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Hepatocellular carcinoma (HCC) accounts for approximately 85–90% of all liver cancer
cases and has poor relapse-free survival. There are many gene expression studies
that have been performed to elucidate the genetic landscape and driver pathways
leading to HCC. However, existing studies have been limited by the sample size and
thus the pathogenesis of HCC is still unclear. In this study, we performed an integrated
characterization using four independent datasets including 320 HCC samples and 270
normal liver tissues to identify the candidate genes and pathways in the progression of
HCC. A total of 89 consistent differentially expression genes (DEGs) were identified.
Gene-set enrichment analysis revealed that these genes were significantly enriched
for cellular response to zinc ion in biological process group, collagen trimer in the
cellular component group, extracellular matrix (ECM) structural constituent conferring
tensile strength in the molecular function group, protein digestion and absorption,
mineral absorption and ECM-receptor interaction. Network system biology based on
the protein–protein interaction (PPI) network was also performed to identify the most
connected and important genes based on our DEGs. The top five hub genes including
osteopontin (SPP1), Collagen alpha-2(I) chain (COL1A2), Insulin-like growth factor I
(IGF1), lipoprotein A (LPA), and Galectin-3 (LGALS3) were identified. Western blot
and immunohistochemistry analysis were employed to verify the differential protein
expression of hub genes in HCC patients. More importantly, we identified that these
five hub genes were significantly associated with poor disease-free survival and overall
survival. In summary, we have identified a potential clinical significance of these genes
as prognostic biomarkers for HCC patients who would benefit from experimental
approaches to obtain optimal outcome.

Keywords: hepatocellular carcinoma, differentially expression genes, enrichment analysis, survival
analysis, prognosis
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INTRODUCTION

Liver cancer is the fourth leading cause of cancer-related death
worldwide and ranks sixth in terms of incidence (Bray et al.,
2018; Villanueva, 2019). Among all types of primary malignant
liver tumors, hepatocellular carcinoma (HCC) accounts for
approximately 85–90% of all cases. The major risk factors
including chronic infections by hepatitis B virus (HBV) and
hepatitis C virus (HCV), aflatoxin exposure, smoking, type 2
diabetes, obesity, and so on (Marengo et al., 2016; Bray et al.,
2018; Phukan et al., 2018). As a highly heterogeneous cancer
disease, localized HCC patients often have poor prognosis with
5-year overall survival (OS) rate of 30%, and this rate drops
below 5% for those with distant metastases (Oweira et al.,
2017). For patients at early disease stages, liver resection is
the most effective treatment option, however, only less than
30% of HCC patients are eligible surgery, and among those
around 70% eventually relapse within 5 years after treatment
(Waghray et al., 2015). Over the past few decades, despite
advances in chemotherapy, targeted therapy, radiation therapy,
and immunotherapy in the clinical arena, the survival of
HCC patients has not significantly increased, and translational
studies to understand the mechanisms and prognosis remain
underwhelming to design novel therapeutic strategies (Visvader,
2011; Aravalli et al., 2013; Llovet et al., 2018).

Data, information, knowledge and wisdom (DIKW)
model has been widely used in life in all aspects including
medicine (Song et al., 2018, 2020; Duan, 2019a,b; Duan
et al., 2019a,b). In recent years, genome-wide profiling has
substantially advanced our understanding of the genetic
landscape and driver pathways leading to HCC (Totoki et al.,
2014; Schulze et al., 2015; Zucman-Rossi et al., 2015; Ally
et al., 2017; Villanueva, 2019), revealing Cellular tumor antigen
p53 (TP53), Catenin beta-1 (CTNNB1), Axin-1 (AXIN1),
Telomerase reverse transcriptase (TERT) promoter and other
key genes as driver mutations, and WNT/β-catenin, p53
cell cycle pathway, oxidative stress, PI3K/AKT/MTOR, and
RAS/RAF/MAPK pathways as key signaling pathways involved
in liver carcinogenesis. However, existing studies have been of
limited sample size that failed to create molecular prognostic
indices and also the inconsistent computational methods may
have restricted the power to identify potential meaningful
molecular biomarkers and new therapeutic targets. Therefore,
an integrated bioinformatics study combining the most updated
genomic data thus providing novel insight into the mechanisms
underlying therapeutic resistance and disease progression is
highly warranted.

