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Recent large-scale data sets of protein complex purifi-
cations have provided unprecedented insights into the
organization of cellular protein complexes. Several
computational methods have been developed to detect
co-complexed proteins in these data sets. Their com-
mon aim is the identification of biologically relevant
protein complexes. However, much less is known about
the network of direct physical protein contacts within
the detected protein complexes. Therefore, our work
investigates whether direct physical contacts can be
computationally derived by combining raw data of large-
scale protein complex purifications. We assess four es-
tablished scoring schemes and introduce a new scoring
approach that is specifically devised to infer direct
physical protein contacts from protein complex purifi-
cations. The physical contacts identified by the five
methods are comprehensively benchmarked against dif-
ferent reference sets that provide evidence for true
physical contacts.

Our results show that raw purification data can indeed
be exploited to determine high-confidence physical pro-
tein contacts within protein complexes. In particular,
our new method outperforms competing approaches at
discovering physical contacts involving proteins that
have been screened multiple times in purification exper-
iments. It also excels in the analysis of recent protein
purification screens of molecular chaperones and pro-
tein kinases. In contrast to previous findings, we ob-
serve that physical contacts inferred from purification
experiments of protein complexes can be qualitatively
comparable to binary protein interactions measured by
experimental high-throughput assays such as yeast
two-hybrid. This suggests that computationally derived
physical contacts might complement binary protein in-
teraction assays and guide large-scale interactome
mapping projects by prioritizing putative physical con-
tacts for further experimental screens. Molecular &
Cellular Proteomics 10: 10.1074/mcp.M110.004929, 1–
15, 2011.

Proteins often do not act in isolation, but cooperate in larger
assemblies to fulfill their functions. The resulting protein com-
plexes are essential in a variety of cellular processes (1). Thus,
the identification and annotation of protein complexes is cur-
rently the focus of both experimental and computational anal-
yses (2). Recent advances in experimental technologies for
protein purification and identification (3), such as tandem-
affinity purification techniques, enabled high-throughput pu-
rification screens for protein complexes in several model
organisms (4). A typical high-throughput screen entails hun-
dreds of purification experiments, in which a single purifica-
tion assay determines prey proteins that associate with a
given bait protein through multiprotein complex formation.

Because of a variety of reasons, such as experimental
noise, presence of nonspecific interactors, or participation of
the bait protein in multiple distinct protein complexes (5), the
experimentally obtained purifications are not directly inter-
pretable as biologically relevant protein complexes. There-
fore, computational methods are applied to infer these com-
plexes from raw purification data by scoring protein
interactions within the purifications. Publication of two inde-
pendent large-scale screens of protein complexes in the yeast
Saccharomyces cerevisiae (6, 7) triggered development of
several such scoring schemes (6–11) and resulted in a revised
catalogue of manually curated yeast complexes (12).

Proteins within a complex are connected by protein inter-
actions. Here, protein interactions often refer to both direct
physical contacts, in which two proteins share a common
binding interface, and indirect, bridging interactions, in which
the proteins do not contact each other directly. Established
purification scoring schemes have been shown to perform
well in determining the composition of protein complexes by
identifying such protein interactions in the purification data.
However, these scoring schemes do not discriminate be-
tween direct physical contacts and indirect protein interac-
tions. Consequently, less is known about which proteins in
large-scale protein purifications form direct physical contacts
although this information is crucial for a deeper understanding
of protein complex formation and organization.

Furthermore, the difficulty of identifying physical protein
contacts within protein complex purifications has hampered
the comparison with results of binary protein interaction ex-
periments such as yeast two-hybrid assays. A recent com-
parison found substantially more true physical contacts from
binary assays than purification experiments (13). However,
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this analysis did not consider that protein complex purifica-
tions contain both direct physical contacts and indirect pro-
tein interactions in contrast to binary assays. Because this
results in a lower enrichment with physical contacts, a com-
parison of the experimental assays that concentrates only
on putative physical protein contacts would provide deeper
insights into the relative merits of each experimental
technology.

Even though several experimental and computational meth-
ods exist that produce structural models of protein complexes
at various levels of resolution (14, 15), structural data required
by these approaches is not readily available for the vast
majority of complexes detected by large-scale protein purifi-
cations. Thus, the main objective of this work is to assess
whether and how we can make use of the available purifica-
tion screens to computationally infer the network of physical
contacts within the assayed protein complexes.

Our guiding principle rests upon the observation that pro-
teins forming physical contacts within a complex exhibit
stronger associations and thus are more likely to survive
purification procedures than proteins that do not form such
contacts. A similar observation is central to a hybrid approach
developed by the Robinson group in which individual protein
complexes are perturbed by experimental techniques to dis-
cover physical contacts between proteins within these com-
plexes (16). We hypothesize that even though large-scale
purification screens do not directly measure physical contacts
within complexes, the resulting experimental data does con-
tain sufficient information to reliably infer these interactions.

The three main contributions of our work are as follows.
First, we propose an elegant computational method for scor-
ing pairs of proteins based on their co-occurrence pattern
within a combined set of purifications originating from multiple
large-scale screens. In contrast to existing scoring schemes,
which were originally developed and evaluated to detect co-
complexed protein pairs regardless of their mode of interac-
tion, our approach is tuned to detect protein pairs that form
direct physical contacts and incorporates experimental repli-
cates in a statistically correct fashion. As a consequence, our
method can reliably detect true physical contacts even in the
presence of many unspecific or highly transient protein inter-
actions and especially outperforms existing scoring schemes
if experimental replicates are available. These properties
make our approach particularly suited for the joint analysis of
physical contacts from multiple protein purification screens.

Second, we perform a comprehensive evaluation of our and
four other published scoring methods on the task of detecting
physical contacts. Each method scores purification data from
two recent large-scale experiments in yeast (6, 7). The results
of all scoring methods are benchmarked against several ref-
erence sets that represent complementary evidence for
physical contacts. The reference sets are derived from exper-
imentally determined physical interactions, three-dimensional
structures of protein complexes, manually curated catalogs of

protein complexes, and genetic interaction profiles. In partic-
ular, we assess the scoring methods by inferring specific
physical contacts in two challenging and biologically relevant
purification data sets containing repeated purifications of mo-
lecular chaperones or protein kinases.

Third, we compare top-ranking physical contacts inferred
by our method to two recent high-throughput interaction data
sets derived by the experimental techniques yeast two-hybrid
(Y2H)1 (13) and protein fragment complementation assay
(PCA) (17) and address intrinsic differences of high-through-
put approaches to mapping physical interactomes.

