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Plants and their parts have been extensively used for the therapeutic purposes such as aging due to their
powerful antioxidative belongings. Presently, we intended to examine the consequence of fruit peel of
Mukia madrespatana (M.M) on D-galactose (D-Gal) persuaded anxiety and/or depression profile, cogni-
tion and serotonin metabolism in rats. Animals were divided in to 4 groups (n = 6). (i) Water treated
(ii) D-Gal treated (iii) M.M. treated (iv) D-Gal + M.M. treated. All the animals received their respective
treatment for 4 weeks. D-Gal and M.M. fruit peel were given to animals with oral gavage with doses
300 mg/ml/kg/day and 2 g/kg/day respectively. After 4 weeks’ behavioral analysis performed to evaluate
anxiety and depression profile, cognitive function of animals. After that animals were sacrificed and
whole brain removed for biochemical (redox status, degradative enzyme of acetylcholine), and neuro-
chemical (serotonin metabolism) analysis. Results showed that administration of M.M. inhibited D-
Gal-instigated anxious and depressive behaviors and improved cognition. Treatment of M.M. decreased
MDA levels, AChE activity and increased antioxidant enzyme activity in D-Gal administered and control
rats. Enhanced serotonin metabolism also decreased by M.M. in control and D-Gal administered rats. In
conclusion, M.M. fruit peel has powerful antioxidative and neuromodulatory properties and due to this
effect, it may be a good source of mitigation/treatment for aging induced behavioral and cognitive
impairment.
� 2023 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Aging, a foremost issue impairs cellular and molecular functions
(de Silva et al., 2021). It gradually effects physiological dysfunc-
tions include enhance genomic alteration, impair metabolism,
and decline/loss of renewing potential. In the brain gradual decline
in the functions has been characterized by synthesis of reactive
oxygen species (ROS) that induced oxidative damaging and mito-
chondrial abnormalities (Singh et al., 2019). Mitochondria generate
ROS as a byproduct of oxidative phosphorylation and hunt them by
potential antioxidant mechanism. The endogenous antioxidant
systems become weak gradually with aging, and leads enormous
gathering of oxidative damage of macromolecules such as protein,
lipid and nucleic acid (Receno et al., 2019). Aging progression is
associated with many neurological problems i.e. anxiety, depres-
sion (Samad et al., 2022; 2021), cognitive impairment (Samad
et al., 2020; 2019) etc. D-galactose (D-Gal) model is one of the pro-
gressive aging models, having lesser side effects and mortality rate
(St-Pierre et al., 2006). Repeated administration of D-Gal enhances
ROS generation which can weaken the organismal antioxidant
defence system (Samad et al., 2019). In addition, intoxication of
D-gal can cause alteration at central and peripheral levels
(Samad et al., 2019). Administration of D-Gal causes depression
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(Samad et al., 2019; Liaquat et al., 2019), anxiety (Samad et al.,
2022; Hakimizadeh et al., 2021) and impaired cognition (Ali
et al., 2021 Yang et al., 2016). Previously it was observed that
increased ROS contents can cause neuro-inflammation and dysreg-
ulation of apoptosis and various neural proteins such as brain
derived neuro-trophic factor, which associated with memory alter-
ations (Gao et al., 2022). It is highlighted in a study that D-Gal
declined the number of neurons in brain and impaired the process
of learning and memory (Prajit et al, 2020). D-Gal induced alter-
ations in brain at molecular and cellular levels were observed in
experimental models which linked with natural progression of
aging (Samad et al., 2022).

Medicinal plants have a great part in the curing of variety of
oxidative stress related diseases including aging and associated
neurological problems. The intake of plant based natural antioxi-
dant may be minimizing and/or reducing the risk of variety of
health issues. Mukia madrespatana, a medicinal plant, is generally
named as the Madras pea pumpkin (Thabrew et al., 1995), which
is found in tropical and subtropical parts of the world (Thabrew
et al., 1995). It has phytochemicals i.e. phenolic, tannins, flavo-
noids, alkaloids, and saponins. These phytochemicals due to pres-
ence of –OH groups are efficient reducing agent and exhibiting
powerful antioxidant effects (Petrus et al., 2012). M.M. Plant has
powerful antioxidant potential and has anti-inflammatory, antiar-
thritic (Priya et al., 2012), anti-asthmatic, anti-tussive, anti-
histaminic, anti-bronchitic (Ramakrishnamacharya et al., 1996),
antihypertensive (Raja et al., 2007) and anti-stress (Samad et al.,
2020) effects in various experimental models.

