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A B S T R A C T   

This opinion-led review paper highlights the need for novel translational research in vital-pulp-treatment (VPT), 
but also discusses the challenges in translating evidence to clinics. Traditional dentistry is expensive, invasive 
and relies on an outmoded mechanical understanding of dental disease, rather than employing a biological 
perspective that harnesses cell activity and the regenerative-capacity. Recent research has focussed on devel-
oping minimally-invasive biologically-based ‘fillings’ that preserve the dental pulp; research that is shifting the 
paradigm from expensive high-technology dentistry, with high failure rates, to smart restorations targeted at 
biological processes. Current VPTs promote repair by recruiting odontoblast-like cells in a material-dependent 
process. Therefore, exciting opportunities exist for development of next-generation biomaterials targeted at 
regenerative processes in the dentin-pulp complex. This article analyses recent research using pharmacological- 
inhibitors to therapeutically-target histone-deacetylase (HDAC) enzymes in dental-pulp-cells (DPCs) that stim-
ulate pro-regenerative effects with limited loss of viability. Consequently, HDAC-inhibitors have the potential to 
enhance biomaterial-driven tissue responses at low concentration by influencing the cellular processes with 
minimal side-effects, providing an opportunity to develop a topically-placed, inexpensive bio-inductive pulp- 
capping material. Despite positive results, clinical translation of these innovations requires enterprise to coun-
teract regulatory obstacles, dental-industry priorities and to develop strong academic/industry partnerships. The 
aim of this opinion-led review paper is to discuss the potential role of therapeutically-targeting epigenetic 
modifications as part of a topical VPT strategy in the treatment of the damaged dental pulp, while considering the 
next steps, material considerations, challenges and future for the clinical development of epigenetic therapeutics 
or other ‘smart’ restorations in VPT.   

1. Introduction 

This opinion-led review paper uses epigenetic-therapeutic dental 
materials as an example, to illustrate the need to develop new pulp 
capping materials for conservative management of the exposed pulp in 
vital pulp treatment (VPT), while also illustrating the obstacles to clin-
ical translation in this area. These pulp capping materials are applied to 
the dental pulp, which is a dynamic connective tissue encased in health 
by mineralized dentin and enamel. The secretory cells of the pulp, the 
odontoblasts, form a peripheral layer in contact with dentin and are 
interconnected in what is known as the dentin-pulp complex [1]. The 
pulp and specifically the odontoblasts have both a formative role in 
tooth development (primary dentinogenesis) and throughout life 

(secondary dentinogenesis), as well as a protective role by acting as a 
biosensor and secreting new tertiary dentin after challenge by caries, 
trauma and microbial leakage [2,3]. The pulp is generally threatened by 
microbes (e.g., dental caries) and if this infection is not managed it can 
overwhelm the pulp, leading to a progressive pulpitis, odontoblast death 
and eventually pulp necrosis [4,5]. However, if the inflammation can be 
controlled by removing the injurious threat and placing a sealing 
restoration, the pulp can recover, and dentin can be repaired and re-
generated [6]. The prevention and control of pulpitis and apical peri-
odontitis forms the basis of operative dentistry; however, the difficulties 
of predictably treating deep caries has been highlighted in a recent in-
ternational position statement [7]. The European Society of Endo-
dontology statement [7] concluded that ‘the control of pulpitis and 
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conservative management of the exposed pulp should be a future focus 
of research activity’, in order to reduce the provision of root canal 
treatment (RCT) and promote biomimetic solutions [7,8]. Although RCT 
preserves the tooth, complete removal of the irreversibly damaged pulp 
tissue is a destructive, technically-difficult process [7,9], which removes 
any inherent attributes of the pulp including perception, immunity/r-
epair and leads to greater risk of fracture and tooth loss [10, 11]. As a 
result, there is an urgent need to develop our understanding of the ‘key’ 
mediators orchestrating pulpal repair processes and tertiary dentin 
formation in order to develop more predictable ‘smarter’ VPTs and 
immunotherapies, with the ultimate goal of creating new 
biologically-based dental strategies aimed at creating novel regenerative 
techniques that therapeutically target tertiary dentin repair and regen-
eration [12–14]. 