EXPERIMENTAL PROCEDURES

Purification Data

Large-scale Purification Data—We used a combined set of purifi-
cations from two large-scale screens in yeast (6, 7). Raw experimental
data was obtained from the supporting web-site (http://interactome-
cmp.ucsf.edu) of one of the existing scoring methods included in our
evaluation, the PE method (8). Purification data from the Gavin et al.
(6) screen was taken as it is, whereas purification data from the
Krogan et al. (7) screen was filtered as follows. The Krogan team used
two different experimental protocols, liquid chromatography MS
(LCMS) and matrix-assisted laser desorption ionization (MALDI), for
prey identification. For each purification, we retained preys having
MALDI identification score of at least 1.25 or LCMS confidence score
of at least 99%. We further filtered out preys that were identical to
baits in their respective purifications from both screens. Last, we
combined purifications from the two individual screens into one data
set, which we denoted as Large-Scale set of purifications. Table I
summarizes purification data from individual screens as well as from
the Large-Scale set.

Protein Kinase and Phosphatase Purification Data—In addition to
the Large-Scale data set, we used a specialized purification data
set focusing on kinase and phosphatase interactions in yeast from
a recent experimental study by Breitkreutz et al. (18). The bait
proteins in the Breitkreutz data were screened with three different
tag systems (FLAG, HA, and TAP) and the purified prey proteins
include information about peptide (spectral) counts that can be
used as a semi-quantitative measure of absolute protein abun-
dance. We obtained raw purification data for all three tag systems
from the supporting website (http://yeastkinome.org). Subse-
quently, the purifications were filtered to (1) exclude tag-specific
contaminant proteins identified by control experiments in the orig-
inal study and to (2) remove unreliably identified prey proteins with
Mascot scores <35. The resulting Breitkreutz purification data set
is summarized in supplemental Table S1.

Reference Sets

High-confidence Physical Contacts—Binary gold standard (BGS)
protein interactions used in a recent assessment of binary experimen-
tal methods (13) as well as the experimental Y2H data generated in

1 Y2H, Yeast two-hybrid; BGS, Binary gold standard; ISA, improved
socio-affinity; LCMS, Liquid chromatography-mass spectrometry;
MALDI, Matrix-assisted laser desorption/ionization; MIPS, Munich
Information Center for Protein Sequences; PCA, Protein fragment
complementation assay; PDB, Protein Data Bank; PE, Purification
Enrichment; SA, Socio-Affinity; SAINT, Significance Analysis of the
Interactome; SGD, Saccharomyces Genome Database; 3DID, 3D in-
teracting domains database.
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the same study were obtained from the CCSB interactome database.
Note that, because no true gold standard for binary protein interac-
tions is available, we decided to use the BGS naming convention from
(13) to allow better comparability of our work. Further binary interac-
tions measured by a recent protein-fragment complementation assay
(PCA) (17) were extracted from the Saccharomyces Genome Data-
base (SGD) (19).

Binary interactions originating from experimental assays that directly
measure physical protein contacts were obtained from IntAct (20) and
SGD. This set of interactions was filtered to exclude physical contacts
that solely rely on evidence from the Y2H and PCA binary protein
interaction data sets. The filtered data set was used to (1) define two
reference sets: a Chaperone reference set containing only interactions
involving yeast molecular chaperones and (2) a Kinase reference set
including solely interactions involving yeast kinases and phosphatases.

Protein Complexes and Domain Interactions—Protein complexes
derived from Gene Ontology annotations as provided by SGD and
manually curated protein complexes from the Munich Information
Center for Protein Sequences (MIPS) (21) were imported from the
websites of the respective organizations. For the validation of inferred
physical contacts on the level of protein domain interactions, a map-
ping table from SGD was obtained to assign UniProt accession
numbers to all proteins in the Large-Scale purification data. Subse-
quently, globular Pfam-A domain annotations for these proteins were
obtained from the InterPro database (22). We restricted the used
annotations to globular domains because this type of protein regions
is especially well characterized and known to be involved in stable
protein interactions (23). A list of Pfam-A domain interaction partners
derived from structures of interacting proteins in the Protein Data
Bank (PDB) (24) was obtained from the 3DID database (25). This 3DID
reference set was post-processed to exclude domain interactions
that solely rely on PDB intra-chain interactions.

Genetic Interaction Profiles—Interaction confidence scores derived
from in vivo synthetic genetic interactions (GI) were obtained from a
recent large-scale functional study in yeast (26). Of the several avail-
able data sets containing genetic interaction scores for pairs of pro-
teins, we selected the lenient cutoff interaction set that offered the
highest coverage of yeast proteins whereas, at the same time, includ-
ing only statistically significant interactions. This data was used to
reconstruct genetic interaction profiles for all proteins in the Large-
Scale purification data set. Consequently, genetic interaction profile
similarities for pairs of proteins were generated by computing Pear-
son’s correlation coefficients between the genetic interaction profiles
of all protein pairs. Analogous to the original study, all protein pairs
with a genetic interaction profile similarity > 0.2 were used to form a
functional map of the Large-Scale purification data. Protein pairs in
this map are denoted as the GI reference set.

Scoring Methods—Let � � ��1,…,�N� be a set of purifications
where each purification �k is composed of a bait protein baitk and a
set of prey proteins preysk. We will use nk to denote the number of
preys in �k and designate N � �

k
nk as the size of the multiset of all

preysk. For a pair of proteins, i and j, let Si3j be the number of times
j is observed among preys in purifications performed with i as bait and
preysk be the number of times i and j are observed as preys in purifi-
cations performed with a third protein as a bait. In what follows, the
experimental observations S and M are also denoted as spoke obser-
vations and matrix observations, respectively. Some scoring schemes
combine S and M into one number Oi, j � Si3j � Sj3i � Mi, j. We will
denote by: Si3j

null, Mi, j
null, and Oi, j

null random variables representing these
different types of observation counts under appropriate null models.
Next, we briefly introduce the scoring methods that are assessed in this
work.

Socio-affinity Scores—The socio-affinity (SA) scoring scheme is
one of the first approaches for scoring purification data and was

developed by Gavin et al. to interpret the results of their large-scale
screen (6). The score is based on three counts Si3j, Sj3i, and Mi, j is
given by:

SA�i, j� � log
Si3j

E �Si3j
null�

� log
Sj3i

E �Sj3i
null�

� log
M�i, j�

E �M�i, j�
null�

(Eq. 1)

The distributions of Si3j
null and Mi, j

null are modeled based on the as-
sumption that purifications are drawn uniformly at random from the
observed multiset of preys. This means that �k

null is formed through
nk independent random selections of preys where the probability
of selecting the prey protein j is equal to its relative frequency
fj � � ��k � j � preysk�� � N � 1. Under this null model, the expected
values of Si3 j

null and Mi, j
null are given by E �Si3 j

null � � �
k:i � baitk

fjnk and
E �Mi, j

null� � �
k
fifj�2

nk).
Improved Socio-affinity Scores—In this work, we propose a mod-

ification of the SA scoring scheme termed improved socio-affinity
(ISA) score. It makes full use of repetitive purifications and concen-
trates on spoke observations S to improve the detection of physical
contacts. In particular, we adopt the null model used for SA scores
and derive the ISA score as follows:

ISA(i, j) � 	logPr(Si3j
null � Si3j) � logPr (Sj3i

null � Sj3i)

(Eq. 2)

To compute Pr(Si3j
null � Si3j) and Pr(Sj3i

null � Sj3i), we introduce an
indicator random variable Xj,k that corresponds to the selection of
protein j into the set of preys of �k

null, thus Pr(Xj,k) � 1 � �1 � fj�nk. We
then note that Si3j

null is a sum of independent binary random variables:
Si3j

null � �
k:i
baitk

Xj,k. Since Pr(Xj,k) depends on the size of �k, it is, in
general, not the same for different purifications performed with bait
protein i. As a result, the distribution of Si3j

null is not binomial. To
alleviate this problem, we set Pr(Xj,k) � 1 � �1 � fj�n̂, where n̂ is the
average size of purifications performed with i, and use the binomial
distribution to compute Pr(Si3j

null � Si3j). To avoid a situation where a
single observation with a rare prey protein receives very high scores,
we adjust background prey frequencies fj by adding a constant
� fraction of each prey to each purification. In this work we used
� � 0.0025.

Purification Enrichment Scores—The purification enrichment (PE)
scoring scheme was proposed by Collins et al. (8) as an alternative to
the original SA scores to analyze the combined set of purifications
from two recent large-scale screens in yeast (8). The authors adopted
a more sophisticated statistical model to score evidence for each
observation o separately:

PE(i, j) � �
o

log� Pr(o � i and j interact)
Pr(o � i and j do not interact)�

(Eq. 3)

The detailed description of the statistical model used to derive the
probabilities above is beyond the scope of this paper and the interested
reader is referred to the original publication (8). We just note here that
the estimation of parameters used by the model is not straightforward
and requires a representative set of gold standard interactions.

Hart scores—Another scoring scheme was proposed by Hart et al.
(9) with a particular emphasis on joint analysis of experimental data
from several large-scale purification screens of protein complexes (9).
In this approach, the scores are based on the combined number of
observations, Oi, j, and are computed as:

HART(i, j) � 	logPr(Oi, j
null � Oi, j) (Eq. 4)
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Molecular & Cellular Proteomics 10.6 10.1074/mcp.M110.004929–3



The distribution of Oi, j
null is modeled based on the assumption that

interactions of a protein are selected uniformly at random from the
multiset of all observed interactions. More precisely, for a pair of
proteins i and j, Oi � �

j
Oi, j interactions are selected uniformly at

random from the ground set of O � �
i, j
Oi, j interactions that contains

Oj � �
i
Oi, j ‘‘relevant’’ (involving j) interactions and O � Oj ‘‘irrelevant’’

(not involving j) interactions. The statistical significance of the observed
Oi, j is then assessed by determining the probability that at least
Oi, j ‘‘relevant’’ interactions are selected. Under this null model, Oi, j

null has
a hyper-geometric distribution and Pr�Oi, j

null � Oi, j� can be efficiently
computed. We note that both the SA and Hart null models are simple
and parameter free, resulting in efficient computational procedures.
However, whereas the SA null model preserves the structure of original
purifications, the Hart null model does not.

IDBOS Scores—Recently, the Interaction Detection Based On
Shuffling (IDBOS) scoring scheme was proposed for scoring purifica-
tion data with an emphasis on the prediction of direct physical protein
interactions (27). In this approach, the scores are based on the
combined number of observations, Oi, j, and are computed as follows:

IDBOS(i, j) �
Oi, j � E �Oi, j

null�

S �Oi, j
null�

(Eq. 5)

The distribution of Oi, j
null is modeled by assuming that the observed

purifications are randomly permuted. The resulting null model is very
similar to the one used by the SA and ISA approaches. The main
difference is the accurate modeling of observed purifications—the
IDBOS null model does not allow random instances where a prey
appears multiple times in a single purification. However, this small
gain in accuracy comes at a high computational cost. Because the
resulting distribution of Oi, j

null is much more complex, extensive numer-
ical simulations are required to estimate its properties. The authors
perform 106 numerical randomization experiments to estimate the
expected value of Oi, j

null, E �Oi, j
null�, and its standard deviation S [Oi, j

null].
SAINT Scores—The Significance Analysis of Interactome (SAINT)

scoring scheme was recently introduced to detect non-specifically
interacting proteins in the Breitkreutz purification data (18). The
method is depending on the use of peptide counts, an additional type
of experimental data that was generated during the peptide identifi-
cation phase of the Breitkreutz screen and can be used as a semi-
quantitative measure of absolute protein abundance. SAINT employs
a mixture of Poisson distributions to heuristically compute posterior
probabilities of specific interactions between proteins based on the
peptide counts. Because of the high complexity of the model, pre-
sentations of detailed theoretical underpinnings of SAINT are beyond
the scope of this work. However, we note here that SAINT is a
comparatively complex scoring method with many free parameters
and that it requires the availability of experimental peptide count data.
Both properties hinder its applicability to publicly available large-scale
purification data.

Score Implementations—SA, ISA, and Hart scores were computed
using in-house Python scripts on the Large-Scale set of purifica-
tions. Because of the computational complexity of IDBOS and PE
scores, these scores were obtained from the original publications.
Although PE scores were computed on the Large-Scale set of
purifications by the authors, IDBOS does not support the compu-
tation of scores based on multiple sources of purification data
(personal communication). Therefore, we used the IDBOS scores
computed on the Gavin data because these showed the best
performance among all scored data sets in the original publication
(27). Because of its reliance on peptide count data, SAINT is not
applicable to the Large-Scale set of purifications. SAINT scores for
the Breitkreutz purification data were obtained from the original
publication (18).

The purification data and the reference sets as well as all inferred
physical contacts are available on request from the authors.

Salama-Quade Rank Correlation—The Salama-Quade rank corre-
lation coefficient measures similarity between two different rankings
of a set of elements (28). It was developed as an alternative to
standard rank correlation measures, such as Spearman’s rho and
Kendall’s tau, for situations where agreement in low ranks is more
important than agreement in high ranks.

Let {1, . . ., m} be a set of elements, R1(i) be the rank of element
i under the first method, and R2(i) be the rank of element i under the
second method. The Salama-Quade coefficient measures the
agreement between rankings R1 and R2 and is given by
SALAMA-QUADE(R1,R2) � �k
1

K Tk/k, where Tk is the number of elements
having rank less or equal to k under both R1 and R2. For similarity
values in Fig. 1B we used K 
 10,000 and normalization
SALAMA-QUADE(R1,R2)/K.

