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ABSTRACT: The Plectranthus genus (Lamiaceae) is known to be
rich in abietane diterpenes. The bioactive 6,7-dehydroxyroylea-
none (DHR, 1) was previously isolated from Plectranthus
madagascariensis var. madagascariensis and var. aliciae. This study
aimed to explore the occurrence of DHR, 1, in P. aliciae and the
potential bioactivities of new semisynthetic derivatives from DHR,
1. Several extraction methods were evaluated, and the hydro-
distillation, using a Clevenger apparatus, afforded the highest yield
(77.8 mg/g of 1 in the essential oil). Three new acyl derivatives
(2−4) were successfully prepared from 1 (yields of 86−95%).
Compounds 1−4 showed antioxidant activity, antibacterial effects,
potent cytotoxic activity against several cell lines, and enhanced
anti-inflammatory activity that surpassed dexamethasone (positive
control). These findings encourage further exploration of derivatives 2−4 for potential mechanisms of antitumoral, antioxidant, and
anti-inflammatory capabilities, studying both safety and efficacy.

■ INTRODUCTION
The Lamiaceae family represents commercially significant
plants, comprising approximately 250 genera and more than
7000 species, many of which are utilized in both folk medicine
and modern industries.1 Plectranthus L’Heŕ. genus, also known
as spurflowers, corresponds to approximately 40% of the
Lamiaceae family, which consists of over 300 species,
distributed in tropical and subtropical areas of the globe.2,3

Plectranthus plants have diverse horticulture and traditional
medicine applications with approximately 85% of documented
uses being attributed to medicinal purposes.4 Moreover,
Plectranthus species are known for their aromatic properties,
attributed to their essential oil (EO) production.3 Phytochem-
ical studies have revealed that the Plectranthus genus serves as
an abundant reservoir of phenolic compounds and terpenes,
particularly diterpenes, which have drawn attention due to
their structural diversity and high potential as promising drug
candidates.3,5 Furthermore, the presence of diterpenes serves
as a chemotaxonomic marker of these plants.6

Plectranthus aliciae (Codd) van Jaarsv. & T.J.Edwards
(Figure 1) was initially described as a subspecies of
Plectranthus madagascariensis (var. aliciae Codd)7,8 and later
reclassified as Coleus aliciae (Codd) A.J.Paton.9 Distinguishing
Plectranthus spp. from other closely related species poses a
challenge due to the similarities in their morphological
characteristics, and consequently, synonyms are highly

prevalent in this genus.9 P. aliciae is a semisucculent herb
commonly found along the northern part of the Eastern Cape
Coast of South Africa, from East London to southern
KwaZulu-Natal.10,11 P. aliciae has a tradition of being used
by local communities for3 addressing respiratory conditions,
such as coughs and asthma, as well as managing flu and colds
and treating skin-related illnesses, such as wounds and
scabies.12
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Figure 1. P. aliciae plant: (A) whole plant; (B) corolla and teethed
leaves; (C) hairy ovate leaves with red glands. Photograph courtesy of
Patrićia Rijo. Copyright 2024.
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Recent studies on P. aliciae acetonic extract showed
antimicrobial activity. Toxic effects were observed at a 50%
lethal concentration (LC50) at 53.48 μg/mL, and the extracts
demonstrated cytotoxicity against human colon carcinoma,
breast adenocarcinoma, and nonsmall lung cell carcinoma cell
lines.13 In addition, the EO of P. aliciae revealed antimicrobial
activity and general toxicity accounting for a 59% death rate in
the Artemia salina model.13 Although there is scarce
information on P. aliciae phytochemistry studies, as a variant
of P. madagascariensis and sharing similar bioactivities, it has
been alleged that similar compounds could be present in both
varieties.14 The abietane royleanone-type diterpene 6,7-
dehydroxyroyleanone (DHR, 1) (Figure 2) is the major

component of P. madagascariensis EO.2 DHR has exhibited
moderate to significant cytotoxic activity against various cancer
cell lines.13−15 Thus, exploring P. aliciae to obtain the lead
natural compound 1 could open opportunities for the synthesis
of novel compounds or formulations with enhanced bio-
activity.