Microarray technology has become an indispensable tool to
monitor genome wide expression levels of genes in a given
organism and has been successfully used to classify different
types of cancer and predict clinical outcomes (Trevino et al.,
2007). These microarray technologies have also been applied
in many studies to define global gene expression patterns
in primary human HCC in an attempt to gain insight into
the mechanisms of hepatocarcinogenesis (Crawley and Furge,
2002; Woo et al., 2008; Hoshida et al., 2009; Villanueva et al.,
2012; Jin et al., 2015). In the present study, we selected four

independent datasets consisting a total of 320 HCC cases
and 270 cases of normal liver tissues in the Gene Expression
Omnibus (GEO) database to identify reliable markers and
pathway alterations linked with the pathogenesis of HCC cases
(Wurmbach et al., 2007; Mas et al., 2009; Roessler et al.,
2010). We identified 89 differential expression genes (DEGs)
including 31 up-regulated genes and 58 down-regulated genes.
Gene ontology (GO) analysis revealed cellular response to zinc
ion in biological process (BP) group, collagen trimer in the
cellular component (CC) group, and extracellular matrix (ECM)
structural constituent conferring tensile strength in the molecular
function (MF) group. Further pathway enrichment analysis
revealed that enrichment in protein digestion and absorption,
mineral absorption, propanoate metabolism, and ECM-receptor
interaction. Finally, the top five hub genes osteopontin (SPP1),
Collagen alpha-2(I) chain (COL1A2), Insulin-like growth factor
I (IGF1), lipoprotein A (LPA), and Galectin-3 (LGALS3) were
identified from the protein–protein interaction (PPI) network
and those highly altered genes were validated by western blot
assay and Immunohistochemistry (IHC) analysis and found to be
associated with clinical outcome of HCC patients.

MATERIALS AND METHODS

Data Source and Identification of DEGs
Microarrays data were obtained from the Oncomine 4.5
database1 contains 715 datasets and 86,733 samples. Of which,
we filtered four datasets comprising Mas liver (GSE14323,
containing 19 liver tissues and 38 HCCs), Roessler liver
(GSE14520 based on GPL571 platform, containing 21 liver
tissues and 22 HCCs), Roessler liver 2 (GSE14520 based on
GPL3921 platform, containing 220 liver tissues and 225 HCCs),
and Wurmbach liver (GSE6764, containing 10 liver tissues
and 35 HCCs) after using the following criteria: (a) Analysis
type: cancer vs. normal analysis; (b) Cancer type: hepatocellular
carcinoma; (c) Data type: mRNA; (d) Sample type: clinical
specimen; (e) Microarray platform: Human Genome U133A,
U133A 2.0, or U133 Plus 2.0. A total of 270 cases of normal liver
tissues and 320 cases of HCCs were included in the integrated
analysis. To analyze the DEGs between HCC and normal liver
tissues, the data were then processed on GEO2R website2. The
differentially expressed genes were identified using limma R
package at a cutoff | logFC| > 1 and adjusted p value < 0.05
(Benjamini & Hochberg).

GO and Pathways Enrichment Analysis
The annotation function of GO analysis is comprised of three
categories: BP, CC, and MF. Kyoto Encyclopedia of Genes and
Genomes (KEGG) is a database resource for understanding
high-level functions and utilities of the genes or proteins
(Kanehisa and Goto, 2000; Kanehisa et al., 2012, 2016). GO
analysis and KEGG pathway enrichment analysis of candidate
DEGs were performed using the R package “clusterProfiler.”

1https://www.oncomine.org/
2https://www.ncbi.nlm.nih.gov/geo/geo2r/
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FIGURE 1 | The DEGs screened from four independent datasets. Up-regulated DEGs (red-colored dots) and down-regulated (blue-colored dots) DEGs are selected
with [logFC] > 1 and adjust p-value < 0.05 from the mRNA expression profiling sets (A) Mas liver, (B) Wurmbach liver, (C) Roessler liver, and (D) Roessler liver 2.
Venn diagram showed (E) 31 consistently up-regulated DEGs and (F) 58 consistently down-regulated DEGs in four datasets.

TABLE 1 | Details of the four HCC datasets.

Datasets GSE Tumor Normal References

Mas liver GSE14323 38 19 Mas et al., 2009

Roessler liver GSE14520(GPL571 platform) 22 21 Roessler et al., 2010

Roessler liver 2 GSE14520(GPL3921 platform) 225 220 Roessler et al., 2010

Wurmbach liver GSE6764 35 10 Wurmbach et al., 2007

HCC, Hepatocellular carcinoma.
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FIGURE 2 | GO and KEGG pathway enrichment analysis (A) GO analysis of all DEGs. The most enriched GO terms are listed in the diagram. (B) KEGG pathway
analysis of all DEGs. The most enriched KEGG pathways are shown in the picture.

Reactome3 was also used for pathway enrichment analysis
(Fabregat et al., 2018). Adjusted p-value less than 0.05 was
considered as the cut-off criterion for both GO analysis and
pathway enrichment analysis.