Taking the importance of M.M. plant into consideration, to eval-
uate anxiety and/or depression profile and cognitive behavior fol-
lowing D-Gal administration in rats, the present study was
designed.
2. Materials and method

2.1. Animals

Due to hormonal cycle variation male rats preferred over female
rats in earlier studies. Twenty–four, Male Sprague Dawley, albino
rats, (180–200 g by weight; 6–7 weeks by age) were confined in
transparent plastic cages. Standard rodent diet (control diet = 4.4
7 kcal/g; Borcarsly et al., 2012), 12-hrs light/dark cycle and
20 ± 5 �C temperature were given to animals. Animals were famil-
iarized to new environment before starting the research study. All
the experimental procedures were permitted by Departmental
Bioethical Committee (Ref# Biochem-D/352/2021; Dated: Febru-
ary 17, 2021). Bio-ethical condition was firmly followed during
the study period which was of international standard.
2.2. Plant material and chemicals

From the nearby areas of Multan City, Pakistan, fresh fruit of
Mukia maderaspatana (M. M) were gathered. The plant recognized
by taxonomist as reportedpreviously (Samadet al., 2020).M.M. fruit
peelwere removedand shadeddry. After that grounded into powder
form and stored in air tight jar. A dose of 2000 mg/kg/day of M.M.
peel, which has no toxicant effect and protected, used already in
an earlier study (Samad et al., 2020) and 300 mg/ml/kg/day of D-
Gal (Samad et al., 2019) was given orally by gavage to animals with
drinking water, once daily at 09:00–10:00 am for 28 days.

D-Gal, Thio-barbituric acid (TBA), Acetylthiocholine Iodide, Tri-
chloroacetic acid (TCA), Dithio-bis nitrobenzoic acid (DTNB),
Hydroxylamine hydrochloride, Potassium dichromate/acetic
acid, Sodium bicarbonate, Nitro blue tetrazolium (NBT), reduced
glutathione and disodium hydrogen phosphate were purchased
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from Sigma- Aldrich Inc (St. Louis, USA). Hydrogen peroxide
(H2O2), sodium carbonate, sodium azide and ethylene diamine
tetra acetic acid (EDTA) were purchased from British Drug House
(BDH, Dorset, UK).

2.3. Treatment

Twenty-four rats were divided into following sets with n = 06 as
previous studies reported (Samad et al., 2022; Samad et al., 2021);
(i) water + water (ii) water + M.M. (iii) water + D-Gal (iv) D-
Gal + M.M. and received their particular treatment daily for
28 days. Behavioral activities i.e., Elevated Plus-Maze (EPM) and
Light/dark activity (LDA) tests conducted to evaluate anxiety pro-
file; Forced Swim Test (FST) conducted to assess depressive symp-
toms and Morris Water Maze (MWM) test (acquisition, short-
term-memory (STM), long-term-memory (LTM) for cognitive func-
tions. After behavioral activities rats were decapitated using guil-
lotine (Samad et al., 2021) and their brains collected from skull
as reported previously (Tabassum et al., 2017), and then frozen
at �20 �C for further neurochemical and biochemical assessments
(Experiment layout Fig. 1).

2.4. Behavioral tests

Anxiety and/or depression symptoms and cognition were ana-
lyzed by various behavioral tests. LDA and EPM tests were con-
ducted to monitor the anxiety profile. Behavioral method used by
Samad et al., (2022) was used. For LDA, the box was comprised
of two compartments (one was transparent while other was
black/dark). A central opening between the two compartments
was present that used for the independent movement of animal.
The movement of animal was started from the transparent box,
and the activity between the two compartments was monitored
for 5 min. The apparatus utilized for EPM was included of four
arms/supports (two arms/supports were closed and two were
opened while joint with the central part). To assess the anxiety like
behavior, firstly animal was positioned in open arm/support and
the time period it passed in open arm/support monitored for
5 min. To evaluate the depression-like behavior, FST was used with
already reported method by Samad et al. (2019). A glass tank was
used for FST. In this water tank, feet of rats did not get in contact to
the floor and animal tried to escape. The immobility time during
the test is recorded for 5 min. Cognitive ability of rat was assessed
by MWM as reported previously (Samad et al. 2018). Acquisition,
STM and LTM were monitored by MWM. Latency escape in all
the three phases was monitored for 2 min. All the behavioral activ-
ities were recorded manually by a blind observer.