Currently, after pulp exposure, the material of choice is a hydraulic 
calcium silicate cement (HCSC) applied directly to the pulpal wound, 
which has been shown since its introduction in the early 1990s, in 
experimental pulp capping studies to promote the formation of thicker, 
more homogenous reparative tertiary dentin formation than traditional 
calcium hydroxide materials [6,15]. Furthermore, these histological 
results have translated into better clinical outcomes for management of 
the cariously-exposed pulp [16–18]. Notably, however, the reparative 
dentin bridge formed after exposure and primary odontoblast death 
rarely exhibits tubular structure and may be considered reparative 
rather than regenerative in nature [2,19,20]. Mechanistically, HCSC’s 
reparative action has been attributed to a range of sources including, 
stimulating the release of bioactive dentin matrix components [21], high 
pH, increasing migration, differentiation and biomineralization of 
dental pulp cells (DPCs) [22,23]; however, the exact mechanism of ac-
tion is unknown and not targeted to a specific pathway or biological 
process. 

Recently, in an attempt to improve the induction and differentiation 
of odontoblast-like cells, several attempts to stimulate regenerative 
dentinogenesis using pharmacological inhibitors or activators, often 
already European Union (EU) or Food and Drug Administration (FDA)- 
approved as drugs for another indication (e.g., cancer, Alzheimer’s’ 
disease) have been reported [24]. Proposed therapeutic strategies have 
included, targeting Wnt signaling with GSK-3 inhibitors such as Tide-
glusib [25], using the anti-cholesterol drug Simvastatin [26] or targeting 
acetylation of DNA-associated proteins by our group with histone 
deacetylase inhibitors (HDACi) [27–29]. These drugs have shown 
considerable promise in improving mineralization and regenerative 
processes in comparison to existing treatments in vitro and in vivo; 
however, translating these novel next-generation treatments to the 
dental clinic is challenging with obstacles, related to regulation, funding 
and the development of industrial partnerships needing to be addressed. 

As a result, the aim of this opinion-led review paper is two-fold. 
Firstly, the progress in terms of epigenetic therapeutics to improve 
DPC mineralization processes will be highlighted, prior to secondly the 
obstacles, barriers and problems with the incorporation of medicinal 
products and the development of next-generation smart dental materials 
being discussed with additional reference to opinion. 

2. Why do we need next-generation bioactive pulp capping 
materials? 

2.1. To improve pulpitis management 

Preservation of healthy dental pulp tissue and the subsequent pre-
vention of apical disease, form the biological basis of operative dental 
care and the core of preventative endodontics. As described previously, 
in health, the dental pulp is naturally protected by a mineralized outer 
shell of enamel and dentin, while as a connective tissue it also possesses 
a series of defense strategies including inflammation and mineral 
secretion designed to protect itself against injury [2]. The pulp is prin-
cipally irritated by bacteria in the form of dental caries or microleakage 

around restorations, but can also be challenged trauma, dental materials 
and as a result of restorative procedures, all of which provoke inflam-
matory responses in the pulp, the extent of which reflects the severity of 
the challenge [5,9,30]. Microbial infection by ‘leakage’ around resto-
rations provides a considerable challenge particularly when the resto-
ration is deep, as bacterial products diffusing through the dentinal 
tubules induce inflammation even when the restoration has not yet 
reached the pulp [31], with histological studies showing that this pro-
cess intensifies when the cavity encroaches to within 0.5 mm of the pulp 
[4,32]. The secretory odontoblast initially reacts immunologically to the 
microbes by initial pathogen recognition, but other pulp cells including 
fibroblasts, dental pulp stem cells (DPSCs) and immune cells also 
contribute to the defensive response; thereafter, a complex series of 
antibacterial, immune and inflammatory responses is orchestrated [33, 
34]. If the bacterial stimulation is not managed (e.g., by placement of a 
new ‘sealing’ biologically-based material), the microbial biofilm will 
advance and the associated bacteria will invade the tissue; this aggres-
sive bacterial challenge invariably leads to irreversible pulpits, pulp 
necrosis and subsequent apical periodontitis [35]. Over time the bac-
terial flora in the diseased pulp and the subsequent necrotic root canal 
system changes from comprising principally facultative anaerobic bac-
teria to more gram-negative, obligate anaerobic bacteria [36,37]. Pulp 
necrosis will necessitate remedial dental treatment, such as tooth 
extraction or RCT; however, removal of the bacteria and placement of a 
bioactive dental material can promote pulp repair and maintain vitality 
[5]. The choice of dental material has been shown for several years to be 
an important factor that determines the quality of the dental pulp 
defensive response [6,38,39]; however, it is accepted that no existing 
material is ideal [2]. Although a role for anti-inflammatory [40] or 
immunotherapeutic materials [41] in the treatment of pulpitis have 
been proposed, currently no pulp capping materials specifically target 
inflammatory processes except for medicaments such as Ledermix 
(Henry Schein, New York, USA) which contain steroids and have been 
used only historically for this purpose [42]. 