PPI Network and Modular Analysis
Protein–protein interaction network was constructed to
determine the importance of these DEGs by comparing the
interactions between different DEGs. STRING database4 and
Cytoscape software (3.7.2 version) were applied to construct
and visualize the PPI networks (Szklarczyk et al., 2017),
followed by Molecular Complex Detection (MCODE) plug-in
in Cytoscape for selecting significant modules of hub genes
from the PPI network (Bader and Hogue, 2003), with the
following criteria: degree cutoff (number of connections with
other nodes) ≥ 2, node score cutoff (the most influential
parameter for cluster size) ≥ 2, K-core (This parameter
filters out clusters that do not contain a maximally inter-
connected sub-cluster of at least k degrees. For example, a
triangle including three nodes and three edges is a two-core
representing two connections per node. Two nodes with two
edges between them meet the two-core rule as well) ≥ 2
and max depth (this parameter limits the distance from
the seed node within which MCODE can search for cluster
members) = 100. KEGG pathway enrichment analysis of the

3https://reactome.org/
4https://string-db.org/

modules was carried out using the online DAVID database5

(Huang da et al., 2009).

Hub Gene Selection and Prognostic
Analysis
Hub genes were selected based on comparison of top 10
genes ranked by degree and betweenness centrality Network of
hub genes. Their co-expressed genes were then analyzed using
cBioPortal online platform6 (Gao et al., 2013). Genetic alterations
of these hub genes were explored and compared using the
cBioPortal database. Biological process analysis of hub genes was
then performed and visualized using plug-in Biological Networks
Gene Oncology tool (BiNGO) app in Cytoscape software (Maere
et al., 2005). Stage-related information analysis based on gene
expression was performed in UALCAN7, a comprehensive web
resource for analyzing omics data (Chandrashekar et al., 2017).
Disease-free survival (DFS) is a concept used to describe the
period after a successful treatment of cancer. OS means the
length of time from either the date of diagnosis or the start of
treatment for HCC. DFS and OS are both measured to see how
well a new treatment works. DFS and OS analysis associated with
these hub genes were performed using the Kaplan–Meier Plotter
online database8.

5https://david.ncifcrf.gov/
6https://www.cbioportal.org/
7http://ualcan.path.uab.edu/analysis.html
8http://www.kmplot.com/
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TABLE 2 | Significantly enriched GO terms of DEGs associated with HCC with adjust p-value < 0.01.

Expression Category Term Count p-value Adj p-value

Up-regulated CC GO:0062023∼collagen-containing extracellular matrix 9 <0.001 <0.001

CC GO:0044420∼extracellular matrix component 5 <0.001 <0.001

CC GO:0098644∼complex of collagen trimers 4 <0.001 <0.001

CC GO:0031012∼extracellular matrix 9 <0.001 <0.001

CC GO:0005581∼collagen trimer 5 <0.001 <0.001

CC GO:0005788∼endoplasmic reticulum lumen 7 <0.001 <0.001

CC GO:0005604∼basement membrane 4 <0.001 <0.001

CC GO:0042470∼melanosome 4 <0.001 <0.001

CC GO:0048770∼pigment granule 4 <0.001 <0.001

CC GO:0005583∼fibrillar collagen trimer 2 <0.001 0.001

CC GO:0098643∼banded collagen fibril 2 <0.001 0.001

MF GO:0030020∼extracellular matrix structural constituent conferring tensile strength 5 <0.001 <0.001

MF GO:0005201∼extracellular matrix structural constituent 5 <0.001 0.001

MF GO:0048407∼platelet-derived growth factor binding 2 <0.001 0.008

Down-regulated BP GO:0071294∼cellular response to zinc ion 5 <0.001 <0.001

BP GO:0010043∼response to zinc ion 6 <0.001 <0.001

BP GO:0006956∼complement activation 7 <0.001 <0.001

BP GO:0072376∼protein activation cascade 7 <0.001 <0.001

BP GO:0071276∼cellular response to cadmium ion 4 <0.001 0.001

BP GO:0001867∼complement activation, lectin pathway 3 <0.001 0.001

BP GO:0006959∼humoral immune response 7 <0.001 0.003

BP GO:0046686∼response to cadmium ion 4 <0.001 0.004

BP GO:0010460∼positive regulation of heart rate 3 <0.001 0.008

BP GO:0010038∼response to metal ion 7 <0.001 0.008

CC GO:0072562∼blood microparticle 5 <0.001 0.008

MF GO:0001871∼pattern binding 3 <0.001 0.004

MF GO:0030247∼polysaccharide binding 3 <0.001 0.004

MF GO:1901681∼sulfur compound binding 6 <0.001 0.005

MF GO:0050662∼coenzyme binding 6 <0.001 0.008

BP, biological process; CC, cellular component; MF, molecular function.

TABLE 3 | KEGG pathway enrichment analysis of DEGs in HCC.