2.5. Estimations of biochemical

Malondialdehyde (MDA) as oxidative stress marker evaluated in
the brain of rat. To estimate MDA levels in brain, tissue homoge-
nate (3 ml) was added with TCA-TBA (2 ml) for reaction mixture
preparation, which is boiled for 15 min and then cooled down at
room temperature. The mixture was centrifuged for 10 min at
35,000RPM. Light blue colored supernatant was produced that read
at 532 nm and absorbance was noted (Chow et al., 1972). Method
of Naskar et al. (2010) was used to evaluate brain SOD activity. Tis-
sue homogenate (0.5 ml), NaHCO3 (0.1 ml), NBT (0.4 ml) and EDTA
(0.2 ml) were used to prepare reaction mixture with homogenate.
Hydroxylamine-hydrochloride (0.4 ml) added in reaction mixture
to start the reaction. Absorbance was recorded at 570 nm and inhi-
bition (%) by SOD was calculated. Activity of CAT was evaluated by
the method of Pari and Latha (2001). By adding tissue homogenate
(0.1 ml), H2O2 (0.4 ml) and PO4 buffer (1 ml, 7.4 ml) reaction
mixture was prepared. The wave length set at 570 nm to record



Fig. 1. Experimental Layout.

Fig. 2. Effect of M.M. on anxiety profile in water and D-Gal treated animals
evaluated in EPM. Data was analyzed by anova (2-way) and followed by Tukey’s test
showed statistical difference as **p < 0.01 water + water vs water + M.M. and
water + D-Gal vs D-Gal + M.M.; ++p < 0.01 than water + water vs water + D-Gal
treated animals.

Fig. 3. Effect of M.M. on anxiety profile in water and D-Gal treated animals
evaluated in LDA. Data was analyzed by anova (2-way) and followed by Tukey’s test
showed statistical difference as **p < 0.01 water + water vs water + M.M. and
water + D-Gal vs D-Gal + M.M.; ++p < 0.01 than water + water vs water + D-Gal and
water + M.M. vs D-Gal + M.M. treated animals.
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the absorbance. Brain GPx was determined by the method reported
earlier (Flohe and Gunzler 1984). Brain homogenate (0.2 ml), H2O2
(0.1 ml), sodium azide (0.1 ml) and reduced glutathione (0.2 ml)
were added to prepare reaction mixture. That was incubated for
15 min at 37 �C, for inhibition of reaction TCA (0.5 ml) was added
in the reaction mixture. The reaction mixture was centrifuged at
35,000RPM for 5 min and in the collected supernatant (0.1 ml),
Na2HPO4 (0.2 ml) and DTNB (0.7 ml) were added. 420 nm wave
length was used to record the absorbance. TNF-a and IL-6 contents
in the brain were evaluated by ELISA using a kit purchased from
Abcam (Garabadu et al., 2020).
2.6. Estimations of neurochemical

Acetylcholine (ACh) contents were estimated by the method
reported previously (Liaquat et al. 2019). By boiling, brain sample
3

released Ach (bound) and vitiate the enzymes. 1% FeCl4 solution
and reaction mixture were mixed to produce a colored complex
(brown) which was recorded at 540 nm. The method of Ellman
(1961) was used to estimate brain acetylcholinesterase (AChE).
Brain homogenate contain DTNB and phosphate buffer, was mixed
with reaction mixture. Basal reading was recorded at 412 nm after
stability of reaction. Enzyme reaction was started by addition of
acetylthiocholine (ATC) and absorbance at 412 nm was recorded
and the variance of absorbance was taken at 0 min and after
10 min. Method of Samad et al. (2019) was exercised to evaluated
contents of brain 5-hydroxyindole acetic acid (5-HIAA) and 5-
hydroxytryptamine (5-HT) using High-Performance Liquid
Chromatography- Electrochemical detector (HPLC-EC) technique.
Stationary phase comprised of octa decyl silane while phosphate
buffer with octyl sodium sulphate run as mobile phase via column
with 2000-3000psi pressure pump.
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2.7. Statistics