In order to obtain DHR, 1, from P. aliciae, three extraction
methods were studied, namely, Clevenger-assisted extraction
(CAE), ultrasound-assisted extraction (UAE), and maceration-
assisted extraction (MAE). Each method was carefully studied
to determine the most effective and efficient way to obtain the
desired outcome. EO extraction with CAE afforded a dark
orange oil with an agreeable odor, similar to that mentioned in
the literature for other Plectranthus spp.2,16 and also character-
istic of the presence of compound 1. The presence of DHR, 1,
in P. aliciae EO was confirmed by GC-FID and GC-MS
analysis (Table S1, Supporting Information). Fenchone and β-
caryophyllene emerged as the major compounds identified in
the P. aliciae EO. Additionally, the EO was found to comprise
of 4.3% of DHR, 1.

The extraction yield was highest for UAE using water
(16.3%), followed by water:acetone UAE (10.2%) and MAE
(0.9%). However, CAE had the lowest extraction yield
(0.04%) (Table S2, Supporting Information). Despite this,
CAE had a higher recovery of DHR 1, resulting in 77.8 mg/g
of compound 1 in the EO. The amount of DHR, 1, in each
extract was assessed by HPLC-DAD. Compound 1 was
identified from the chromatogram based on its retention
time (37.79 min) and comparison of UV spectra (Figure S1,
Supporting Information) present in the literature.15,17 Despite
detection of DHR, 1, in the UAE and MAE extracts, it was not
possible to quantify the amount since in both instances 1 was
lower than the limit of quantification (LOQ). These results are
in agreement with those published for P. madagascariensis var.
madagascariensis,15 which describes the greatest recovery of

DHR, 1, by CAE. One hypothesis for the low quantity of
compound 1 in the MAE and UAE methods, compared to the
high yield from CAE, can be attributed to the fact that DHR, 1,
is an artifact in this kind of extraction method as the high
temperature causes oxidation of a precursor abietane into DHR
1. Extractions can induce compound transformation; terpenes
are often extracted with a Clevenger distillation device; as such,
the highest yield of this bioactive compound obtained could be
caused by the conditions linked to the technique itself.15 In
fact, there are some examples compiled in the literature of
artifacts derived from abietane-type compound extraction.18 In
terms of biosynthesis, royleanones, such as DHR, 1,
taxoquinone, 7α-acetoxyroyleanone, horminone, 7-oxoroylea-
none, and inuroyleanol are considered oxidative derivatives of
the diterpene ferruginol.5,19,20

DHR, 1, was isolated following the procedure described in
ref 21, characterized by spectroscopic and spectrometric
methods (1H NMR, 13C NMR, UV−vis, GC-MS, and LC-
HRMS-ESI-MS), and confirmed using the literature.15 In this
study, the preparation of new derivatives was also explored
with the aim of improving the bioactivities of the lead
compound 1. The synthesis of derivatives from royleanones
has been documented, and it has been demonstrated that ester
derivatives are not only stable but also bioactive molecules.21

Based on this, several esterification reactions were performed
(Figure 3) using DHR, 1, as the starting material.

Five esterification reactions were performed to obtain new
DHR, 1, ester derivatives (Figure 3); however, only three
products (2−4) were successfully achieved with overall good
yields of 94%, 95%, and 86%, respectively. Derivatives 2−4
were obtained in mild conditions, ranging from a few hours to
3 days. For the preparation of derivatives 5 and 6, several

Figure 2. 6,7-Dehydroxyroyleanone (DHR, 1) chemical structure, the
major compound present in the P. madagascariensis EO and acetonic
extract.

Figure 3. Scheme of DHR, 1, derivatives 2−6 preparation. Derivatives
2−4 were successfully prepared using a small excess of pyridine and
the corresponding acyl chloride. Derivatives 5 and 6 were not
obtained.
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reaction conditions were explored, namely, increasing the
amount of reagent, temperature, under reflux temperature, and
reaction time up to 5 days. However, despite our efforts, no
product was obtained.