Expression KEGG Term Count p-value Adj p-value

Up-regulated hsa04974∼Protein digestion and absorption 6 <0.001 <0.001

hsa04512∼ECM-receptor interaction 4 <0.001 0.003

hsa04964∼Proximal tubule bicarbonate reclamation 2 0.002 0.028

hsa04510∼Focal adhesion 4 0.002 0.028

hsa04151∼PI3K/Akt signaling pathway 5 0.002 0.028

hsa04933∼AGE-RAGE signaling pathway in diabetic complications 3 0.003 0.028

hsa05146∼Amoebiasis 3 0.003 0.028

hsa04926∼Relaxin signaling pathway 3 0.005 0.048

Down-regulated hsa04978∼Mineral absorption 5 <0.001 0.001

hsa00640∼Propanoate metabolism 3 0.001 0.025

Cell Lines and Cell Culture
Hepatocellular carcinoma cell lines Hep3B and HepG2 and
human normal liver cell line L02 were obtained from Shanghai
Institute of Biochemistry and Cell Biology, Chinese Academy
of Sciences. All of these cell lines were cultured in Dulbecco’s
modified Eagle’s medium (DMEM) (catalog number 10569010,
Gibco) containing 10% (v/v) fetal bovine serum (FBS) (catalog
number 10091148, Gibco) supplemented with 1% (v/v) penicillin

streptomycin solution (catalog number SV30010, Hyclone)
(containing 100 U/ml penicillin and 100 µg/ml streptomycin) in
a humidified incubator at 37◦C with 5% CO2.

Protein Preparation and Western Blot
Analysis
Briefly, HCC cells were lysed with cold M-PER lysate buffer
(catalog number 78501, Roche) [containing 1 × protease
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TABLE 4 | Pathways enriched in Reactome analysis of DEGs in HCC (Adj p-value < 0.01).

Expression Pathway name Count p-value Adj p-value

Up-regulated R-HSA-8948216∼Collagen chain trimerization 5 <0.001 <0.001

R-HSA-2022090∼Assembly of collagen fibrils and other multimeric structures 5 <0.001 <0.001

R-HSA-1442490∼Collagen degradation 5 <0.001 <0.001

R-HSA-1650814∼Collagen biosynthesis and modifying enzymes 5 <0.001 <0.001

R-HSA-216083∼Integrin cell surface interactions 6 <0.001 <0.001

R-HSA-1474228∼Degradation of the extracellular matrix 6 <0.001 <0.001

R-HSA-1474290∼Collagen formation 5 <0.001 <0.001

R-HSA-3000171∼Non-integrin membrane-ECM interactions 4 <0.001 <0.001

R-HSA-1474244∼Extracellular matrix organization 6 <0.001 <0.001

R-HSA-2214320∼Anchoring fibril formation 3 <0.001 0.001

R-HSA-422475∼Axon guidance 8 <0.001 0.002

R-HSA-8985801∼Regulation of cortical dendrite branching 1 <0.001 0.002

R-HSA-2243919∼Crosslinking of collagen fibrils 3 <0.001 0.002

R-HSA-186797∼Signaling by PDGF 4 <0.001 0.003

R-HSA-8941333∼RUNX2 regulates genes involved in differentiation of myeloid cells 1 <0.001 0.004

R-HSA-3000178∼ECM proteoglycans 4 <0.001 0.004

R-HSA-69205∼G1/S-Specific Transcription 2 0.001 0.009

R-HSA-3769402∼Deactivation of the beta-catenin transactivating complex 3 0.001 0.009

R-HSA-419037∼NCAM1 interactions 3 0.001 0.009

R-HSA-8949275∼RUNX3 Regulates Immune Response and Cell Migration 1 0.001 0.009

R-HSA-8939246∼RUNX1 regulates transcription of genes involved in differentiation of myeloid cells 1 0.001 0.010

R-HSA-3000480∼Scavenging by Class A Receptors 3 0.001 0.010

Down-regulated R-HSA-5661231∼Metallothioneins bind metals 5 <0.001 <0.001

R-HSA-5660526∼Response to metal ions 5 <0.001 <0.001

R-HSA-2855086∼Ficolins bind to repetitive carbohydrate structures on the target cell surface 3 <0.001 <0.001

