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Genome dependent Cas9/gRNA search time
underlies sequence dependent gRNA activity
E. A. Moreb 1 & M. D. Lynch 1✉

CRISPR-Cas9 is a powerful DNA editing tool. A gRNA directs Cas9 to cleave any DNA

sequence with a PAM. However, some gRNA sequences mediate cleavage at higher effi-

ciencies than others. To understand this, numerous studies have screened large gRNA

libraries and developed algorithms to predict gRNA sequence dependent activity. These

algorithms do not predict other datasets as well as their training dataset and do not predict

well between species. Here, to better understand these discrepancies, we retrospectively

examine sequence features that impact gRNA activity in 44 published data sets. We find

strong evidence that gRNA sequence dependent activity is largely influenced by the ability of

the Cas9/gRNA complex to find the target site rather than activity at the target site and that

this drives sequence dependent differences in gRNA activity between different species. This

understanding will help guide future work to understand Cas9 activity as well as efforts to

identify optimal gRNAs and improve Cas9 variants.
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S ince their discovery in 2012, Clustered Regularly Inter-
spaced Short Palindromic Repeats (CRISPR) systems have
revolutionized how we manipulate biology1. CRISPR-

Associated Protein 9 (Cas9), from S. pyogenes, was the first
CRISPR system characterized and enables targeted cleavage of
double-stranded DNA1. The successful application of CRISPR
systems is dependent on a given guide RNA (gRNA) but
understanding which gRNA sequences effectively cleave their
targets has proven challenging2–4. Predictive algorithms have
been developed to select gRNA with improved on-target
activities3,5–10. These algorithms rely on sequence features of
the gRNA and target site. While many of these algorithms have
achieved good predictability within their training data, predic-
tions between datasets, particularly between different species, are
not as accurate8,10–15. These results suggest that 1) the features
used to develop these algorithms are not effectively capturing
changes in genomic context and 2) these features are influenced
by factors other than DNA unwinding and/or cleavage at the
target site, as illustrated in Fig. 1a. Broadly defined, “context”

includes all variables that can impact Cas9 activity independent of
the biochemical cleavage reaction at the target site, while “geno-
mic context” specifically refers to the host genomic factors
excluding the target site, which have recently been shown to
impact the rate at which the Cas9/gRNA complex finds its
target16. Understanding how a gRNA’s sequence influences Cas9/
gRNA complex activity in different contexts may lead to
improved algorithms and/or better predictions between species,
as well as new avenues for engineering improved Cas9 variants.

A gRNA’s sequence has been shown to influence Cas9/gRNA
complex activity in a variety of ways (Fig. 1a). Secondary struc-
ture involving the targeting portion (“spacer”) of the gRNA has
been linked to low Cas9/gRNA complex activity due to decreasing
the functional gRNA available17,18. Similarly, sequence features
controlling expression of the gRNA have been linked to low
activity in certain contexts. One example is four contiguous
thymines in a row, which is a transcriptional pause signal when
expressing gRNA from U6 promoters (Supplementary Fig. 1)19.
Another example is that gRNA expressed from U6 promoters, in
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Fig. 1 Summary of known factors that influence Cas9/gRNA complex activity and the reported gRNA sequence features identified as most important.
a The gRNA sequence can at least partially predict on-target activity. Here, we provide a model of factors reported to influence Cas9/gRNA complex activity
and whether they impact finding the target site, cleaving the target, or repair of the target. b The gRNA:target duplex is highlighted in yellow and the PAM site is
highlighted in green. Features that reportedly positively impact gRNA activity, have been identified as inhibitory to activity, or were specifically identified as not
significant are labeled in blue, red, and gray, respectively. Position dependent features are labeled in the relevant position while position independent features are
shown in separately labeled boxes. c When comparing all datasets, there was no feature identified with a common impact on activity across all datasets and
only one feature identified across 75% of the datasets. d The consistency of reported features across datasets of the same species. Of features identified as
important in human datasets, no feature consistently had the same impact across human datasets. For other species, we identified five, four, and 6 features that
were consistent across datasets within the E. coli, mouse, and zebrafish datasets. Y. lipolytica was excluded from this analysis as there is only one dataset.
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mammalian systems, need to start with a guanine for optimal
expression20. The spacer sequence of a gRNA also determines the
amount of time Cas9 spends interrogating non-target sites, which
collectively make up the “search space” for a given Cas9/gRNA
complex16,21. This leads to sequence dependent search times for
different gRNA based on the non-target interactions throughout
the genome16. Collectively, these sequence features influence how
each Cas9/gRNA complex finds the target either by limiting
expression of functional gRNA or slowing down search time
(Fig. 1a). Cas9/gRNA complex activity has also been linked to
gRNA sequence in other ways. For example, in eukaryotic sys-
tems, double strand break (DSB) repair primarily relies on non-
homologous end joining (NHEJ). NHEJ is an error-prone repair
process that has recently been shown to be predictable and largely
dependent on the nucleotide 5’ of the DSB, which would be the
4th nucleotide from the PAM site22. In some cases, this may
influence the apparent or measured activity of a given gRNA.
Finally, several studies have found sequence dependent differ-
ences in the activity of a given Cas9/gRNA complex when com-
paring wild-type Cas9 and higher fidelity variants that are known
to cleave the target site more slowly23–26. This could indicate a
role for sequence in determining the rate at which Cas9 cleaves
the target site. Despite these links between sequence and activity,
it is still not entirely clear which features contribute the most to
gRNA specific activity and how these impact Cas9 activity in
different genomic contexts.