All the data were evaluated by anova (2-way) using SPSS soft-
ware (Ver. 20) as used previously (Samad et al., 2022) for analysis
of variance. p < 0.05 was examined as substantial.
3. Results

3.1. Elevated plus maze test for anxiety like symptoms

Fig. 2. displays the consequence of D-Gal administration on
anxiety-like behavior by EPM activity in control and test animals.
The data was assessed by anova (2-way) disclosed considerable
effect of M.M. (F1,20 = 128.59), D-Gal (F1,20 = 31.70) and M.M.*D-
Gal (F1,20 = 12.94). Analysis by Tukey’s test unveiled that Adminis-
tration of M.M. enhanced (p < 0.01) the time that rats given in open
arm in control and D-Gal administered animals. D-Gal treated rats
decreased (p < 0.01) time period given in open arm than control
animals.
3.2. Light dark activity test for anxiety like symptoms

Fig. 3. displays the consequence of D-Gal administration on
anxiety-like behavior by LDA in control and test animals. The data
was assessed by anova (2-way) disclosed considerable effect of M.
M. (F1,20 = 192.84), D-Gal (F1,20 = 115.05) and M.M.*D-Gal
(F1,20 = 10.18). The Administration of M.M. enhanced (p < 0.01)
the time that rats given in transparent box in water and D-Gal
administered animals. The time period given in open arm
decreased (p < 0.01) in water + D-Gal and D-Gal + M.M. treated ani-
mals than control and M.M. treated animals.
3.3. Forced swim test for depression like symptoms

Fig. 4 displays the consequence of D-Gal on depression profile in
FST in control and test animals. The data was assessed by anova (2-
way) disclosed considerable effect of M.M. (F1,20 = 219.02), D-Gal
(F1,20 = 155.92) and M.M.*D-Gal (F1,20 = 59.19). The Administration
of M.M decreased (p < 0.01) immobility time in control and D-Gal
administered animals. The time of immobility was increased
(p < 0.01) in water + D-Gal and D-Gal + M.M. treated animals than
water + water and water + M.M. treated animals.
Fig. 4. Effect of M.M. on depressive symptoms in water and D-Gal treated animals
evaluated in FST. Data was analyzed by anova (2-way) and followed by Tukey’s test
showed statistical difference as **p < 0.01 water + water vs water + M.M. and
water + D-Gal vs D-Gal + M.M.; ++p < 0.01 than water + water vs water + D-Gal and
water + M.M. vs D-Gal + M.M. treated animals.
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3.4. MWM test to assess cognitive functions

Fig. 5 displays the consequence of D-Gal on memory in MWM
activity in control and test animals. The data of acquisition was
assessed by anova (2-way) disclosed substantial effect of M.M.
(F1,20 = 172.61), D-Gal (F1,20 = 365.08) and M.M.*D-Gal
(F1,20 = 108.03). The administration of M.M. decreased (p < 0.01)
the latency escape in D-Gal treated animals. An increased
(p < 0.01) latency escape was observed in water + D-Gal and D-
Gal + M.M. treated animals than control and M.M. administered
rats.

The data of STM was assessed by anova (2-way) disclosed sub-
stantial effect of M.M. (F1,20 = 222.73), D-Gal (F1,20 = 228.85) and M.
M.*D-Gal (F1,20 = 100.80). The intake of M.M. reduced the latency
escape in water (p < 0.05) and D-Gal (p < 0.01) administered rats.
An increased (p < 0.01) latency escape was observed in D-Gal and
D-Gal + M.M. administered rats than control and M.M. treated
animals.