With the aim of evaluating the bioactive capacity of the lead
molecule as well as the new compounds, several assays were
tested. The antioxidant activity was evaluated through ABTS,
DPPH, ORAC, HORAC, NO, and TAOC assays. The results
(Table 1) of the natural compound 1 and derivatives 2−4 are
expressed in IC50 (mM) and trolox equivalent (TE). The
results showed that all of the derivatives increased the
antioxidant activity when compared with the starting material
DHR, 1, yet had lower antioxidant activity when compared
with the positive controls used for the DPPH, ORAC,
HORAC and NO assays. In the ABTS assay, all of the
compounds surpass the lead compound 1 and exceed or
equaled the positive control. On the other hand, in the NO
assay, compound 4 showed antioxidant activity and none the
other compounds showed promising results. These results
imply that the ester derivatives improved the antioxidant
activity.

The antibacterial activity of compound 1 and derivatives 2−
4 was evaluated through the minimum inhibitory concen-
tration (MIC) and minimum bactericidal concentration
(MBC) with vancomycin as a positive control. The results
are presented in Table 2. All compounds (1−4) showed

moderate antibacterial activity against both the Staphylococcus
aureus (MSSA) and the resistant S. aureus (MRSA) strains with
MIC values ranging from 8.76 to 12.44 μM and MBC values
from 69.97 to 99.39 μM for both Gram-positive bacteria. It is
worth noting that all of the derivatives (2−4) slightly increased
the antibacterial activity against both strains when compared
with the parent compound 1 (MIC of 12.44 μM for compound

1 vs 9.04, 8.76, and 10.04 μM for derivatives 2, 3 and 4,
respectively). Compound 3 exhibited the most promising
results with a MIC of 8.76 μM and an MBC < 69.97 μM
against both strains. For compound 2, a MIC of 9.04 μM and
an MBC < 72.24 μM was observed, suggesting that an extra
aromatic moiety in the royleanone core could be an advantage
to the antibacterial activity.

The general toxicity of the compounds was assayed using the
Artemia salina model. The results showed that the semi-
synthetic derivative 4 demonstrated an increased general
toxicity, with a 52.16% mortality rate, when compared with the
starting material 1 (36.60% mortality rate). However,
derivatives 2 and 3 are responsible for 32.43% and 13.60%
mortality rates, respectively, suggesting that the tert-butyl
moiety could be responsible for the increase in the general
toxicity, while aromatic groups could lead to a decrease in
toxicity. Next, the cytotoxicity activity of compounds 1−4 was
evaluated against gastric carcinoma (AGS), colorectal
adenocarcinoma (CaCo-2), breast carcinoma (MCF-7), and
lung adenocarcinoma (NCI-H460) cell lines. Additionally, the
hepatotoxicity was evaluated in a primary culture obtained
from pig liver (PLP2). Derivative 2 showed the most
promising results against all cancer cell lines tested (Table
3), with increased cytotoxic activity when compared to DHR,
1. Moreover, compound 2 showed slight selectivity toward the
NCI-H460 cancer cell line. Derivative 4 showed selectivity
against AGS cells, since a slight increase in cytotoxic activity in
this cell line was observed when compared to DHR, 1.
Derivatives 2−4 exhibited GI50 (concentration of drug to cause
a 50% reduction in proliferation of cancer cells) values with
less than one-half the concentration of DHR, 1, against MCF-7
and NCI-H460 cell lines, and compound 3 slightly increased
the cytotoxic activity against the CaCo-2 cell line.

In addition, the cytotoxic activity of DHR 1 and derivatives
2−4 was also evaluated in the aggressive MDA-MB-231S
triple-negative breast cancer cell line. Antiproliferative results
(Table 4) evidenced that the starting material possessed a
greater cytotoxic activity (GI50 = 4.3 μM) in this cell line than
its counterpart derivatives (2−4, GI50 values > 10 μM).

The final biological test conducted involved assessing the
anti-inflammatory activity using RAW 264.7 macrophages, and
the outcomes are outlined in Table 5. The lead molecule 1 did
not show significant anti-inflammatory capacity. However,
derivatives 2−4 exhibited a promising anti-inflammatory
activity in a range of 16−53 times higher than that of the
starting material 1. Notably, the activity observed for
derivatives 2−4 exhibited a 2−4-fold increase compared to
the positive control.