Despite these varied and complex interactions, in the process of
developing predictive algorithms for gRNA activity, many
sequence-based features that predict activity have been identified
(Fig. 1b). However, these features are generally not well explained
mechanistically and are not consistent between different species
or genomic contexts (Fig. 2c-d). In the present study, we sought
to better understand the mechanism by which gRNA sequence
impacts gRNA activity. Toward this goal, we report a retro-
spective analysis of 44 gRNA library datasets from different
species, with several Cas9 variants, using both endogenous and
exogenous target sites, various activity outputs, and different
experimental systems3–11,16,23–25,27–36. In this analysis, we con-
firm species dependent differences in how sequence influences

gRNA activity and find strong evidence that gRNA sequence
influences the time it takes for a given Cas9/gRNA complex to
find the target site. This analysis sheds light on why gRNA pre-
diction algorithms do not predict well between species and may
lead to better predictions in the future.

Results
Compiled datasets represent different species, distributions of
activity, and experimental methods. We began by compiling
data as discussed in the Methods Section, and illustrated in
Fig. 2a3–11,16,23–25,27–36. Activity is reported as it was in the
original dataset but we have inverted the sign on several datasets
to ensure that in our comparisons more positive numbers cor-
relate with more active gRNA. The datasets have varied dis-
tributions of cutting/cleavage activity, from binary distributions
(gRNAs that either cut or do not cut) to skewed or normal dis-
tributions, suggesting significant experimental and context
dependent differences in gRNA dependent activity (Fig. 2b, data
compiled in Supplementary Data 1).

Spacer independent PAM preference is consistent across spe-
cies and genomic contexts. To ensure that our analysis could
identify sequence features that may impact the intrinsic Cas9
cleavage step (Fig. 1a), we first sought to confirm sequence features
known to affect this activity. Cas9 has been reported to prefer
NGGH PAM sites, where H is either A, C, or T3. We first deter-
mined how consistent this was across different contexts. To do this,
we grouped gRNA within each dataset by the fourth nucleotide of
the PAM, calculated average activity per group, and correlated these
average values between datasets (Fig. 3a). As shown in Fig. 3b, we
see strong correlations across almost all datasets, spanning different
species (genomic contexts) and experiments. Furthermore, the
datasets that do not correlate well have clear explanations. In the
data from Chari et al. 2015, approximately 75% of the gRNA tar-
geting endogenous loci are completely inactive, independent of the
fourth nucleotide of the PAM (Fig. 3c). Several of the Cas9 variants
have altered PAM preferences for the fourth nucleotide of the PAM
when targeting NGG sites, which this analysis supports. Lastly, of

Fig. 2 Summary of the datasets included in this analysis. a Datasets collectively represent a diverse set of expression methods, experiment durations,
species, selection types, gRNA library sizes, and target types. The bars on some data points represent the range of days that activity in those datasets has been
calculated from. b–z These datasets cover a broad range of activity distributions, including moderate to extremely binary distributions, normal distributions, and
completely uniform distributions, based on how activity was measured and data were processed. All datasets are shown with higher gRNA activity represented
by larger numbers. In some cases, that required inverting the scale of activity as described in the Methods (namely, b, d, o, w, x, and y).
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the three datasets targeting fewer than ~200 gRNA, two datasets are
poorly correlated suggesting that small datasets may lack statistical
power to capture even known features. While the preference for
NGGH PAM sites is not new or novel, this analysis shows that even
features that weakly influence activity but are intrinsic to
Cas9 should be detectable across different experiments and species.

The PAM proximal sequence is most predictive of Cas9/gRNA
complex activity. After confirming that known sequence features
impacting intrinsic Cas9 activity can be quantified in these data, we
next turned to evaluate which gRNA sequence features predict

Cas9/gRNA complex activity. It has been reported that the
nucleotides in the PAM proximal region of the gRNA sequence (the
“seed”) are the most important features in predictive algorithms
(Fig. 1)3,6,8,9. However, given that algorithms do not predict well
between species, we sought to better understand which gRNA
sequence features are most predictive of activity in different geno-
mic contexts. gRNA sequence features are routinely digitized for
these types of analyses using one hot encoding of overlapping
dinucleotides5. We therefore used the same approach to digitize all
sequences (Fig. 4a). For each dataset, after converting gRNA
sequences to a one hot matrix encoding dinucleotides, we randomly
split the dataset into a training group and testing group

1.000.50-1.00 -0.50 0.00

Pearson

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 30 31 32 36 37 3833 34 3525 26 27 28 29

gRNA grouped by 4th nucleotide of target PAM

NGGG

NGGC
NGGT
NGGA

Dataset1 Dataset2 Dataset3

Activity Activity Activity

Pairwise 
Correlations

1 2 3
1
2
3

Active gRNA

Endogenous target

Active gRNA

Lentiviral target

Small dataset 
(n<205 gRNA)

Dataset 2

D
at

as
et

 1

Average Activity

Av
er

ag
e 

Ac
tiv

ity

NGGG

NGGA

NGGT

NGGC

4th bp of PAM

Cas9 variants 
with modified 
PAM interacting 
domains

a) c)

b)