R-HSA-166662∼Lectin pathway of complement activation 3 <0.001 <0.001

R-HSA-166658∼Complement cascade 6 <0.001 0.003

inhibitors (catalog number 11836153001, Roche) and
phosphatase inhibitor cocktail (catalog number 78420, Roche)]
and centrifuged at 4◦C for 10 min. The protein concentrations
of collected supernatants were determined by the BCA protein
assay kit (catalog number P0011, Beyotime). Equal amounts
of total proteins were separated in 10 or 12% SDS-PAGE and
transblotted onto the 0.45 µm PVDF membranes (catalog
number 1620177, BIO-RAD). The membranes were blocked
in 5% fat-free milk in TBST (150 mM NaCl, 50 mM Tris, pH
7.2) for 1 h at room temperature and subsequently incubated
with corresponding primary antibodies as following: anti-
SPP1 (catalog number ab8448, Abcam, 1:1000), anti-COL1A2
(catalog number 66761-1-lg, Proteintech, 1:1000), anti-IGF1
(catalog number ab9572, Abcam, 1:1000), anti-LGALS3 (catalog
number ab209344, Abcam, 1:1000), anti-GADPH (catalog
number 10494-1-AP, Proteintech, 1:10000), and anti-β-Tubulin
(catalog number T0023, Affinity, 1:20000) at 4◦C overnight,
followed by incubation with a donkey anti-mouse (catalog
number C61116-02, LI-COR) or goat anti-rabbit (catalog
number C80118-05, LI-COR) secondary antibody for 1 h at
room temperature. Then membranes were scanned using the
Odyssey infrared imaging system (LI-COR) and the images were
captured. The gray levels of the bands were determined by Image
J software. The expression of proteins was normalized using the
GADPH or β-Tubulin values. The assay was performed three
independent times.

Patient Samples
This study was approved by Cancer Hospital of the University
of Chinese Academy of Sciences; Zhejiang Cancer Hospital.
Twenty formalin-fixed, paraffin-embedded (FFPE) HCC tissues
and corresponding adjacent non-cancerous tissues were collected
from the Department of Abdominal Surgery, Zhejiang Cancer
Hospital. All FFPE HCC tissues were screened by two
pathologists independently to confirm the diagnosis of HCC.
The most representative tumor and non-cancerous tissues were
selected for immunohistochemistry analysis.

IHC Analysis
Neutral 10% buffered formalin-fixed tissue specimens were
embedded in paraffin wax and then sliced to 4-micron thick
sections by a microtome. In brief, the tissue slices were firstly
deparaffinized, followed by rehydration and a 10-min boiling in
10 mmol/L citrate buffer (pH = 6.4) for antigen retrieval. Then,
the sections were treated in methanol containing 3% H2O2 for
20 min to inhibit the endogenous tissue peroxidase activity. After
being blocked with 1% bovine serum albumin (BSA) at 37◦C for
30 min, IHC staining was carried out for the protein expression
of SPP1, COL1A2, IGF1, and LGALS3 using specific primary
antibodies at 4◦C overnight, followed by staining with species-
specific secondary antibodies labeled with horseradish peroxidase
(HRP). The slides were developed in diaminobenzidine (DAB)
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FIGURE 3 | The protein–protein interaction (PPI) of DEGs exported from STRING is visualized using Cytoscape software. Up-regulated DEGs are shown in red while
down-regulated DEGs are shown in green dots. (A) 63 nodes and 78 edges are displayed. Larger node sizes correspond to higher degrees of DEGs. Label font
sizes are shown in black from small to large according to the Betweenness centrality (from low to high). The hub genes we selected are emphasized and shown in
the shape of round rectangles. (B,C) Module 1, module 2 and their related specifications determined by MCODE plug-in app in Cytoscape software. Circles
represent genes and the lines between genes indicate the gene-encoded PPIs.

TABLE 5 | Top 10 most degree values and betweenness centrality hub genes between HCC and normal samples.

Genes Expression Betweenness centrality Genes Expression Degree

CYP2C19 Down 1 SPP1 Up 8

STEAP3 Down 1 COL1A2 Up 8

TYMS Up 0.83333333 IGF1 Down 6

SPP1 Up 0.50873984 SOX9 Up 5

GMNN Up 0.5 COL4A2 Up 5

LPA Down 0.30264228 LPA Down 4

IGF1 Down 0.29329268 LGALS3 Up 4

LGALS3 Up 0.24573171 C9 Down 4

COL1A2 Up 0.19756098 SERPINA10 Down 4

MDK Up 0.1804878 ROBO1 Up 4

Genes were ranked by betweenness centrality and degree, respectively. The genes in red are the shared genes with the two analysis methods.

and counter-stained with hematoxylin. Then images of the
sections were photographed using an Olympus microscope
(Olympus Life Science). The clinical specimen data of LPA were
obtained from The Human Protein Atlas database9.

Statistical Analysis
Statistical analysis was performed using GraphPad Prism
software (version 8.0.1) and R software (version 3.4.210).

9https://www.proteinatlas.org/
10https://www.r-project.org/

p-value < 0.05 was considered statistically significant. The
column diagram was graphed with GraphPad Prism software
(version 8.0.1).

