prevalence, 2009–2010

Characteristic

β Percentage of Counties by 95% of t Statistic

Min Max t ≤ −1.96 −1.96 < t < 1.96 t ≥ 1.96

Intercept 1.60 10.7 0 0 100

Population density −0.003 0.01 13.2 86.2 0.70

Percentage nonwhite population −0.04 0.09 1.00 21.6 77.4

Percentage Hispanic population −0.22 0.16 30.4 68.0 1.50

Percentage living below federal poverty level −0.02 0.14 0.00 60.2 39.8

Percentage unemployed −45.4 23.4 21.4 78.1 0.60

Percentage with less than a high school education −6.66 15.0 0.10 76.3 23.6

Percentage obese −0.07 0.16 0.00 71.0 29.0

Percentage physically inactive −0.08 0.11 5.00 81.9 13.1

Percentage that walks or cycles to work −32.1 6.69 29.2 70.7 0.20
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