Cas9

Cas9

Cas9

Cas9
Cas9

Cas9

Cas9-HF1

Cas9-NG

HypaCas9

Sniper-Cas9

VRQR

eCas9

evoCas9

xCas9

Cas9

Cas9-NG

xCas9

Cas9
Cas9

Cas9

Cas9

Cas9

Cas9

Cas9

Cas9-HF1

Cas9-HF1

Cas9-HF1
Cas9-HF1D1135E

Moreb2020

Doench2014

Chari2015

Xu2015

Doench2016

Kim2019-SA

Kim2020b

Kim2020a

Doench2014
Liu2016

Schwartz2019
Gagnon2014

Moreno-Mateos2015
Varshney2015

Moreb2017

Dataset
Cell Line/

Strain
Cas9 
Variant

Guo2018

W

A375
MOLM13/
NB4/TF1

HEK293T

HL60
KBM7

A375

HEK293T 
(lentivirus)

HEK293T 
(lentivirus)

HEK293T 
(lentivirus)

HEK293T 
(lentivirus)

EL4
Neuro2A

PO1f
embryo

TU
embryo

BW25113
MG1655

MG1655
Cas9

eCas9

Cas9

Cas9
Aguirre2016 A673 Cas9

Hart2015 Hct116 Cas9

Wang2017 P31/FUJ Cas9
Meyers2017 A549 Cas9

Cas9
Xiang2021

HEK293T 
(lentivirus)

Cas9HEK293T 
(lentivirus+dox)

Species

E. coli

Human

Zebrafish

Y. lipolytica
Mouse

1
2
3
4
5
6
7
8
9

10

11
12
13
14
15
16
17
18
19
20
21
22
23
24

30
31

34
35

32

37
38

33

36

25
26
27
28
29
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was converted to a dinucleotide one hot matrix and used to predict activity with a linear regression. For each dataset, 80% of gRNA were randomly
assigned to a training group while the remaining 20% were used as a test group. Predicted activity was compared with actual activity using Pearson
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each dataset (along with individual results, dots). Error bars show the standard deviation of each cross validation. c We then repeated this analysis but left
out 5 bp at a time. d The heatmap shows the averaged Pearson with 5 bp left out (Pearsonpartial sequence) as a fraction of the averaged Pearson using all
20 bp (Pearsonfull sequence). In cases where the Pearsonfull sequence average was close to zero, we excluded these datasets from further analysis.
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representing 80% and 20% of the gRNA, respectively. After training,
we predicted the activity in the test group and compared the pre-
dicted activity to actual activity using a Pearson correlation. We
performed 10-fold cross validation by splitting the training and test
groups randomly each time and averaging the results (Fig. 4b). As
expected, and discussed above, for small datasets with n < 205
gRNA, this approach did not prove to be predictive. Similarly, in
the data from Chari et al. 2015, the activity for gRNA targeting
endogenous sites was not predictable, likely due to the low overall
activity within this dataset (Fig. 3c). Among the remaining datasets,
the Pearson values ranged from 0.18 to 0.84 highlighting both the
link between sequence and activity and the variability of sequence
impact in different contexts.

We next proceeded to iteratively repeat the linear regres-
sions, each time removing one quarter of the gRNA sequence
and correlating the remaining sequence with activity (Fig. 4c).
The Pearsons for the partial sequence predictions as a fraction
of the Pearson for full sequence prediction are given in Fig. 4d.
These results highlight the majority of the predictive ability of
the full gRNA sequence is from the PAM proximal region. The
PAM distal 5 bp is also important for some datasets, primarily
those utilizing high-fidelity variants of Cas9. This result is
consistent with the PAM proximal features identified in the
literature (Fig. 1b). This result supports the role for one
mechanism underlying sequence dependent gRNA activity
across datasets.

The impact of the PAM proximal sequence on Cas9/gRNA
complex activity is species or genomic context dependent. We
next turned to determine how the impact of the PAM proximal
sequence varies as a function of the genomic context. To do so we
examined specific sequence preferences within each dataset and
between species. If nucleotide preference is derived from intrinsic
Cas9 activity at the target site, we would expect to see strong
agreement on sequence preference between datasets, regardless of
species, similar to what is observed when looking at PAM pre-
ferences (Fig. 3)2. Intraspecies correlation with a reduced corre-
lation between species would suggest that differences are driven
by the larger genomic context in which Cas9 is deployed,
including different inhibitory non-target site pools or other fea-
tures that impact Cas9/gRNA complex search times16. The lack of
any intra or interspecies correlation would suggest other con-
founding and unknown context dependent factors.

To investigate the species specific sequence preference in the
PAM proximal position, we first determined what length of
sequence to compare. In each dataset, we first measured the
fractional representation of all possible k-mers (length 1 to 10)
starting at the PAM proximal position (Fig. 5a). With the
exception of the dataset from Hart et al. 2015, all datasets
contained gRNA representing all 16 possible dinucleotide
sequences in the PAM proximal position. In Hart et al. 2015,
the dataset was designed to exclude thymines in the four PAM
proximal positions, explaining the lack of specific dinucleotide
sequences in this dataset4. Additionally, gRNA from libraries in
Doench et al. 2014 and Doench et al. 2016 were included in the
library design in Kim et al. 2019 (Supplementary Fig. 2), we
therefore excluded those particular gRNA from the Kim et al.
2019 dataset to avoid redundancy. Similarly, some of the gRNA in
Moreb et al. 2017 were also included in Moreb et al. 2020 and
were removed from the Moreb et al. 2017 datasets for the purpose
of this comparison. Refer to Supplementary Fig. 2 for a measure
of gRNA redundancy among datasets. We grouped gRNA within
the remaining datasets by the PAM proximal dinucleotide
sequence, calculated the average activity for each group, and
then looked at the correlation between these dinucleotide group

averages and activity between datasets in a pairwise-fashion, the
results of which are given in Fig. 5b (see Supplementary Fig. 3 for
grouped averages per dataset).