RESULTS

Scoring Purification Data—A purification represents the
outcome of an experiment in which a single bait protein is
tagged and biochemically co-purified with prey proteins that
associate with the bait by forming of one or several protein
complexes. For example, in the screen by Gavin et al. (6), a
specific purification using the �-subunit of clathrin adaptor
complex AP-2 as bait contained 22 prey proteins. Three of the
co-purified preys correspond to the other subunits of this
hetero-tetrameric complex; the other preys might be either
unknown subunits of the AP-2 complex, subunits of other
complexes in which the �-subunit participates, or nonspecific
interactors.

Even though the interpretation of a single purification is
limited, combined purifications from several large-scale
screens contain repeated observations of associated proteins
that may indicate true protein-protein interactions. Over the
years, several computational approaches were developed to
integrate experimental observations across purifications in
order to infer pairs of interacting proteins. Four major ap-
proaches utilizing raw experimental data are SA scores (6), PE
scores (8), scores developed by Hart et al. (9) (Hart), and
recently published IDBOS scores (27). However, none of
these methods is ideally suited for identifying direct physical
contacts between proteins within a complex through the joint
analysis of purifications from several large-scale screens.

In this work we propose a novel scoring method specifically
tailored for using repeated purifications. In the following, we
briefly describe the main features of our new ISA scoring
method.

A single purification provides two kinds of experimental
evidence for protein interactions: spoke observations support-
ing interactions between the bait and each of the preys, and
matrix observations supporting interactions between every
pair of preys. In some cases, however, matrix observations
are much less reliable than spoke observations. In particular,
a large fraction of matrix observations from purifications con-
taining several small complexes would support non-existing
interactions between proteins in distinct complexes. The dis-
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tribution of protein complex sizes in manually curated cata-
logues of protein complexes in yeast suggests that the ma-
jority of complexes are small; about 64% of complexes in
MIPS catalog, for example, have up to four subunits. In com-
parison, the average number of preys in the purifications in
our data set is about 10 (see Table I). It appears therefore that
the majority of purifications are indeed composed of several
complexes and thus provide many misleading matrix obser-
vations. Although relying on potentially misleading matrix ob-
servations does not adversely affect scoring of co-complexed
protein pairs, the task of identifying direct physical contacts is
more sensitive toward misleading observations. Conse-
quently, ISA is cautious and derives interaction confidence
scores solely from the more reliable spoke observations
whereas completely discarding matrix observations. This is in
stark contrast to the other four methods SA, PE, Hart, and
IDBOS that derive their scores from a mixture of both spoke
and matrix observations.

Similar to related approaches, our method uses statistical
techniques to derive interaction confidence scores from
spoke observations contained in the experimental purification
data. Specifically, for each pair of proteins, the number of

spoke observations in the experimental data is compared with
the number of such observations under an appropriate null
model. Our novel method ISA adopts the null model of Gavin
et al. introduced in the context of the SA scoring method (6).
This null model preserves size and content of the original
purifications, but selects prey proteins for each purification
uniformly at random from the multiset of preys. Even though
more sophisticated null models were proposed in the context
of later scoring methods such as Hart, we believe that the SA
null model is ideally suited for scoring complex purification
data. On one hand, it is simple enough to allow analytical
derivation of statistical significance. On the other hand, it
realistically models the observed data by preserving much of
the structure of the original purifications such as the identity of
bait proteins, purifications sizes, and frequency of prey pro-
teins. However, one of the main problems with the SA ap-
proach is that additional observations supporting a protein
interaction result in a disproportionally small increase of the
SA score. This poses a problem when purifications from sev-
eral independent screens are jointly analyzed. Therefore, as a
major improvement over the SA method, ISA scores are de-
rived through statistical p-value computations that allows at-
tributing higher confidence to putative physical contacts with
multiple supporting observations originating from experimen-
tal replicates.

Scoring Two Large-scale Purification Experiments in S.
cerevisiae—We used the four established scoring schemes
SA, Hart, PE, and IDBOS as well as our own approach to
score a combined set of purifications from two recent large-
scale screens of protein complexes in S. cerevisiae (6, 7). In
this section, we examine top-ranking inferred physical con-
tacts between proteins by our method and relate them to
results of the other four scoring methods.

Table II lists ten inferred physical contacts having the highest
ISA scores. All but two interactions in the top-ten list are sup-
ported by small-scale experiments reported in the literature.
Four top-ten physical contacts receive low scores under the SA
method that highlights one of the main differences between the
SA and ISA approaches. Consider, for example, the interaction

TABLE I
Summary of purification data from two independent large-scale com-
plex purification screens in yeast, denoted here as Gavin and Krogan,
as well as for the combined Large-Scale set. For each screen the
number of purifications, the number of distinct bait proteins, the
number of distinct prey proteins, the average number of preys per
purification, and the number of distinct bait-prey and distinct bait-prey

and prey-prey pairs are shown

Gavin Krogan Large-Scale

purifications 1912 3999 5911
baits 1754 2178 2830
preys 1813 3505 3759
avg. number of preys 10.56 10.31 10.39
protein interactions

(bait-prey pairs)
18,206 32,525 47,254

protein interactions
(bait-prey and
prey-prey pairs)

82,202 182,134 238,154

TABLE II
A list of top-10 physical contacts inferred by the ISA score. For each physical contact, the number of supporting spoke observations (Si3j and
Sj3i), number of supporting matrix observations (Mi, j), rank under the other scoring schemes, and number of distinct supporting SGD literature

references are listed

i j Si3j Sj3i Mi,j SA PE Hart IDBOS references

UBP2 RUP1 11 7 0 1568 403 114 67 2
RFA1 RFA2 16 3 13 1131 256 91 2371 3
HAT2 HHT2 0 23 0 56934 7624 435 NA 1
HIF1 HHT2 0 22 0 53035 6250 444 NA 0
HIF1 HAT1 7 14 32 1857 70 5 321 2
HHT2 HAT1 22 0 0 58294 8010 622 NA 1
SRB4 SRB5 5 15 14 1322 44 170 264 12
SPT16 POB3 16 2 55 2705 791 4 2326 6
HHT2 PSH1 18 0 0 47045 6862 702 NA 0
UBA2 AOS1 6 5 0 899 1113 412 NA 1

Protein Contacts from Purification Data
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between HAT2 and HHT2 proteins, which is ranked third by the
ISA method and 56,934 by the SA method. The HAT2 protein
appears as prey in 23 out of 27 purifications performed with
HHT2. Still, the SA method assigns low weight to repeated
observations of the kind ‘HAT2 purifies HHT2�, resulting in a
high rank number of the corresponding physical contact.

In general, top-ranking physical contacts inferred by our
method are expected to be enriched with interactions involv-
ing proteins that were purified multiple times. Indeed, if a
given bait protein was purified repeatedly in multiple purifica-
tions, its interaction partners can and should be determined
with increased confidence. For instance, our experimental
data contains 27 purifications performed with HHT2 as bait,
which support a total of 124 protein interactions. Out of these
124 interactions, 15 have sufficiently high ISA scores to be
included in the top-3,000 inferred physical contacts. Fig. 1A
depicts a network induced by the top-3,000 inferred physical
contacts inferred by ISA. The network is sparse and modular,
which agrees well with our intuition for the network of direct
physical interactions within stable multiprotein complexes.