RESULTS

Data Source and Analysis
A total of 603, 1,238, 1,095, and 1,722 DEGs have been
extracted from the four independent expression datasets Mas
liver, Roessler liver, Roessler liver 2, and Wurmbach liver,
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FIGURE 4 | Analysis of hub genes. (A) Hub genes and their co-expressed genes are analyzed using cBioPortal. Hub genes are represented with a thick border.
Darker red indicates increased frequency of alteration in HCC. The blue connection indicates that the first protein controlled a reaction that changes the state of the
second protein; the red connection suggests that the proteins belongs to members of the same complex. The green arrows represent “Controls expression of.” The
gray arrows represent “In complex with.” (B) Genetic alteration analysis toward these five genes, overall survivals are also shown.

respectively (Figures 1A–D, Table 1, and Supplementary
Tables S1, S2). The comparison of all genes from these
datasets identified 89 consistently and significantly dysregulated
genes, including 31 up-regulated genes and 58 down-regulated
genes in HCC compared to normal liver tissues (Figures 1E,F
and Supplementary Table S3). Notably, several genes such
as Glypican-3 (GPC3) (Wurmbach et al., 2007) and SPP1

(Roessler et al., 2010) have been reported previously, proving the
feasibility of the method.

GO Analysis of DEGs in HCC
The functional characteristics of these 89 DEGs were explored
using GO analysis and were grouped into BP, cell component and
MF (Figure 2A). Overall, cellular response to zinc ion covering
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FIGURE 5 | Expression of hub genes in different HCC stages in TGCA database: (A) SPP1, (B) COL1A2, (C) IGF1, (D) LGALS3, and (E) LPA. SPP1, COL1A2, and
LGAlS3 are overexpressed in HCC tissues while IGF1 and LPA are downregulated in HCC tissues compared to the control.

five genes was found to be the dominant BP. Collagen trimer
covering seven genes was found to be the top CC. ECM structural
constituent conferring tensile strength covering five genes was
the top MF. As shown in Table 2, in the BP group, up-regulated
genes were mainly enriched in ECM organization, epithelial tube
morphogenesis, and positive regulation of leukocyte migration
while down-regulated genes were mainly enriched in cellular
response to zinc ion and humoral immune response. In the CC
group, up-regulated genes were mainly enriched in collagen-
containing ECM and ECM components while down-regulated
genes mainly enriched in blood microparticle. In the MF group,
up-regulated genes were mainly enriched in ECM structural
constituents while down-regulated genes were mainly enriched
in pattern binding. Taken together, these data suggest that those
identified DEGs are mainly enriched in ECM-related items
affecting the BP of negative regulation of growth, humoral
immune response and so on.

Signaling Pathway Enrichment Analysis
To understand the biological changes during HCC pathogenesis,
we performed pathway enrichment analysis using KEGG and
Reactome. KEGG pathways enrichment analysis showed that
those candidate DEGs were primarily enriched in protein
digestion and absorption, mineral absorption, and ECM-receptor
interaction (Figure 2B). Among them, up-regulated genes
were mainly enriched in protein digestion and absorption
and ECM-receptor interaction while down-regulated genes
were mainly enriched in mineral absorption and metabolic
pathways (Table 3). Furthermore, Reactome pathway enrichment
analysis showed that the DEGs were enriched in collagen
chain trimerization, collagen degradation, metallothioneins bind
metals, and response to metal ions (Supplementary Table S4).
Among them, up-regulated genes were primarily enriched in
collagen chain trimerization, assembly of collagen fibrils and

other multimeric structures and collagen degradation, while
down-regulated genes were enriched in metallothioneins bind
metals, response to metal ions and ficolins bind to repetitive
carbohydrate structures on the target cell surface (Table 4).

Key Candidate Genes and Pathways
Identified by DEGs PPI and Modular
Analysis
In order to identify key candidate genes, 63 DEGs (24 up-
regulated genes and 39 down-regulated genes) were filtered
into the PPI network complex, including 63 nodes and 78
edges. Among the 63 nodes, only genes ranking in top 10 of
both degrees (the number of interactions of each node) and
betweenness centrality (degree of impact on interactions between
other nodes in the network) parameters were recognized as hub
genes. Finally, five genes SPP1, COL1A2, IGF1, LGALS3, and
LPA were selected (Figure 3A and Table 5). Utilizing MCODE
plug-in app in cytoscape, two modules were applied for further
KEGG pathway enrichment analysis. Module 1 consisted of 5
nodes and 10 edges with genes enriched in protein digestion
and absorption, ECM-receptor interaction, amoebiasis and focal
adhesion. Module 2 consisted of five nodes and nine edges with
the genes mainly enriched in mineral absorption (Figures 3B,C
and Supplementary Table S5).