In these results, we see low interspecies correlations, but strong
intraspecies correlations within the E. coli, human, and zebrafish
datasets (Fig. 5c). In E. coli, there are strong correlations between
our two previously reported datasets and that of Guo et al. 2018
but weak to no correlation with the datasets from Tálas et al.
2021. This study used an experimental design, including
extrachromosomal targets, enabling rapid target cleavage. As a
result, in Tálas et al. 2021, gRNA are mostly inhibited by the
formation of unwanted secondary structures that render gRNA
unable to bind the target site (the authors note predicted
minimum free energy of gRNA secondary structure is strongly
correlated with their library)17,18,23. Within the two mouse
datasets, we don’t see a good correlation but this is consistent
with earlier results suggesting that the data reported by Liu et al.
2016 is not large enough and does not have high enough
resolution to capture key sequence features driving activity. In Y.
lipolytica, with only one dataset, we can only conclude that this
dataset is not strongly correlated with other species, which agrees
with the authors findings that several previously published
predictive algorithms for both human and E. coli gRNA had no
predictive ability on their dataset11. Similarly, within the three
zebrafish datasets there is strong correlation when comparing
data from Moreno-Mateos et al. 2015 with the other two but no
correlation between the smaller datasets. Taken together, low
interspecies correlations, but strong intraspecies correlations, is
consistent with a model where species dependent differences in
Cas9/gRNA complex activities are (1) a function of genomic
context and (2) independent of intrinsic Cas9 cleavage activity16.

This model is further supported by the fact that we see strong
intraspecies correlations despite differences in the measurement of
activity, and possible confounding variables such as sequence
preferences for NHEJ repair22. For example, we see strong
intraspecies correlations in experiments where either direct
sequencing methods or phenotypic screening methods were used
to measure activity. These results indicate that the method of
measuring activity does not broadly alter gRNA sequence
preference within a given genomic context. We further confirmed
this by comparing the activity of gRNA measured in phenotypic
screens in Doench et al. 2016 to the activity of the same gRNA
measured by direct sequencing in Kim et al. 2019 (Supplementary
Fig. 4). While there are differences in activity for individual gRNA,
the averages based on the PAM proximal 2 bp are highly correlated.
Another way to determine how the specific NHEJ repair outcomes
may influence measured gRNA activity is through the use of
inDelphi, a tool developed to predict NHEJ repair outcomes22.
With inDelphi, it is possible to calculate the predicted frequency of
frameshift mutations induced at specific target site. We therefore
calculated an adjusted activity score based on this and found strong
correlation between the adjusted activity and actual activity as well
as strong correlation between the PAM proximal sequence
preferences (Supplementary Fig. 4). We can conclude that the
method of measuring activity is not a strong determinant of the
sequence preference in the PAM proximal position.

While we have shown that the PAM proximal nucleotide
preference is not influenced by the method of measuring activity,
this does not mean other factors don’t also influence activity in a
given species or experiment. For example, in Fig. 4, gRNA
sequence is less predictive of activity in the datasets targeting
endogenous loci than in those targeting lentiviral target sites. This
indicates either error in the measurement of activity in those
datasets or a biological reason why sequence is less predictive of
activity (ie, target accessibility or other confounding factors). So
while the PAM proximal sequence impacts activity in a genomic
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context dependent manner, this does not mean other factors do
not influence or confound activity.

The impact of the PAM proximal sequence on Cas9/gRNA
complex activity can be attributed to the search space. Within a
given species, several factors reduce the intraspecies correlations,
suggesting a reduced impact of the genomic context on gRNA

sequence-dependent activity. In E. coli datasets, the addition of the
D1135E mutation37 reduces the correlation with other E. coli
datasets (in contrast to other high fidelity variants and wild-type
Cas9, Supplementary Fig. 3).The D1135E mutation is known to
improve the specificity for NGG PAMs, thereby reducing the
interactions at non-canonical PAMs for all gRNA and effectively
reducing the size of the search space16,37. We previously reported
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that this resulted in higher overall on-target activity16. The
reduced correlations with other E. coli datasets further suggests
that this mutant also reduces the impact of genomic context on
the PAM proximal sequence preference. There are also weaker
correlations of the Kim et al. 2020b datasets and Park et al. 2021
dataset with other human datasets. Both of these datasets utilize
different sgRNA scaffolds that modify the four consecutive thy-
mines present towards the 5’ end of the scaffold25,31. As four
thymines in a row represent a known transcription terminator for
the eukaryotic RNA polymerase III, the result of this modification
is higher expression of the gRNA38. This suggests that increased
gRNA expression reduces the impact of context on activity. The
higher the number of Cas9/gRNA complexes in the cell, the faster
these complexes can collectively find a given target (Fig. 1a).
Lastly, both Wang et al. 201735 and Meyers et al. 201734 show
modest but reduced correlations with other human datasets. Both
of these datasets were algorithmically designed for improved
activity which would be expected to reduce the sequence depen-
dent difference between gRNA. Therefore, while algorithms may
reduce sequence dependent differences between gRNA, both high
gRNA expression and more specific PAM preference also reduce
the influence of the PAM proximal sequence on gRNA activity
(Supplementary Fig. 3). This result is consistent with reducing the
time it takes a Cas9/gRNA complex to find the target.