The data of LTMwas assessed by anova (2-way) d disclosed sub-
stantial effect of M.M. (F1,20 = 135.77), D-Gal (F1,20 = 138.08) and M.
M.*D-Gal (F1,20 = 67.17). Analysis by Tukey’s test unveiled that
intake of M.M. reduced the latency escape in water (p < 0.05)
and D-Gal (p < 0.01) treated animals. An increased latency escape
was found in D-Gal treated animals than control animals.
3.5. Determination of brain antioxidant enzymes

Fig. 6 displays the consequence of D-Gal on brain antioxidant
enzymes activity in control and test animals. The data of SOD
was assessed by anova (2-way) disclosed substantial effect of M.
M. (F1,20 = 440.37), D-Gal (F1,20 = 272.91) and M.M.*D-Gal
(F1,20 = 8.19). The administration of M.M. increased (p < 0.01)
Fig. 5. Effect of M.M. on memory function in water and D-Gal treated animals
evaluated in MWM. Data was analyzed by anova (2-way) and followed by Tukey’s
test showed statistical difference as *p < 0.05 and **p < 0.01 water + water vs
water + M.M. and water + D-Gal vs D-Gal + M.M.; ++p < 0.01 than water + water vs
water + D-Gal and water + M.M. vs D-Gal + M.M. treated animals.



Fig. 7. Effect of M.M. on lipid peroxidation in water and D-Gal treated animals. Data

N. Samad, M.A.H. Azdee, I. Imran et al. Saudi Journal of Biological Sciences 30 (2023) 103708
SOD activity in control and D-Gal administered rats. A decreased
(p < 0.01) activity of SOD was observed in water + D-Gal and D-
Gal + M.M. treated animals than water + water and water + M.M.
treated animals.

The data of CAT was assessed by anova (2-way) disclosed sub-
stantial effect of M.M. (F1,20 = 123.11), D-Gal (F1,20 = 92.29) and
M.M.*D-Gal (F1,20 = 1.74). The administration of M.M. increased
(p < 0.01) CAT activity in control and D-Gal administered rats.
Activity of CAT was reduced (p < 0.01) in water + D-Gal and D-
Gal + M.M. treated animals than control and M.M. treated animals.

The data of GPx was assessed by anova (2-way) disclosed sub-
stantial effect of M.M. (F1,20 = 119.11), D-Gal (F1,20 = 47.81) and
M.M.*D-Gal (F1,20 = 0.323). The administration of M.M. increased
(p < 0.01) GPx activity in control and D-Gal administered rats. A
decreased (p < 0.01) activity of GPx was observed in water + D-
Gal and D-Gal + M.M. treated animals than control and M.M. trea-
ted animals.
was analyzed by anova (2-way) and followed by Tukey’s test showed statistical
difference as and **p < 0.01 water + water vs water + M.M. and water + D-Gal vs D-
Gal + M.M.; ++p < 0.01 than water + water vs water + D-Gal and water + M.M. vs D-
Gal + M.M. treated animals.
3.6. Determination of brain lipid peroxidation

Fig. 7 displays the consequence of D-Gal on brain lipid peroxi-
dation (MDA contents) in control and test animals. The data was
assessed by anova (2-way) disclosed substantial effect of M.M.
(F1,20 = 104.96), D-Gal (F1,20 = 117.48) and M.M.*D-Gal
(F1,20 = 35.43). The administration of M.M. decreased (p < 0.01)
contents of MDA in control and D-Gal administered rats. An
increased (p < 0.01) in MDA levels were observed in D-Gal and
M.M + D-Gal. treated animals than control and water + M.M.
administered animals.
Fig. 6. Effect of M.M. on antioxidant enzymes in water and D-Gal treated animals.
Data was analyzed by anova (2-way) and followed by Tukey’s test showed
statistical difference as and **p < 0.01 water + water vs water + M.M. and water + D-
Gal vs D-Gal + M.M.; ++p < 0.01 than water + water vs water + D-Gal and water + M.
M. vs D-Gal + M.M. treated animals.
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3.7. Determination of brain inflammatory markers

Fig. 8 displays the consequence of D-Gal on brain levels of IL-6
and TNF-a in control and test animals. The data of IL-6 levels was
assessed by anova (2-way) disclosed substantial effect of M.M.
(F1,20 = 504.72), D-Gal (F1,20 = 483.35) and M.M.*D-Gal
(F1,20 = 304.36). The administration of M.M. decreased (p < 0.01)
IL-6 levels in control and D-Gal treated animals. An increased
Fig. 8. Effect of M.M. on inflammatory markers in water and D-Gal treated animals.
Data was analyzed by anova (2-way) and followed by Tukey’s test showed
statistical difference as **p < 0.01 water + water vs water + M.M. and water + D-Gal
vs D-Gal + M.M.; +p < 0.05 and ++p < 0.01 than water + water vs water + D-Gal and
water + M.M. vs D-Gal + M.M. treated animals.
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(p < 0.01) levels of IL-6 observed in D-Gal administered than con-
trol rats.