Hub Genes and Associations With
Clinical Outcome
The network of hub genes constructed by cBioPortal contained
55 nodes, including five query genes (five hub genes) and
the 50 most frequently altered neighbor genes (Figure 4A).
After visualizing BP using BiNGO in Cytoscape software
(Supplementary Figure S1), genetic alteration analysis of five
hub genes in TCGA HCC patients was performed in the
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FIGURE 6 | Protein expression levels of these hub genes in normal liver cell line L02 and HCC cell lines Hep3B and HepG2 were examined by western blot analysis.
The bands were analyzed and normalized using the GADPH or β-Tubulin values and processed by Image J software. (A) The representative cases of HCC patient
tissues were detected by (B) Immunohistochemistry. The western blot and Immunohistochemistry results showed that SPP1, COL1A2, and LGALS3 are
overexpressed in HCC samples while IGF1 is downregulated in HCC samples.
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FIGURE 7 | Disease-free survival (DFS) analysis of (A) SPP1, (B) COL1A2, (C) IGF1, (D) LGALS3, and (E) LPA in HCC patients. HCC patients with high expressions
of COL1A2, IGF1, and LPA as well as low expression of SPP1 were found to be associated with the improved DFS (p = 0.0017, p = 0.0021, p = 0.0058, and
p = 7e−04, respectively).

FIGURE 8 | Overall survival (OS) analysis of (A) SPP1, (B) COL1A2, (C) IGF1, (D) LGALS3, and (E) LPA in HCC patients. High expression of SPP1 and LGALS3
were linked with the disfavored OS (p = 3.5e−06 and p = 0.014, respectively) (A,D), while high expression of IGF1 and LPA were associated with improved OS
(p = 0.0013 and p = 0.00038, respectively).
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cBioPortal database. The hub genes SPP1, IGF1, LGALS3, LPA,
and COL1A2 were altered in 4, 5, 5, 7, and 8% in a total population
of HCC patients respectively, without significantly discrepancy
in both sexes (Figure 4B). TCGA data analysis showed that
SPP1, COL1A2, and LGALS3 are more highly expressed in
HCC regardless of stages compared with normal tissues, while
IGF1 and LPA were low expressed (Figure 5). Further western
blot analysis showed that the protein expression levels of SPP1,
COL1A2, and LGALS3 were highly expressed in HCC cell lines
while IGF1 was down-regulated in HCC cell lines (Figure 6A).
IHC analysis of HCC patient tissues showed similar results as
western blot analysis (Figure 6B). The online human protein atlas
showed the LPA protein expression was higher in normal liver
tissues than in HCC tissues. For the identified five top hub genes,
HCC patients with high expressions of COL1A2, IGF1, and LPA
as well as low expression of SPP1 were found to be associated
with the improved DFS (p = 0.0017, p = 0.0021, p = 0.0058, and
p = 7e−04, respectively) (Figure 7). High expression of SPP1 and
LGALS3 were linked with the disfavored OS (p = 3.5e−06 and
p = 0.014, respectively) (Figures 8A,D), while high expression of
IGF1 and LPA were associated with improved OS (p = 0.0013 and
p = 0.00038, respectively) (Figures 8C,E). However, expression
of COL1A2 didn’t show a significant correlation with clinical
outcome (p = 0.21) (Figure 8B).

DISCUSSION

Hepatocellular carcinoma remains an aggressive form of cancer
worldwide with high incidence and morbidity. Therefore,
substantial efforts have been made to unveil mutational processes,
pathogenesis and possible mechanisms underlying treatment
resistance in order to expand the therapeutic landscape of this
disease (Llovet et al., 2018; Cheng et al., 2019). However, most
of these studies were based on single institutions with limited
sample size, restricting the power to identify potential meaningful
therapeutic targets (Zhang C. et al., 2017; Li et al., 2019; Zhang
et al., 2019). Different HCC studies showed different results
for different datasets chosen. In previous studies, some only
chose one dataset and others chose datasets without performing
explicit infiltration, leading to totally different outcome (Zhang
C. et al., 2017; Li et al., 2019; Zhang et al., 2019). Here, we
conducted an integrative analysis from four microarray datasets
of HCC screened in Oncomine database and downloaded in GEO
database to describe key candidate genes and pathways associated
with clinical outcome in HCC patients.

In the present study, a total of 89 DEGs were identified
between HCC and normal tissues, including 31 up-regulated
genes and 58 down-regulated genes. Up-regulated DEGs of
HCC were found to be enriched in GO categories such as
epithelial tube morphogenesis, ECM organization, and positive
regulation of leukocyte migration, and dysregulation of these
processes have been found to contribute to several pathological
conditions including cancer and may lead to disfavored clinical
outcomes (Payne and Huang, 2013; Bonnans et al., 2014).
While down-regulated genes were associated with GO categories
such as cellular response to zinc ion where members of
metallothionein family (MT1M, MT1H, MT1X, MT1G, and

MT1F) play important roles in carcinogenesis of various cancer
types (Si and Lang, 2018). KEGG pathway enrichment analysis
demonstrated that up-regulated genes were significantly enriched
in protein digestion and absorption, ECM-receptor interaction
and PI3K/Akt signaling pathway while down-regulated genes
were enriched in mineral absorption and metabolic pathways,
and all those are significant pathways in various cancer types
been reported previously (Boroughs and DeBerardinis, 2015;
Dimitrova and Arcaro, 2015; Wang S.S. et al., 2017; Slattery et al.,
2018). Intriguingly, a host of altered genes were found to be
associated with ECM related pathways. The ECM, an extensive
part of the microenvironment in all tissues, providing a physical
scaffold for its surrounding cells, bind growth factors and regulate
cell behavior, plays a vital part in tumor progression (Kalluri,
2016; Nissen et al., 2019).