The impact of the PAM proximal sequence on Cas9/gRNA
complex activity is independent of Cas9 nuclease activity. Our
analysis thus far supports the model, depicted in Fig. 1a, that
gRNA sequence is primarily influencing the time it takes for a
Cas9/gRNA complex to find the target site, rather than impacting
intrinsic Cas9 cleavage activity or repair. While the datasets dis-
cussed above are of wild-type Cas9 or Cas9 variants with nuclease
activity, we would expect to see similar sequence preference in
nuclease null Cas9 variants, including deactivated Cas9 (dCas9)
and base editors, if our hypothesis is correct. Using datasets from
Horlbeck et al. 201639 (dCas9) and Marquart et al. 202040 (base
editors) in human cells, we followed the same analysis of the
PAM proximal 2 bp sequence that we did for other Cas9 datasets.
We found that these datasets shared PAM proximal sequence
preference with nuclease active Cas9 datasets in humans but had
weaker or negative correlations in other species, despite not
inducing double strand breaks (Fig. 6). This further supports the
model that PAM proximal sequence influences the time it takes
Cas9 to find the target site and is therefore independent of Cas9
nuclease activity.

For a given genomic context, the PAM proximal sequence
defines an upper limit of gRNA activity. From our analysis, we
conclude that gRNA sequence influences Cas9 search times in a
genomic context-dependent manner. While we know that many
factors can influence Cas9 activity (Fig. 1a), one implication of
this is that the PAM proximal gRNA sequence should correlate

with an upper potential activity of a given gRNA. This is because
the rate of finding the target site sets a fundamental upper limit
on the activity of a given Cas9/gRNA complex. Additional factors
such as target accessibility, supercoiling, and differences in repair
(as well as others) would all negatively impact activity relative to
this upper limit22,41–43. Another implication of gRNA sequence
influencing Cas9 search times is that the sequence influences
activity as a series of contiguous nucleotides, rather than a dis-
parate set of dinucleotides as is commonly used in predictive
algorithms5–8,24. This is because sequence-dependent search
times are likely due to sequence-dependent non-target interac-
tions throughout the genome in which Cas9 probes non-target
sites in a zipper-like fashion from the PAM proximal
position16,21. We therefore sought to determine if the contiguous
PAM proximal sequence correlates with an upper potential limit
to gRNA activity.

We previously looked at the fractional representation of all
k-mers (length 1 to 10) in the PAM proximal position (Fig. 5a).
From this analysis, we selected the two largest human datasets
(from Wang et al. 2019 and Kim et al. 2019) that used the
conventional gRNA scaffold in order to have full representation
of all possible 5-mer sequences (Fig. 7a).We combined these
datasets, grouped gRNA by their contiguous PAM proximal 5 bp
sequence, calculated the average activity for each group and then
used this averaged activity to predict gRNA activity in all human
datasets based on the PAM proximal 5 bp for each gRNA
(Fig. 7b). Unlike current prediction algorithms which treat gRNA
sequences as a series of dinucleotides, this approach treats the
PAM proximal sequence as one contiguous sequence. This better
represents the manner in which the gRNA sequence sequentially
binds to target and non-target sequences16,21. Upon correlating
predicted activity with actual activity, we found that this approach
was reasonably predictive for datasets using the conventional
gRNA scaffold while less predictive of gRNA with a modified
gRNA scaffold or higher expression levels, in line with our earlier
analysis (Fig. 7c). We also confirmed that grouping by the PAM
proximal 5 bases was more predictive than grouping by fewer
nucleotides (Supplementary Fig. 4). Notably, with the exception
of high fidelity variants and datasets with high expression levels,
these predictions are comparable or better than our earlier linear
regression-based predictions using the full gRNA sequence
represented as dinucleotides. This suggests that using the
complete sequence rather than a series of dinucleotides may
better capture this aspect of gRNA activity. When looking at the
residuals of these predictions, we noted a skewed distribution
showing that this method often generates false positives but rarely
generates false negatives (Fig. 7d–f). To better understand this, we
plotted predicted activity against actual activity and, as expected,
found that the PAM proximal sequence defines an upper bound
of the potential activity for a given gRNA (Fig. 7g, h).

We then applied the same prediction to the nuclease null Cas9
datasets used earlier. The PAM proximal sequence is less able to
predict activity in the dCas9 or base editing datasets (Fig. 7i).