The data of TNF-a levels was assessed by anova (2-way) dis-
played substantial consequence of M.M. (F1,20 = 863.15), D-Gal
(F1,20 = 732.15) and M.M.*D-Gal (F1,20 = 555.38). The administra-
tion of M.M. decreased TNF-a level in control (p < 0.01) and D-
Gal (p < 0.05) treated animals. An increased levels of IL-6 observed
in D-Gal treated than control rats. TNF-a levels were greater in D-
Gal + M.M. than M.M. administered rats.

3.8. Determination of brain acetylcholine and acetylcholinesterase

Fig. 9 displays the consequence of D-Gal on brain levels of ACh
and AChE activity in control and test animals. The data of ACh was
evaluated by anova (2-way) disclosed substantial effect of M.M.
(F1,20 = 186.11), D-Gal (F1,20 = 9.824) and M.M.*D-Gal
(F1,20 = 3.389). The administration of M.M. increased (p < 0.01)
ACh levels in control and D-Gal administered rats. A reduction
(p < 0.05) in levels of ACh was observed in D-Gal treated than con-
trol animals.

The data of AChE was assessed by anova (2-way) disclosed sub-
stantial consequence of M.M. (F1,20 = 301.91), D-Gal (F1,20 = 49.98)
and M.M.*D-Gal (F1,20 = 85.74). The administration of M.M.
reduced (p < 0.01) the activity of AChE in control and D-Gal treated
animals. An increased (p < 0.01) activity of AChE was observed in
D-Gal treated than control animals.

3.9. Determination of brain 5-hydoxytryptamine, its metabolite and
turnover rate

Fig. 10 displays the consequence of D-Gal on brain concentra-
tion of 5-HTand its metabolite and the turnover rate 5-HIAA/
5-HT in control and test animals. The data of 5-HT concentration
was assessed by anova (2-way) disclosed substantial effect of M.
M. (F1,20 = 122.03), D-Gal (F1,20 = 185.40) and M.M.*D-Gal
(F1,20 = 66.32). Intake of M.M. decreased (p < 0.01) 5-HT concentra-
tion in D-Gal treated animals. An increased (p < 0.01) concentra-
tion of 5-HT observed in D-Gal treated than control animals.
Fig. 9. Effect of M.M. Acetylcholine levels and acetylcholinesterase activity in water
and D-Gal treated animals. Data was analyzed by anova (2-way) and followed by
Tukey’s test showed statistical difference as and **p < 0.01 water + water vs
water + M.M. and water + D-Gal vs D-Gal + M.M.; +p < 0.05 and ++p < 0.01 than
water + water vs water + D-Gal and water + M.M. vs D-Gal + M.M. treated animals.
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The data of 5-HIAA was assessed by anova (2-way) disclosed
substantial effect of M.M. (F1,20 = 118.97), D-Gal (F1,20 = 119.07)
and M.M.*D-Gal (F1,20 = 13.60). The administration of M.M.
decreased (p < 0.01) 5-HIAA concentration in control and D-Gal
treated animals. An increased (p < 0.01) in 5-HIAA levels was
observed in D-Gal and D-Gal + M.M. treated than control and M.
M. treated animals.

The turnover rate of 5-HIAA/5-HT was evaluated by anova (2-
way) disclosed substantial effect of M.M. (F1,20 = 4.60), D-Gal
(F1,20 = 21.13) and M.M.*D-Gal (F1,20 = 22.67). The administration
of M.M. decreased (p < 0.01) turnover rate in control while
increased (p < 0.01) in D-Gal administered rats. Turnover rate of
D-Gal treated was reduced than control animals.
4. Discussion