Opinion The need for improved dental restorative solutions for the 
management of deep caries and the exposed pulp has been highlighted 
by global position statements [7], as dental caries in permanent teeth 
remains the most prevalent disease in the world today and affects pa-
tients in all countries and social classes [43]. Although the benefits of 
inflammatory suppression have been advocated, no currently available 
commercial dental or pulp capping material has specific immunomod-
ulatory or targeted anti-inflammatory actions. 

2.2. To promote pulpal repair processes 

Pulp tissue, however, has an innate ability to heal if the injurious 
challenge is removed and the tooth suitably restored [5]. In deep cav-
ities, the group of strategies aimed at maintaining the vitality of the pulp 
are called VPT [7]. Interestingly, although limiting pulpal inflammation 
is critical during VPT, it appears that a controlled level of pulpitis is 
helpful, at least in the initial stages, to drive reparative processes [44, 
45]. If possible, minimally invasive, biologically-based VPTs (e.g., pulp 
capping and pulpotomy) that preserve at least part of the pulp are 
preferable to conventional RCT, which is costly, technically complex 
[46]; destructive of tooth tissue [47] and often poorly carried out in 
dental practice [48,49]. 

In a response to challenge and injury the dentin-pulp complex not 
only reacts immunologically, but also forms tertiary dentin that provides 
a local physical reparative barrier adjacent to the injurious challenge 
and contributes to restoration of tissue integrity [2]. The term tertiary 
dentin actually describes a heterogeneous range of secretory responses, 
from a regular, tubular structure in continuity with primary and 
orthodentin, to the secretion of a dysplastic, defective and atubular 
matrix [6,50,51]. The cell responsible for the secretory responses also 
differs with reactionary tertiary dentin formed by an upregulation of 
activity of the existing primary odontoblast [52], while reparative 
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tertiary dentin is formed by a newly differentiated odontoblast-like cell 
[53]. This subdivision highlights not only differing reactions in response 
to mild and more severe external stimuli, but also the effect of severe 
stimuli on odontoblast survival and subsequent pulpal response (Fig. 1). 
In contrast to reactionary dentinogenesis, reparative dentin formation is 
a more complex process that will normally occur in response to stronger 
stimuli such as extremely deep caries [9] and will subsequently involve 
the recruitment of progenitor cells, which differentiate into 
odontoblast-like cells to form reparative dentin [53]. The reparative 
dentin in comparison with reactionary dentin displays a broad range of 
responses, which can vary in quality from tubular dentin replacement to 
an incomplete amorphous hard tissue bridge [2,6,51,54]. For descrip-
tive and educational purposes, reactionary and reparative dentino-
genesis are often described as separate processes, however, when the 
carious lesion is close to the pulp both processes are almost certain to 
occur simultaneously [55]. 

From a biological perspective, the cellular response is not only pro-
moted by release of growth factors (GFs) and pro-mineralization cues 
from DPCs [56], but also orchestrated and regulated by bioactive mol-
ecules, including GFs, which are ‘fossilized’ in the dentin matrix during 
crown formation [57–59]. These bioactive dentin matrix components 

(DMCs) can be released by caries, irrigants and dental materials to 
stimulate the reparative process [60–63]. Indeed, it has been shown that 
calcium hydroxide [60], the HCSC mineral trioxide aggregate (MTA) 
[61] and epigenetic modifying drugs such as HDACi [63] can all modify 
the release profile of DMCs and alter the cellular reparative response. 