We also constructed PPI network and identified five hub
genes SPP1, COL1A2, IGF1, LPA, and LGALS3 as key candidate
genes potentially linked with pathogenesis of HCC. Their co-
expressed genes were then analyzed using cBioPortal online
platform. The results contained five query genes and the 50
most frequently altered neighbor genes. Among the five hub
genes, SPP1, COL1A2, IGF1, and LGALS3 and their co-expressed
genes constructed a network. LPA and its co-expressed genes
were isolated from the main network and didn’t have directly
interaction with it. That’s why only four out of five hub genes
contained in Figure 4A. Both SPP1 and COL1A2 are members
belonging to PI3K/Akt signaling pathway and ECM-receptor
interaction pathway regulating cell growth (Fang et al., 2017)
and drug resistance (Zhang et al., 2016). SPP1, also known
as osteopontin, has been reported to have the capability of
regulating cell behaviors (Rowe et al., 2014). Previous data
also showed that targeting SPP1 could inhibit gastric cancer
cell epithelial–mesenchymal transition through inhibition of
the PI3K/AKT signaling pathway (Song et al., 2019). In lung
adenocarcinoma, SPP1 was found to up-regulate PD-L1 and
subsequently facilitated the escape of immunity (Zhang Y.
et al., 2017). These studies demonstrated that SPP1 was highly
associated with the cancer invasion and progression, suggesting
its potential to serve as a biomarker and target for the diagnosis
and treatment of HCC. COL1A2, a member of group I collagen
family, has once been reported as a target of Let-7g thus inhibiting
cell migration in HCC (Ji et al., 2010) and gastric cancer cell
proliferation (Ao et al., 2018). In 2018, a study found that the
silencing of COL1A2 could inhibit the proliferation, migration,
and invasion of gastric cancer through regulating PI3K/AKT
signaling pathway, revealing the potency of COL1A2 in HCC (Ao
et al., 2018). IGF1, insulin-like growth factor 1, has the capability
of maintaining the stemness in HCC, and its role of serving
as an anticancer target has been confirmed by several studies
(Kaseb et al., 2011, 2014; Chen and Sharon, 2013; Bu et al., 2014).
IGF1 and IGF2 comprise of the IGF family, contributing largely
to the activation of the PI3K/Akt signaling pathway, which was
also found dysregulated by the KEGG analysis, thus enhancing
the cancerogenesis of HCC (Kasprzak et al., 2017). LPA is
lipoprotein A, a special kind of low-density lipoprotein, has
shown the evidence of causing inflammation and regulating HCC
cell proliferation (Pirro et al., 2017; Xu et al., 2017). Patients with
HCC showed a statistically significant serum LPA level higher
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than the healthy subjects, indicating its important role in HCC
patients (Malaguarnera et al., 2017). LGALS3, which encodes
the Galectin-3 protein, is regarded as a guardian of the tumor
microenvironment (Ruvolo, 2016). Recent studies have shown
that LGALS3 is tightly associated with several malignancies
such as Hodgkin’s lymphoma (Koh et al., 2014), acute myeloid
leukemia (Cheng et al., 2013), and HCC (Song et al., 2014). More
importantly, LGALS3 could increase the metastatic potential of
breast cancer, might accounting for the metastatic potential of
HCC (Pereira et al., 2019). Through validation in western blot
and IHC assays, we found that the protein expression of these
five hub genes was in accordance with their mRNA expression
in HCC patient tissues. Strikingly, LPA has not been tested by
western blot and IHC assays due to its large molecular weight
of 501 kDa, exerting huge difficulty in performing these assays.
Previous studies have shown that these genes are implicated in
the tumorigenesis and transformation (Oates et al., 1997; Orsó
and Schmitz, 2017; Wang Y.A. et al., 2017; Diao et al., 2018;
Ma et al., 2019). In our study, correlations of SPP1, COL1A2,
IGF1, LPA, and LGALS3 with patient prognosis highlight the
importance of these five genes as potential biomarkers to stratify
HCC patients as well as potential therapeutic targets, but concrete
roles of these genes need further investigation. In the future
studies, we will develop knockdown and overexpression HCC cell
lines and mouse models of these five hub genes to demonstrate
their importance in the progression of HCC in vitro and in vivo.

Taken together, this study integrated four datasets to screen
for reliable and accurate biomarkers of HCC and demonstrated
that several pathways are altered. Several hub genes with
the expression levels have significantly associated with clinical
outcome in HCC patients. Further functional study on the
mechanisms of those genes leading to HCC is under way.
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