To assess the overall similarity among the five scoring
methods we used the Salama-Quade rank correlation coeffi-
cient. The Salama-Quade coefficient belongs to a family of
measures that assign greater weight to agreement in top-
ranked elements and thus is more suitable for our purpose
than other, more standard, rank correlation measures (see
Experimental procedures). As we argue below, out of 238,154
possible physical contacts supported by raw purification
data, only about 3000 can be reliably scored. Therefore, the
relative ordering of inferred physical contacts beyond this
cutoff is less reliable and should affect the similarity score to
a lesser extent. Fig. 1B shows Salama-Quade rank correlation
for every pair of methods. Ranking of inferred physical con-
tacts induced by ISA scores is quite distinct from rankings
induced by other scoring methods. Based on similarity

scores, the methods can be grouped into two clusters, one
including Hart, PE, and IDBOS methods and another contain-
ing SA and ISA methods. We hypothesize that this grouping
reflects a major difference among the scoring methods,
namely, treatment of matrix observations. Although the Hart,
PE, and IDBOS methods treat spoke and matrix observations
equally, the ISA method completely ignores matrix observa-
tions. SA implicitly downplays the contribution of matrix ob-
servations by assigning low weight to repeated matrix obser-
vations and, as a result, is grouped together with the ISA
method.

Benchmarking Against Reference Sets of Physical Con-
tacts—In this section, we assess the ability of the four estab-
lished scoring schemes and our new approach to detect
physical contacts within protein purifications. Because, to the
best of our knowledge, there is no comprehensive gold stand-
ard set of protein interactions that form physical contacts
within protein complexes, we approach the evaluation task
from four different directions. First, we compare top-ranked
inferred physical contacts between proteins to protein inter-
actions derived by experimental techniques that directly as-
say protein pairs able to physically interact. However, as we
argue later on, interactions detected by these techniques
represent only a small fraction of physical contacts present in
protein complexes. Therefore, we resort to additional, albeit
less direct, procedures to assess the performance of the
scoring methods by (1) relying on three-dimensional struc-
tures of protein complexes, by (2) using manually curated
catalogs of protein complexes, and by (3) employing synthetic
genetic interaction profiles.

Experimentally Determined Binary Protein Interactions—For
the first evaluation, we compiled three reference sets of ex-
perimentally validated binary protein interactions. The first
two data sets originate from recent high-throughput interac-
tome screens in yeast: one employing the Y2H technique (13)

FIG. 1. Top-ranking physical contacts inferred by the ISA method and their relation to physical contacts inferred by other methods.
A, A network induced by the 3000 protein interactions having the top ISA score ranks. B, Similarity of the inferred physical contacts generated
by the five scoring methods. Nodes represent different scoring schemes. Edges are labeled with the Salama-Quade correlation coefficient,
which measures agreement in the ranking of inferred protein contacts induced by the scores of the corresponding methods.
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and another using PCA (17). The third data set, BGS, con-
tains manually curated yeast interactions supported by lit-
erature and is taken from an extensive validation of the Y2H
method (13).

Fig. 2 shows how well the scoring methods perform in
identifying true physical contacts from the reference sets.
Note that although all methods are able to infer several phys-
ical contacts beyond the depicted 10,000 ranks, physical
contacts at these high cutoffs have only very low confidence
and are thus omitted. Notably, whereas SA and ISA methods
have comparable performance across assessments, both of
them outperform other approaches on all three reference sets.
Moreover, the performance of all approaches starts to level off
at about 3,000 to 4,000 ranks. We hypothesize that this num-
ber constitutes a reasonable limit on the number of physical
contacts that can be reliably inferred given the available ex-
perimental data. This number of reliably inferable contacts
also corresponds roughly to the number of direct binary in-
teractions measured by high-throughput experimental tech-
niques: the Y2H data set and the PCA data contain 2,930 and
2,616 interactions, respectively. As can be derived from Fig.
2A, Y2H and PCA data sets are less enriched in manually
curated BGS interactions than an equivalent number of top-
scoring interactions extracted from purification data. This
suggests that physical contacts inferred by purification scor-
ing schemes are at least qualitatively comparable and often
superior to Y2H and PCA experimental data sets.

Three-dimensional Structures of Multiprotein Com-
plexes—In this assessment of inferred physical contacts, we
rely on experimentally determined structures of protein com-
plexes deposited in the PDB (24). Unfortunately, only crystal
structures of about 250 interactions between proteins in yeast
are available (29). Therefore, the use of PDB structures for the
assessment of putative physical contacts is not possible be-
cause of the low coverage of the validation set. However,

physical contacts in stable multiprotein complexes are typi-
cally formed by pairs of structural protein domains (23), and
members of an evolutionarily conserved domain family typi-
cally share a common set of domain binding partners. Ac-
cordingly, a set of protein interactions that correspond to
physical contacts within yeast protein complexes should be
enriched in domain pairs that are known to interact. Conse-
quently, to achieve a higher coverage of true physical con-
tacts, we perform this evaluation at the level of PDB-validated
physical contacts between protein domains rather than at the
level of interacting proteins.

Several resources exist that derive pairs of interacting do-
mains from crystal structures of protein complexes in the
PDB. In this work, we use the latest release of the 3DID
database (30) to obtain interactions between domains that are
annotated to at least one yeast gene. These interactions are
denoted as 3DID reference set and compared with a set of
domains induced by top-ranking inferred physical contacts.
More specifically, for each method, all domain pairs were
ranked according to the best-ranking inferred physical protein
contact that could be formed by the domain pair. The results
of this evaluation are presented in Fig. 3A. Again, the SA and
ISA methods significantly outperform other approaches over
the range of 3,000 to 4,000 inferred physical contacts that are
reliably supported by experimental data. At the same time,
both SA and ISA perform comparably to the Y2H binary
experimental data set with about 240 true domain interactions
at a rank cutoff of 4,000 physical contacts.

Functional Similarity Derived from Genetic Interaction Pro-
files—To assess the functional similarity of proteins inferred to
form physical contacts, we rely on in vivo genetic interaction
profiles measured by a recent, functionally unbiased large-
scale screen (26). Although the results of this screen do not
provide direct evidence for physical contacts, physically in-
teracting proteins that carry out similar functions often exhibit

FIG. 2. Assessment of inferred physical protein contacts by five scoring methods against binary experimental reference sets that
provide direct evidence for physical contacts. Inferred physical contacts are ranked by scores of the corresponding scoring method. For
each reference set, performance of all methods is measured by plotting the number of top-ranking inferred physical contacts of a method
against the number of these contacts that are confirmed by the reference set.
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strongly correlated genetic interaction profiles (26). We em-
ployed the profile data of the Costanzo et al. study (26) to
define a GI reference set containing protein pairs with high
genetic interaction profile similarities. This reference set was
used to assess the functional similarity of inferred physical
contacts from all five methods (see Fig. 3B). The assessment
shows that the socio-affinity based methods SA and ISA
significantly outperform other scoring methods as well as the
binary experimental data sets PCA and Y2H in enriching for
functionally similar protein pairs.