Fig. 5 PAM proximal sequence preference is context dependent. a We looked at the fraction of possible k-mers for each length, k, starting in the PAM
proximal position. Lines and shaded regions represent the mean and one standard deviation from the mean, respectively, for each species. This shows that
2-mers are represented in all datasets, except Hart et al. 2015 which excluded thymines from the PAM proximal 4 bases. We therefore excluded Hart et al.
2015 from this analysis. We also excluded replicates of redundant gRNA present in another dataset: gRNA from Doench et al. 2014 and Doench et al. 2016
were removed from Kim et al. 2019 and gRNA from Moreb et al. 2020 were removed from Moreb et al. 2017 (see Supplementary Fig. 2 for more
information). b We next grouped gRNA within each of the remaining datasets by the PAM proximal dinucleotide and calculated the average activity for
each dinucleotide group (an example analysis is illustrated for datasets 1, 2, and 3). The averaged values for each data set were then correlated in a
pairwise fashion between datasets to determine the similarity of dinucleotide sequence impact at this position. c The heatmap shows Pearson correlations
between the averaged values for PAM proximal dinucleotides in all datasets, with blue being more positively correlated and red being more negatively
correlated. Datasets are grouped by species and then ordered by year of publication. See Supplementary Fig. 3 for comparison of individual datasets.
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Both dCas9 and base editing have additional requirements to
achieve high activity, such as correct positioning relative to the
gene being inhibited for dCas9 or containing the correct sequence
in the editing window for base editors, compared to wild-type
Cas939,40. This would be expected to lead to generally lower
activity that is independent of gRNA sequence. Despite this, we

found that the residuals were even more skewed than in Cas9
datasets (Fig. 7j), and when we plot predicted activity against
actual activity, we see that the PAM proximal sequence can again
mark an upper bound of the potential activity of a given gRNA
(Fig. 7k). Taken together, this analysis provides further evidence
that Cas9 activity is limited by finding the target site in a gRNA
sequence-dependent manner.

Discussion
The analysis presented here supports a model in which gRNA
sequence at least in part dictates activity based on factors distal to
the target site, i.e. genomic context, and as such, is primarily
involved in determining the rate at which a given Cas9/gRNA
complex finds its target site. We have shown a species-
dependence between the sequence in the PAM proximal posi-
tion and activity of a given gRNA (Fig. 5), even when adjusting
for NHEJ repair outcomes (Supplementary Fig. 4) or when
looking at nuclease null Cas9 variants (Fig. 6). This is in direct
contrast to the four nucleotide PAM preferences observed across
all species (Fig. 3) and indicates that the PAM proximal sequence
preference is not influenced by intrinsic Cas9 biochemistry (such
as target cleavage) or repair. Consistent with this, we also showed
that within a given genomic context, the PAM proximal sequence
of a given gRNA marks an upper bound of potential activity,
supporting the idea that in general activity can be limited by how
fast a specific Cas9/gRNA complex finds its target (Fig. 7, Sup-
plementary Fig. 6). Further supporting this model, we show that
both increased gRNA expression and increased PAM specificity,
which should both decrease searching time, reduce the sequence
preference in the PAM proximal position (Fig. 8). Together, these
data and analyses suggest that sequence in the PAM proximal
position of the gRNA influences the time it takes for a given Cas9/
gRNA complex to find the target site. This effect can be attributed
to the search space or the pool of inhibitory non-target sequences
which vary as a function of genomic context, although other
contextual features may also be at play16.

This analysis helps to explain variability in gRNA activity
across species. As illustrated in Fig. 8, species specific algorithms
that predict gRNA activity may be useful but predicting between
species is not appropriate with current gRNA sequence-based
features8,10,11,13. Previously these differences in activity have
been attributed to different Cas9/gRNA expression methods,
different mechanisms of repair, target site accessibility, or phe-
notypic screening versus more direct methods of measuring
activity8,10,14,15. Our analysis suggests that while expression
levels matters, promoter differences are less likely to be driving
differences between species. Similarly, differences in repair or
target site accessibility may be impactful but would not explain
the differences we observe in the PAM proximal sequence pre-
ferences between species. Furthermore, while better algorithms,
such as deep learning7,44, may improve species-specific predic-
tions, a better understanding of genomic context and the impact
of the search space will be required to predict activity across
species. Understanding the impact of novel contexts on gRNA
sequence dependent activity is key to developing CRISPR-based
applications in new organisms, where current datasets are not
expected to be predictive (Fig. 8e). To aid these future efforts, we
have provided a proposed workflow and key considerations
when designing gRNA libraries to better develop gRNA design
algorithms in new systems (Supplementary Note 1).

This analysis also highlights factors that mitigate the impact of
the PAM proximal sequence on activity and helps to explain
differences observed in many studies. In particular, high expres-
sion levels of Cas9 and/or gRNAs can reduce the impact of the
genomic context on gRNA activity, improving on-target activity
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by the PAM proximal 2 bp, averaged activity and correlated the grouped
averages with the datasets from Fig. 5.
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(Fig. 8d). However, this may not be a general solution as high
expression levels are also correlated with increased off-target
activity45,46. In cases where it is important to avoid off-target
activity, other strategies may be preferred. One such strategy is to
use Cas9 variants with higher PAM specificity (such as the
D1135E mutant37), thus limiting the inhibitory non-target pool
(Fig. 8c)16,37,47. Higher PAM specificity mutants may be parti-
cularly useful in host contexts where host specific predictive
algorithms have not yet been developed.

In addition to strategies for improving Cas9 activity in different
contexts, this analysis emphasizes that many factors may nega-
tively influence Cas9 activity relative to a maximal activity

predicted by the PAM proximal sequence. While some of these
factors, such as unwanted secondary structure in the gRNA or
Cas9 preference for NGGH, are known, there is still much to
learn3,18. For example, several reports have highlighted motifs or
nucleotide preferences specific to high fidelity variants but
mechanistic explanations for this are lacking8,23–25. Additionally,
other contextual factors such as target site accessibility or other
unknown chromosomal factors may play a role in Cas9
activity7,8,41,48.