We are reporting the first time, the consequence of fruit peel of
M.M. on D-Gal-instigated behavioral, biochemical and neurochem-
ical alterations in male rats. This experimental study exhibited that
D-Gal-induced anxiety and depression profile in behavioral tests
analysis (LDA, EPM and FST). Altered 5-HTmetabolism can be asso-
ciated with behavioral deficits (anxiety/ depression). Cognitive def-
icits were also analyzed in MWM test, and it appeared that D-gal
altered the cognitive ability. Increased AChE activity and decreased
ACh levels may also be concomitant with memory dysfunction.
Previously, in experimental studies, D-Gal-induced oxidative stress
(Samad et al., 2022b) and enhanced inflammatory markers (Qian
et al., 2021), which were also observed by elevated lipid peroxida-
tion (MDA contents), enhanced IL-6 and TNF-a, and decreased
antioxidant enzymes activity. On the other hand, M.M. Fruit peels
administration produced anxiolytic, antidepressant and cognitive
Fig. 10. Effect of M.M. on 5-HT metabolism and 5-HIAA/5-HT turnover ratio in
water and D-Gal treated animals. Data was analyzed by anova (2-way) and followed
by Tukey’s test showed statistical difference as and **p < 0.01 water + water vs
water + M.M. and water + D-Gal vs D-Gal + M.M.; ++p < 0.01 than water + water vs
water + D-Gal and water + M.M. vs D-Gal + M.M. treated animals.



N. Samad, M.A.H. Azdee, I. Imran et al. Saudi Journal of Biological Sciences 30 (2023) 103708
enhancement with normalization of serotonin metabolism and
acetylcholine levels.

D-Gal intoxication is extensively used to develop aging-model
and correlated therapeutics (Kaviani et al., 2017). Exogenous intake
of D-Gal can alter physiological processes of various organs by
inducing oxidative deterioration, which leads aging (Azman et al.,
2019). It can induce behavioral deficits, cognitive impairment;
alter redox status, neurochemical changes in animal models
(Samad et al., 2022b). The finding showed that, repeated intake
of D-Gal enhanced tine of immobility in FST (Fig. 4) which used
for assessing depression like behavior with decreased 5-HT meta-
bolism (Zhu et al., 2020) may be due to malfunction of somatoden-
dritic 5-HT1A receptors. D-Gal reduce time given to transparent
box and open arm of LDA (Fig. 3) and EPM (Fig. 2) respectively
and imposed anxiety like action that could not be discussed in
the same line with decreased 5-HT and its metabolite concentra-
tion. It is reported that in anxiety, levels of 5-HT become enhanced,
so the up-regulation of 5-HT-2C receptor known for anxiogenesis
could be involved in increased transmission of 5-HT in the brain.
Secondly, oxidative stress induced by D-Gal probably a cause of
anxiety like behavior because in the present work lipid peroxida-
tion and inflammatory markers are elevated while enzymatic
antioxidant status is declined. Apart from that M.M. fruit peel con-
tains antioxidant (Petrus et al., 2012) showed anxiolytic and
antidepressant effect in control and D-Gal treated rats.

M.M. fruit peel has powerful antioxidant which were observed
many In-vivo (Srilanth and Ananda, 2014) and In-vitro (Priya et al.,
2012) studies. It appears in the present work that M.M. peel reduced
contents of 5-HT and its metabolite in control and D-Gal while
enhanced turnover rate of 5-HIAA/5-HT turnover in D-Gal but not
in M.M. treated rats (Fig. 10) with reduced time of immobility in
FST in control and D-Gal administered rats (Fig. 4) indicating anti-
depressive effect of M.M. fruit peel. It has been early reported that
M.M. produced anti-depressant activity in a helplessness model with
decreased 5-HT metabolism (Samad et al., 2018) same effect
observed in animal model of aging in the present study. It is reported
that M.M. has potential bioactive compounds due to all these it has
powerful antioxidant ability which can impede D-Gal prompted
oxidative deterioration and normalized neurochemical mechanism.