Manually Curated Catalogs of Multiprotein Complexes—
Several catalogues of manually curated protein assemblies
in yeast are publicly available, such as MIPS and SGD
complexes. Unfortunately, these high-quality data sets only
provide information on the protein composition of each
assembly and do not include the network of physical con-
tacts present within the complex. Therefore, we rely on the
following assumption to assess the inferred physical con-
tacts with the MIPS and SGD data sets: physical contacts
within a complex connect all its member proteins. This

FIG. 3. Assessment of inferred physical protein contacts by five scoring methods against reference sets that provide indirect
evidence for physical contacts. Inferred physical contacts are ranked by scores of the corresponding scoring method. A, Physical contacts
are evaluated by their enrichment in protein domains that are known to interact in crystal structures of protein complexes. B, Functional
similarity of proteins involved in inferred physical contacts is assessed by correlating genetic interaction profiles of these proteins. C, D,
Performance is measured by plotting the number of complexes that are sufficiently connected by top-ranking inferred physical contacts for
different rank cutoffs. We consider a complex sufficiently connected by a set of inferred physical contacts if the physical contacts reduce the
number of connected components within the complex to less than 50% compared with the unconnected complex.
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means that, within a given complex, every protein is con-
nected to every other protein through a network of physical
contacts. Consequently, the quality of a set of inferred
physical contacts can be estimated by assessing how well
these physical contacts connect manually curated com-
plexes. Figs. 3C and 3D depict how well top-ranking in-
ferred physical contacts from different scoring methods
connect complexes in the two manually curated catalogs. It
is noticeable that the results generated by purification scor-
ing schemes seem to be significantly better suited to con-
nect these complexes than data sets originating from Y2H
and PCA techniques, with the best performing scoring
methods SA and ISA connecting more than three times as
many complexes than the Y2H data at a rank cutoff of
approximately 3,000 physical contacts.

Inferring Physical Protein Contacts From Repeated Purifi-
cations—The use of experimental replicates in a statistically
meaningful fashion to account for experimental errors is a
current theme in interactomics research (31, 32). Although the
use of orthogonal assays is already well established in exper-
imental protocols for binary protein interactions such as yeast
two-hybrid (33, 34), it is less widespread in the analysis of
protein purification experiments. Our novel method ISA aims
at being a generally applicable scoring scheme for inferring
physical protein contacts from repeated protein complex pu-
rification experiments.

Although the ISA method performs consistently well in the
assessment against experimentally determined physical con-
tacts, its performance difference to the original SA method
appears to be only minor. However, one of the main improve-
ments of our novel method ISA is the enhanced null model
that takes full advantage of additional evidence contained in
repeated observations, depends on the presence of repeated
purifications of the same bait protein in the experimental data.
A closer analysis of the purifications in the Large-Scale data
reveals that proteins were used as baits at a median number of
only one time (see bait frequency distribution of nonchaperone
proteins in Fig. 4A). Additionally, although both the Gavin and
the Krogan experiments were performed on a genomic scale,
only 1102 of the overall 2,830 distinct bait proteins in the Large-
Scale data set were used as baits in both experiments. There-
fore, the combination of the two experimental data sets resulted
in relatively few repeated purifications.

In order to demonstrate the ability of ISA in utilizing re-
peated purifications to infer physical protein contacts with
high confidence, we focused on two especially challenging
purification data sets with high biological relevance that contain
repeated experiments. The first analysis concentrates on infer-
ring stable physical contacts involving molecular chaperones
from the Large-Scale data, whereas the second analysis aims at
identifying specific interactions concerning protein kinases and
phosphatases from a recently published purification data set.

FIG. 4. A, Box plots showing the frequency distribution of chaperone-proteins and nonchaperone proteins in the Large-Scale data
set, in their roles as bait or prey within purifications. Frequencies on the abscissa are scaled logarithmically. Boxes represent 50% of the
data of a given distribution, whereas bold vertical lines denote the median. B, Assessment of inferred and experimentally obtained physical
contacts involving molecular chaperones against the Chaperone reference set of experimentally confirmed binary chaperone interactions. The
BGS reference set does not contain a sufficient number of chaperone interactions to allow validation.
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Detecting Stable Interaction Partners of Molecular Chaper-
ones—As shown in the previous section, repeated purifica-
tions are not available for most bait proteins in the Large-
Scale data. Fortunately, however, a set of 63 known molecular
chaperones in yeast were screened intentionally multiple
times by the Krogan group to provide experimental data for a
later study (35). Molecular chaperones are a family of proteins
that assist in folding of protein complexes and are therefore
expected to appear in purifications with their substrate com-
plexes. Indeed, the high abundance of this functional class of
proteins results in their co-purification as preys at a median
rate five times higher than non-chaperone proteins. As a
consequence of selective screening in the Large-Scale puri-
fications, chaperones were used as baits twice as often as
nonchaperone proteins, resulting in a strong bias of repeat-
edly purified proteins in the Large-Scale experimental data
toward molecular chaperones. (Compare the median number
of bait and prey occurrences for chaperone and non-chaper-
one proteins in Fig. 4A).

Because of their high abundance, for some chaperones,
numerous, highly transient interactions with substrates ob-
scure more permanent interactions with co-chaperones and
other regulatory proteins. This makes detection of stable in-
teractions a difficult task for any scoring method. In fact, in
order to succeed in this task, a scoring method must take full
advantage of repeated purifications with chaperone bait pro-
teins contained in the experimental data. As such, the over-
representation of molecular chaperones in the data provides
an ideal opportunity to examine the ability of scoring methods
to use repeated observations in the Large-Scale purification
data. To this end, we assess the performance of scoring
methods in identifying stable physical contacts involving mo-
lecular chaperones from two different perspectives. First, we
assess how the scoring methods perform in recovering direct
physical contacts involving molecular chaperones that are
confirmed by binary experimental assays. Second, we pres-
ent a high-confidence network of inferred physical contacts
involving molecular chaperones and investigate how well sta-
ble contacts between chaperones and their cofactors are
recovered by the ISA method.

We investigated the performance of the five scoring
schemes in recovering experimentally validated physical con-
tacts involving chaperones by comparing the inferred con-
tacts of the scoring methods to the Chaperone reference set
(see Experimental procedures section for a description of the
reference data). As can be seen in Fig. 4B, the ISA method
excels in this validation and recovers 80% more physical con-
tacts from the reference set than the SA approach at the pre-
viously determined high-confidence rank cutoff of 3,000 inferred
physical contacts. Importantly, the ISA method is the only ap-
proach that demonstrates a performance higher than the best-
performing binary experimental assay Y2H at the same cutoff.