Understanding how the search space and genomic context
more broadly impact on-target activity may also help elucidate
factors impacting off-target activity. Our analysis supports that
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in vivo on-target activity can be significantly influenced by factors
outside of the target site. Since these contextual factors impact
activity in a gRNA sequence-dependent manner, they are likely
also relevant to off-target activity in the same way. Similarly,
other unknown contextual factors may contribute to apparent
sequence-dependence of off-target mismatch tolerance45.

Finally, while much of the current understanding of Cas9
activity has been limited to a perspective focused on the target
site, this analysis suggests that it may be equally important to
understand sequence specific differences at interactions at non-
target sites. It is our view that the sum of these transient inter-
actions is a main driver of Cas9/gRNA complex search times.
Several reports have found moderate or no connection between
the number of predicted off-target sites and on-target
activity10,49. However, off-target sites make up a small minority
of the potential search space when including transient non-target
interactions16,21. To our knowledge, transient interactions have
only been evaluated in a handful of studies and no direct com-
parison of sequence dependent effects has been reported to
date16,21. In vitro studies by Sternberg et al. demonstrated that
Cas9 spent 1/10th the amount of time interrogating non-target
sites with a 4 bp match than it did with non-target sites con-
taining an 8 bp match21. However, for any given gRNA there are
likely to be orders of magnitude more non-targets with 4 bp
matches than with 8 bp matches, without accounting for possible
mismatches, suggesting the sum of interactions at 4 bp matches
would represent a larger search space than the sum of interactions
at 8 bp matches. This suggests that understanding transient
interactions may be crucial to developing a better understanding
of the sequence features driving context dependent differences.

In the future, an improved understanding of gRNA sequence-
specific Cas9 search times may well lead to (1) improved algo-
rithms for predicting gRNA activity in established and novel
organisms, (2) Cas9 variants with improved on-target and
reduced off-target cleavage, (3) improved high-throughput
functional screens, and (4) a better understanding of the factors
driving activity in next generation CRISPR applications.

Methods
Compiling datasets. We compiled 44 datasets from 23 papers (an overview is
provided in Supplementary Data 1, while datasets grouped by species are provided
in Supplementary Data 2-6)3–11,16,23–25,27–36. We first filtered the data, only
including results for gRNA where (1) we could find a matching target site in the
target genome (if targeting an endogenous site) and (2) gRNA were targeting NGG
PAM sites. The following reference genomes were used: hg38 for human datasets
(GenBank: GCA_000001405.15 [https://www.ncbi.nlm.nih.gov/assembly/GCF_
000001405.15/])50, mm9 for mouse datasets (GenBank: GCA_000001635.1
[https://www.ncbi.nlm.nih.gov/assembly/GCF_000001635.18])51, danRer10 for
zebrafish (GenBank: GCA_000002035.3 [https://www.ncbi.nlm.nih.gov/assembly/
GCF_000002035.5/])52, W29 for Y. lipolytica (GenBank: GCA_003054345.1
[https://www.ncbi.nlm.nih.gov/assembly/GCA_003054345.1])53, MG1655 (Gen-
Bank: U00096.2 [https://www.ncbi.nlm.nih.gov/assembly/GCF_000005845.1/])54,
BW25113 (GenBank: CP009273.1 [https://www.ncbi.nlm.nih.gov/assembly/GCF_
000750555.1/])55 and W (GenBank: GCA_000184185.1 [https://www.ncbi.nlm.nih.
gov/assembly/GCF_000184185.1/])56 for E. coli.

We report activity as it was reported in the original dataset but have inverted
the sign on several datasets to ensure that in our comparisons more positive
numbers correlate with more active gRNA. Datasets for which we inverted the sign
include Xu et al. 20156, Aguirre et al. 201633, Meyers et al. 201734, Wang et al.
201735, Moreb et al. 201730, Schwartz et al. 201911, Moreb et al. 202016, and Park
et al. 202131. The data in Supplementary Data 2-6 include this sign inversion.
When plotting datasets together (as done in Figs. 4–7), we have re-scaled the
activity measurements to values between 0 and 1, where 1 represents the most
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organisms in a sequence specific manner. Cas9 dependent factors that are independent of host context present an orthogonal axis of activity. b Therefore,
current algorithms trained on gRNA sequence features can perform well within the same context but will not accurately predict other species. However, the
impact of context on gRNA activity can be reduced through c increasing the specificity of Cas9 PAM binding to reduce potential interactions at non-target
sites (data from Moreb et al. 2020, each boxplot represents n >= 209 gRNA) and d increasing the expression of Cas9 and/or gRNA (data from Kim et al.
2019 and Kim et al. 2020b on left and right, respectively. Each boxplot represents n >= 169 gRNA). e Understanding the PAM proximal impact of context
on gRNA activity also allows targeted gRNA libraries to specifically evaluate context effects (see Supplementary discussion on evaluating context).

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-25339-3 ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:5034 | https://doi.org/10.1038/s41467-021-25339-3 | www.nature.com/naturecommunications 11

https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.15/
https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.15/
https://www.ncbi.nlm.nih.gov/assembly/GCF_000001635.18
https://www.ncbi.nlm.nih.gov/assembly/GCF_000002035.5/
https://www.ncbi.nlm.nih.gov/assembly/GCF_000002035.5/
https://www.ncbi.nlm.nih.gov/assembly/GCA_003054345.1
https://www.ncbi.nlm.nih.gov/assembly/GCF_000005845.1/
https://www.ncbi.nlm.nih.gov/assembly/GCF_000750555.1/
https://www.ncbi.nlm.nih.gov/assembly/GCF_000750555.1/
https://www.ncbi.nlm.nih.gov/assembly/GCF_000184185.1/
https://www.ncbi.nlm.nih.gov/assembly/GCF_000184185.1/
www.nature.com/naturecommunications
www.nature.com/naturecommunications


active gRNA. This was done with min-max scaling from the Python library scikit-
learn and the code can be found in Supplementary Software57.