Table 1. Antioxidant Capacity of DHR 1 and Its Derivatives 2−4 Using Different Methodologiesa

samples ABTS IC50 (mM) DPPH IC50 (mM) ORAC (TE) HORAC (TE) NO IC50 (mM) TAOC EC50 (mM)

1 0.582 >1.5 0.291 0.294 0.833 >1.5
2 0.296 0.685 0.550 0.608 >1.5 0.412
3 0.362 0.706 0.757 0.630 1.050 0.457
4 0.302 0.542 0.826 0.642 0.544 0.480
*trolox 0.160 0.221 1 1 >1.5 0.143
*ascorbic acid 0.350 0.350 0.244

aABTS, 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonate); DPPH, 2,2-diphenyl-1-picrylhydrazyl; ORAC, oxygen radical absorbance capacity;
HORAC, hydroxyl radical absorbance capacity; NO, nitric oxide; TAOC, total antioxidant capacity; TE, trolox equivalent. *Trolox and *ascorbic
acid, positive controls.

Table 2. MIC and MBC Values of the Compounds Obtained
by the Microdilution Method against Gram-Positive Strains
(in μM)a

microorganisms

S. aureus (MSSA)
methicillin-resistant S.

aureus (MRSA)

samples MIC MBC MIC MBC

1 12.44 99.39 12.44 99.39
2 9.04 <72.24 9.04 <72.24
3 8.76 <69.97 8.76 <69.97
4 10.04 <80.22 10.04 <80.22
vancomycin 1.35 1.35 0.67 0.67

aVancomycin, positive control; S. aureus, Staphylococcus aureus. The
results represent a median of at least three independent experiments.
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■ RESULTS AND DISCUSSION
In summary, DHR, 1, the major constituent of the P. aliciae
EO, was obtained through the CAE method. This compound
was quantified by HPLC, corresponding to 77.8 mg/g (mg
DeRoy/g EO) in the EO. The obtained DHR, 1, was further
derivatized with the aim of developing a small library of
semisynthetic compounds. Successful esterification reactions at
the C-12 moiety led to the synthesis of three semisynthetic
compounds (2−4) with overall good yields (86−95%). Several
biological activities were evaluated, and the anti-inflammatory
activity displayed the most promising results. Esterification at
the C-12 position of DHR, 1, resulted in a significant increase
in the anti-inflammatory activity observed in derivatives 2−4.
Additional studies are under consideration with the intent of
evaluating the antitumoral and anti-inflammatory mechanisms
of action, efficacy, and security in vivo of DHR, 1, and its
derivatives. The work presented herein enlightens the
multifaceted pharmacological potential of Plectranthus deriva-
tives.
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■ ABBREVIATIONS
DHR, 1 6,7-dehydroxyroyleanone
P. aliciae Plectranthus madagascariensis var. aliciae
EO essential oil
LC50 50% lethal concentration
CAE Clevenger-assisted extraction
UAE ultrasound-assisted extraction
MAE maceration-assisted extraction

GC-MS gas chromatography-mass spectrometry
R2 correlation coefficient
LOD limit of detection
LOQ limit of quantification
UV ultraviolet
HPLC-DAD high-performance liquid chromatography with

diode-array detection.

■ REFERENCES
(1) Rattray, R. D.; Van Wyk, B. E. The Botanical, Chemical and

Ethnobotanical Diversity of Southern African Lamiaceae. Molecules
2021, 26, 3712.
(2) Ascensao, L.; Figueiredo, A. C.; Barroso, J. G.; Pedro, L. G.;

Schripsema, J.; Deans, S. G. Plectranthus madagascariensis:
Morphology of the Glandular Trichomes, Essential Oil Composition,
and Its Biological Activity. Int. J. Plant Sci. 1998, 159, 31.
(3) Rice, L. J.; Brits, G. J.; Potgieter, C. J.; Van Staden, J.

Plectranthus: A Plant for the Future? South African Journal of Botany
2011, 77, 947−959.
(4) Lukhoba, C. W.; Simmonds, M. S. J.; Paton, A. J. Plectranthus: A

Review of Ethnobotanical Uses. J. Ethnopharmacol 2006, 103, 1−24.
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