Importantly, ISA does not simply promote interaction part-
ners that have been screened repeatedly. Such an undiffer-

entiated strategy would lead to many falsely inferred physical
contacts because the highly abundant chaperones are in-
volved in many interactions, of which only very few are likely
to be reliable physical contacts. On the contrary, only 79 of
the top 3,000 physical contacts inferred by the ISA method
involve a molecular chaperone, much fewer than the upper
limit of 7,315 spoke observations that pertain to chaperones
and are present in the Large-Scale experimental data. Of
these 79 physical contacts, more than 20 are validated by the
reference set as shown in Fig. 4B. This indicates that the
ability of the ISA method to make use of repeated observa-
tions in the data results in very selective promotion of true
physical contacts that cannot be discovered by established
scoring methods such as SA.

Analysis of Inferred Chaperone Interactions—To obtain a
more detailed view on the relationships between molecular
chaperones and their cofactors, we generated an interaction
network induced by the top 3,000 physical contacts as in-
ferred by the ISA method (see Fig. 1A). From this network, we
extracted all physical contacts that involve at least one mo-
lecular chaperone. The resulting interaction network is dis-
played in Fig. 5. It contains 79 inferred physical contacts
involving 31 of the 63 known yeast chaperones as well as their
cofactors and putative substrates.

As can be seen in Fig. 5, physical contacts inferred by the
ISA method form a sparse network. In addition, known protein
assemblies, such as the RAC or Sec63 complexes, are con-
nected by patterns of physical contacts and several fine-
grained biological relationships between chaperone families
are correctly recovered.

The Gimc complex, for instance, a hetero-oligomeric hex-
amer stabilizing nonnative proteins, consists of a dimeric core
consisting of �-subunits Gim2 and Gim5. The �-subunits form
physical contacts with each other as well as with two of four
possible �-subunits (Gim1,3,4 and 6) each (36). Although the
ISA score correctly identifies the physical contact between
the �-subunits by assigning it the top rank among all inferred
physical contacts of that complex, it also infers contacts
between the �-subunits and each of the four possible �-sub-
units at a slightly lower confidence.

In addition, more intricate relationships, such as patterns of
interactions between different families of chaperones, are cor-
rectly formed by the inferred physical contacts. Hsp110 ho-
mologs Sse1 and Sse2, for instance, form mutually exclusive,
hetero-dimeric complexes with Hsp70 families SSA and SSB
of the form SSA � SSE and SSB � SSE (37, 38). This relation-
ship is correctly recovered by inferred physical contacts as
depicted in Fig. 5, where SSA � SSE and SSB � SSE interac-
tions are partitioned and, correctly, no physical contacts be-
tween SSA and SSB chaperones are inferred.

Importantly, the presented network of chaperone interac-
tions is unique among scoring methods. It is inherently diffi-
cult to infer physical contacts involving chaperones from pu-
rification data. This is because of the high abundance of this
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functional class of proteins that leads to a low signal-to-noise
ratio for physical contacts that involve chaperones. As a re-
sult, established scoring schemes like the SA method tend to
uniformly rank down chaperone interactions. Indeed, the SA
method is unable to recover known biological relationships
involving chaperones as shown in Fig. 5 even among its
top-10,000 inferred physical contacts.

Identifying Specific Interactions of Protein Kinases and
Phosphatases—The network of kinase and phosphatase in-
teractions is an important component of cellular regulation
and messaging. Therefore, these enzymes are highly relevant
for understanding a wealth of cellular processes that are
influenced by kinase signaling. Although experimentally vali-
dated kinase and phosphatase interactions have been avail-
able only sparsely in public databases, a specialized large-
scale purification screen of yeast kinases and phosphatases
has recently been published by Breitkreutz et al. (18). Protein
kinases are a challenging target for scoring schemes because
kinases have a propensity toward binding to a large number of
other proteins and it is therefore difficult to separate specific
from nonspecific interactions (18). This is illustrated by the
average purification size of the Breitkreutz purification data: it

is more than twice as high as the corresponding sizes in the
Large-Scale data (compare Table I and supplemental
Table S1). One of the main contributions of the Breitkreutz et
al. study thus is the introduction of SAINT, a computational
method that identifies nonspecific kinase interactors. SAINT
and closely related methods such as COMPASS (39) primarily
rely on peptide (spectral) counts, which constitute additional
types of experimental data that can be interpreted as a semi-
quantitative measure of protein abundance. To further in-
crease the coverage and experimental confidence of their
method, Breitkreutz et al. opted to perform their screen with
three different tag systems, yielding multiple overlapping pu-
rifications with the same bait proteins. It is because of this
intentional application of repeated purifications that we found
the Breitkreutz data set especially suited for our ISA method.

We assessed the performance of the scoring methods
SAINT, Hart, ISA, and SA in inferring experimentally known
kinase interactions from the BGS and Kinase reference sets
(see Experimental procedures section for a description of the
reference data). Note that, because of the involved computa-
tions or unavailable implementations of the PE and IDBOS
methods, these scores could not be evaluated here. How-

FIG. 5. All physical contacts involving molecular yeast chaperones extracted from the overall top 3000 physical contacts as inferred
by the ISA score. Nodes and edges denote proteins present in the Large-Scale data set and their inferred physical contacts, respectively. The
size of a node corresponds to its degree, that is, the number of physical contacts it is involved with. Chaperones are colored in white, whereas
proteins with known chaperone-related function, such as cochaperones, are colored in gray. Black nodes denote putative substrates of
chaperones. Proteins belonging to known families or assemblies are grouped in gray rectangles.
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ever, it has been reported elsewhere that PE was not able to
distinguish between true and false interactions in this set-
ting (18). As displayed in Fig. 6, the ISA score outperforms
other general-purpose purification scoring schemes on both
reference sets by a large margin. Only the highly specialized
SAINT scoring scheme can identify slightly more physical
contacts in the data. Importantly, however, the peptide
counts employed as an integral part of SAINT require addi-
tional processing during the experimental setup. Such
counts are neither available for the Large-Scale purifications
nor for most other publicly available purification data. In
contrast, the ISA scoring scheme is generally applicable to
all raw purification data without the need for additional
peptide count data.

DISCUSSION

This work is first to investigate whether direct physical
protein contacts can be extracted from raw purification data
contained in a combined set of large-scale protein complex
purifications. We analyzed four established scoring schemes
and one new approach and assessed their ability to reliably
detect physical contacts within assayed complexes. Top
ranking inferred physical contacts from all five methods were
benchmarked against reference sets based on binary exper-
imental protein interactions, three-dimensional structures of
interacting proteins, manually curated protein complexes, and
genetic interaction profiles. Inclusion of these four comple-
mentary sources of validated physical contacts allowed us to
investigate aspects of the scoring schemes that were not
examined before.