For several datasets, we only used a subset of the available data. From Hart et al.
20154, for example, we only used the data from the Hct116 cell line, as described by
Haeussler et al. 201615. This dataset included 4,239 gRNA with activity averaged
over all time points provided from 8 to 18 days4,15. From Wang et al. 20142, we
took data for cell lines KBM7 and HL60 that targeted essential genes, as provided
by Xu et al. 20156. For datasets from Aguirre et al. 201633, Meyers et al. 201734, and
Wang et al. 201735, we chose one cell line and only selected gRNA targeting
essential genes58. For datasets from Kim et al. 2020a28, we only included gRNA
Library B from the data provided at lentiviral MOI of 5 and only included gRNA
targeting lentiviral sites. Similarly for Kim et al. 2020b25, we only took data from
gRNA Library B and we excluded repeat gRNA. From Park et al. 202131, we only
took data from Library 1. Schwartz et al. 201911 performed library experiments in
the presence and absence of the native NHEJ repair pathway. We used the Cutting
Score results in the absence of NHEJ as this was not dependent on gene disruption
by indels and therefore provided a more accurate measure of Cas9 activity11. In
addition to the data collected in mouse and human cell lines in their lab, Doench
et al. 20143 provide data extracted from Shalem et al. 201459 of gRNA targeting
essential genes. From Tálas et al. 202123 we combined the “balanced” datasets
provided by the authors as a subset of the larger ~1.2 million gRNA library. The
“balanced” datasets were provided by the authors to better help differentiate
features that drive differences in efficient and inefficient gRNA as the majority of
the larger ~1.2 million gRNA library would be deemed efficient. Finally, from
Xiang et al. 202136 we included both the dataset with dox added and the dataset
without. For each dataset, we averaged activity for day 8 and day 10, similar to what
the authors did.

For the nuclease null Cas9 variants, we collected dCas9 data from Horlbeck
et al. 201639 and base editing data from Marquart et al. 202040 (Supplementary
Data 7). For the dCas9 data, we used the data exactly as provided. For data from
Marquart et al., they reported editing frequencies at each position within the gRNA
sequence. Since we are only interested in how active the gRNA is rather than the
editing outcome, we summed all editing activity per gRNA and used that as the
activity measurement.

Assessing the importance of previously reported sequence features. We
collected features specifically mentioned in the main text of papers as we reasoned
this represents the features the authors deemed most important for activity. For
each feature, we determined if it was a discrete feature (ie, guanine in position 20 of
the gRNA) or continuous feature (ie, GC content). To determine if a discrete
feature positively or negatively impacted gRNA activity in a specific dataset, we
calculated a log odds ratio based on the frequency of said feature in the most active
third of gRNA versus frequency in the least active third of gRNA. If the log odds
ratio was negative, the feature was said to negatively impact gRNA activity and if it
was positive it would be described as positively impacting activity. For continuous
features, we used a Pearson correlation with gRNA activity to determine if the
relative impact of a feature was positive or negative based on the sign of the
correlation. A feature would be considered to be in agreement across all datasets if
the sign of the log odds ratio or Pearson agreed across all datasets, indicating a
uniformly positive or negative impact on gRNA activity. Calculations are provided
in the code in Supplementary Software. Data is compiled in Supplementary Data 8.

Computational analyses. All computation was performed in Python with stan-
dard libraries, including: Datasets were managed with Pandas60, NumPy was used
for calculations61, Regex was used for finding gRNA sequences in reference
genomes62, Scipy was used for statistics63, and scikit-learn was used for linear
regressions57. Seaborn and Matplotlib were used for plotting64,65. Biopython was
used for calculating melting temperatures66. Folding energies of gRNA were cal-
culated using ViennaRNA RNAfold package67. All code is provided in a Jupyter
Notebook in Supplementary Software.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All data collected and used in this manuscript are freely available and attached as
Supplemental Data. The code written for all analysis is included as a Jupyter Notebook
file in the Supplemental Software file. The following reference genomes were used: hg38
for human datasets (GenBank: GCA_000001405.15)50, mm9 for mouse datasets
(GenBank: GCA_000001635.1 [https://www.ncbi.nlm.nih.gov/assembly/
GCF_000001635.18])51, danRer10 for zebrafish (GenBank: GCA_000002035.3 [https://
www.ncbi.nlm.nih.gov/assembly/GCF_000002035.5/])52, W29 for Y. lipolytica
(GenBank: GCA_003054345.1 [https://www.ncbi.nlm.nih.gov/assembly/
GCA_003054345.1])53, MG1655 (GenBank: U00096.2 [https://www.ncbi.nlm.nih.gov/
assembly/GCF_000005845.1/])54, BW25113 (GenBank: CP009273.1 [https://
www.ncbi.nlm.nih.gov/assembly/GCF_000750555.1/])55 and W (GenBank:
GCA_000184185.1 [https://www.ncbi.nlm.nih.gov/assembly/GCF_000184185.1/])56 for
E. coli.
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