The cognitive ability can be altered by aging (Upright and
Baxter, 2021). Alteration in redox status has vital role in inducing
aging and associated memory loss/decline (Olesen et al., 2020).
In the present study memory impairment was observed by D-Gal
treatment with increased escape of latency by MWM test (Fig. 5).
Acetylcholine is one of the neurotransmitters which are very much
associated with memory function (Bostanciklioglu, 2020). AChE,
degradative enzyme of ACh is a potential marker for determining
cholinergic function (Han and Wang, 2019). Previously in an aging
model activity of AChE found increased with cognitive decline
(Easton et al., 2020). The current study showed a decrease in ACh
levels with increased AChE activity (Fig. 9) which is in agreement
with previous works and indicating that D-Gal administration
can cause memory impairment (Fig. 5). As reported earlier plants
are a big source of antioxidants because they contain phytochem-
ical/bioactive compounds (Diniz do Nascimento et al., 2020). M.M.
contains phenolic acid, flavonoids, tannins etc. which possess ROS
scavenging activity (Parameswari et al., 2013). Most of the bioac-
tive compound such as gallic acid (Mori et al. 2020), thymoquinone
(Hajipour et al., 2021), curcumin (Voulgaropoulou et al., 2019),
quercetin (Khan et al., 2019) decreased AChE activity and increased
Ach transmission and improved cognitive functions. In a previous
study it has also been reported that M.M. fruit peel extract can
improve cognitive ability by decreasing AChE activity and increas-
ing ACh levels (Fig. 9). It is recommended that M.M. fruit peel can
also improve memory function in an animal model of aging due to
its antioxidant potential.
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Various neurological disorders i.e. stress, cognitive disability
etc. induced due to enhanced oxidative stress (Hassan et al.,
2022). It is extensively published that repeated administration of
D-Gal instigated oxidative stress (Qian et al., 2021) by increased
lipid peroxidation of cell membrane which led damage in biomole-
cules with reduced antioxidant mechanism (Anand et al., 2012). An
antioxidant enzyme SOD, which is reported earlier as first line of
defence can neutralize superoxide radicals into H2O2, simultane-
ously other subsequent enzyme such as CAT and GPx converts
H2O2 into H2O and O2. The findings are also in agreement with for-
mer reports indicating that D-Gal can enhance lipid peroxidation
and increased MDA levels (an oxidative stress marker) (Fig. 7)
and decreased the activity of antioxidant enzymes (Fig. 6) An
enhanced oxidative stress can activate the process of inflammation
and secrete inflammatory intermediaries (markers) (Luc et al.,
2019). Aging can mimic the apoptotic pathway by activation of
inflammatory markers and oxidative stress which lead death of
neuronal cells (Jiang et al., 2020). Previously it was mentioned in
a study that increased ROS generation, oxidative damages and acti-
vation in inflammatory mediators were observed by D-Gal intake
(Singh et al., 2021). An increased contents of IL-6 and TNF-a (in-
flammatory markers) (Fig. 8) are observed in D-Gal treated animal.
The present data agrees with the previous study as mentioned
above and suggesting the impact of neuro-inflammation and
neuro-toxicity following D-Gal i.e. brain areas such as hippocam-
pus deterioration which involves in anxiety and depression-like
behaviors (Samad et al., 2022b) and cognitive disability (Shwe
et al., 2020). The recent research work proved that neuro-
inflammation and neuro-degenerative conduits have a crucial role
in depression/anxiety/dementia by increased contents of inflam-
matory intermediaries (Cheng et al., 2018). Anxiolytic (Samad
et al., 2020; Sarvanan et al., 2012), antidepressant (Samad et al.,
2020), anti-inflammatory (Petrus et al., 2012) and antioxidant
(Srilantha and Ananda, 2014) effects of leaf extract of M.M. have
been reported. Antioxidative potential of M.M extensively scav-
enge free radicals and made more effective the antioxidant enzyme
system (Srilantha and Ananda, 2014; Sarvanan et al., 2012). The
finding displayed that M.M. improves antioxidant enzymes by
increasing enzymatic antioxidant (Fig. 6) and mitigating the oxida-
tive deterioration (Fig. 7) and inflammatory markers (IL-6, TNF-a).
It is indicating that D-Gal-prompted oxidative deterioration is mit-
igated/prevented by M. M. possibly via its antioxidant and neuro-
modulatory effects.

In conclusion, powerful antioxidant potential of M.M. involves
in attenuation of D-Gal-induced anxiety/depression-like symp-
toms and progresses cognitive ability. Modulation of serotonin
and acetylcholine mechanism via potential antioxidant system of
M.M. produces anti-stress and cognitive improving effects. It is
suggested that dietary habit of M.M. can help out to reduce aging
and related neurological problems. This study is limited to an
extent, however in the future more studies should be performed
to evaluate/compare the effect of M.M. on female and male rats
with developed aging model and normal aging model with associ-
ated neurological disorders.
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