The results of our evaluation showed that raw purification
data, if scored correctly, can indeed be exploited to infer
physical contacts within protein complexes. Although estab-
lished methods devised for inferring indirect protein interac-
tions from purification data perform well in the task of identi-
fying co-complexed protein pairs in reference protein
complexes (see supplemental Fig. S1 and supplemental
material), the performance of most of these methods in de-
tecting direct physical protein contacts is considerably dimin-
ished. Only the two socio-affinity based methods SA and ISA
consistently showed the best performance among all evalu-
ated methods in inferring physical contacts.

We attribute this difference of performance between the
methods to two facts. First, both SA and ISA share the
concept of a simple, but elegant, null model to identify
strongly associated proteins. Second, both methods have a
high propensity toward using only direct, or spoke, associ-
ations between proteins as evidence for physical contacts,
that is, they concentrate on interaction evidence between a
bait protein and the prey proteins it purifies. This indicates
that, whereas indirect, or matrix, observations are useful for
detecting co-complexing protein pairs, direct observations
are more informative for identifying physical contacts.

Besides intentionally concentrating on direct observa-
tions, the main innovation of the ISA method is an improved
null model that allows integration of repeated purifications
using the same set of bait proteins in a statistically mean-
ingful fashion. Although improving the predictive power of
our method in the presence of any repeated observations,
this ability is especially relevant for inferring stable contacts

FIG. 6. Assessment of inferred and experimentally obtained physical contacts involving protein kinases and phosphatases against
the BGS and Kinase reference set of experimentally confirmed binary kinase and phosphatase interactions. Note that the SAINT scoring
scheme assigns identical score values for its top 1262 inferred interactions. Therefore, SAINT performance curve seems to start at a later point
than the curves of other methods.

Protein Contacts from Purification Data

10.1074/mcp.M110.004929–12 Molecular & Cellular Proteomics 10.6

http://www.mcponline.org/cgi/content/full/M110.004929/DC1
http://www.mcponline.org/cgi/content/full/M110.004929/DC1


involving highly abundant proteins, such as molecular chap-
erones or protein kinases, whose specific interactions are
especially difficult to infer in the absence of repetitions.
Intuitively, the approach taken by our ISA score is similar to
strategies currently discussed for interactome mapping
projects where repeated experiments can allow an in-
creased sensitivity and specificity of the resulting screens
(34).

Our analysis of the Large-Scale purification data found
that most proteins have been screened only once in exper-
iments. Few proteins, such as the functional class of mo-
lecular chaperones, have been used as baits multiple times.
The assessment of chaperone interactions showed that the
ISA method improves upon other scoring methods when
repeated observations are available. Our method recovered
a range of biologically significant relationships between
chaperones and their cofactors that could not be detected
by the second best performing SA method. This highlights
the importance of correctly using repeated observations to
gain statistical confidence in the inferred physical contacts.

The use of repeated observations for gaining statistical
confidence in physical contacts is not limited to the general-
purpose large-scale purification experiments, but can also be
applied to specialized data sets aiming at specific biological
targets as demonstrated by our analysis of a recent purifica-
tion study focusing on protein kinases. Because of the inten-
tional integration of repeated purifications in that study, ISA
was available to infer significantly more physical contacts
from the raw purifications than any other general-purpose
scoring method.

Importantly, the mechanism of improved performance of
ISA based on repeated observations is not depending on
single purification data sets that feature repeated purifica-
tions. Instead, ISA is able to exploit repetitions across several
distinct data sets. Therefore, we expect that physical contacts
inferred by our method will further improve in quality com-
pared with established scoring schemes once additional
large-scale purification data sets become available. Consid-
ering the experimental replicates within the Breitkreutz et al.
(18) data as well as current correspondences by experimen-
talists about integrating multiple orthogonal assays to in-
crease confidence in the results (31, 32), there seem to be
clear indications that repeated purifications within one data
set will become more widespread in future.

An adequate comparison of interactions measured by high-
throughput binary experimental approaches to physical con-
tacts deduced from purification experiments has not been
possible before. This is a result of the fact that binary exper-
imental approaches are more straightforward to interpret:
each physical interaction is measured directly, whereas in
purification data only a small subset of all interactions are
likely to be physical contacts. As a consequence, the whole
set of interactions possible in purification data has previously
been interpreted as putative physical contacts. Because this

resulted in a low enrichment of true physical contacts in the
purification data, purification-based methodologies were de-
termined of being less useful for measuring true physical
contacts than high-throughput binary experimental tech-
niques such as yeast two-hybrid (13).

However, a closer analysis of the performance of all five
scoring schemes and a comparative assessment of the
inferred physical contacts with the results of binary exper-
imental assays such as Y2H or PCA reveals several novel
findings. First, the performance of all scoring schemes in
recovering physical contacts from the reference sets levels
off at about 3000 top-ranking physical contacts, indicating
that this number constitutes a limit on the number of inter-
actions that can be reliably scored given current experimen-
tal data. Second, our results surprisingly suggest that, once
correctly scored and ranked, physical protein contacts de-
rived from complex purification experiments are qualita-
tively comparable to interactions measured by state-of-the-
art Y2H and PCA techniques. In addition, the purification
scoring schemes perform significantly better than the Y2H
and PCA data sets in connecting manually curated protein
complexes. This suggests that physical contacts derived
from purification data might be more relevant for interpret-
ing protein complexes than interactions measured by these
binary experimental techniques.

Besides offering new opportunities for the interpretation
of purification data and the understanding of protein com-
plexes, there are additional application scenarios of our
scoring method. Because the ISA method is optimized to
make best use of repeated observations in the data, exper-
imental research groups can repeatedly perform small-scale
purifications for proteins of interest, possibly involving per-
turbation experiments (16) or novel purification methodolo-
gies applicable to human cells (40). These purifications can
then be added to the Large-Scale experimental data. Sub-
sequently, the ISA method can be re-applied on this newly
enlarged data set. The additional information contained in
the repeated purifications will then allow reliable inference
of physical contacts involving the proteins of interest.

We further propose that physical contacts derived from
purification data are applicable to large-scale interactome
mapping projects. Several interactome screens are cur-
rently underway for model species such as S. cerevisiae or
D. melanogaster. Meta-strategies for cost-effective map-
ping have been developed involving schemes for pooling,
prioritization, and repetition of experiments to increase
overall coverage and accuracy of the combined screens (33,
34). We suggest that physical contacts derived from purification
data may be used complementary to binary interaction data
sets by prioritizing high-confidence physical contacts for exper-
imental validation by Y2H or PCA techniques. Such a prioritiza-
tion strategy seems especially valuable when integrated in high-
throughput large-scale interactome screening projects such as
recently proposed by Schwartz et al. (34).
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