Opinion Continuing pulpal health and the secretion of a high-quality 
mineralized barrier define a successful response to a pulp capping pro-
cedure. The hard tissue response and the degree of regeneration of 
tubular dentin has been linked to several factors including the type of 
pulp capping material used. The influence of the material in modifying 
DMC release and the predictability, quality of the pulpal defensive 
response is important as it can enhance the regenerative responses in the 
exposed pulp, by improving not only tissue handling but also developing 
the biological properties of the material itself. Traditionally, however, 
dental filling material development has focused on physical attributes 
(e.g., wear and strength) and esthetic issues rather than biological 
properties, despite the pulp capping material coming into often direct 
contact with the cells of the dental pulp and the opportunity to directly 
target cellular processes. 

2.3. To potentially regenerate dentin after pulp exposure and biomaterial 
placement 

After pulp exposure and placement of a biomaterial in a pulp capping 
procedure, although hard tissue is formed it is generally considered to 
lack the tubular structure that defines dentin [64]. This questions 
whether the new secretory cell is producing dentin or simply dystrophic 
mineral has led to some investigators casting doubt on the veracity of the 
stem cell-led odontoblast-like cell theory with alternative suggestions 
that the formation of mineral could be attributed instead to fibroblasts 
[54] or fibrocytes [65]. The traditionally accepted view was that cellular 
differentiation of migrating progenitor cells occurred under the influ-
ence of bioactive molecules liberated from damaged dentin, which 
formed new odontoblast-like cells [52,62]. It is also possible that fi-
broblasts produce mineral in the reparative response, but this would also 
occur through a cyto-differentiation as these cells do not produce min-
eral in their basal state, but can be induced to form mineral under 
certain induced conditions [66–69]. 

It is important to note, that the origin of the cell type that produces 
the repair is central to the notion that the dentin-pulp complex can be 
regenerated [70]. The extensive heterogeneity in hard tissue 
morphology may indicate that both repair and regeneration of dentin 
are possible with evidence that the quality of the healing response can be 
influenced by the environmental niche with the presence or absence of 
caries [71], type of capping material [6] or the operator’s technical skill 
[9]. In order to control confounding factors, experimental pulp capping 
studies that histologically analyze the response of pulp cells to pulp 
capping use disease-free, unrestored teeth and short recall periods [72]. 
However, in the clinic pulpal injuries are affected by a host of events 
including infectious, inflammatory and operator variable, and as a result 
the interplay between pulp injury, infection, pulpitis and altered host 
defense responses over several months will be critical to the final 
outcome [2]. This type of experimental pulp capping studies also tends 
to focus on the choice of capping material [6,72,73] rather than other 
critical aspects including wound disinfection [74], bacterial leakage 
[75] or technical aspects of the procedure itself. Indeed, the bulk of 
studies investigating the comparative quality of pulp capping materials 
do not comment on the technical aspects of the procedure or verify the 
histological absence of microorganisms associated with failed or poor 
healing outcomes [76]. 

Opinion Although regeneration of dentin has been shown to occur 
after experimental pulp capping with HCSCs in ‘sound’ teeth (Fig. 2), the 
clinical reality is that the pulp is likely to be inflamed and tissue re-
sponses are less predictable. New improved materials could potentially 
improve the quality of hard tissue deposited at the wound interface, both 
in terms of quality and volume of dentin. Furthermore, current pulp 

Fig. 1. Schematic of the processes of tertiary dentin formation. Reac-
tionary and reparative dentinogenesis processes differ in the source of the 
secreting cell. Reactionary dentin is formed by the existing primary odontoblast 
with a mild stimulus (e.g. early stage of carious disease) activating the upre-
gulation of existing odontoblast activity. During reactionary dentinogenesis the 
odontoblasts recognize the bacterial products and released DMCs diffusing 
through the dentin tubules, which increases cellular activity. Reparative dentin 
formation involves a more complex sequence of events in which a severe 
stimulus (e.g. increasing carious involvement of dentin) causes death of the 
primary odontoblasts, which are subsequently replaced following differentia-
tion of progenitor or stem cells into odontoblast-like cells under the regulation 
of bioactive molecules (including DMCs). Although the nature of the cellular 
response is likely to be dependent upon the pulp environment, the mineralized 
tissue deposited at the pupal wound site will likely display a spectrum of 
dysplasia. A Enamel, B Dentin, C Pulp. 
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capping and pulpotomy techniques involve placement of a setting dental 
material directly against the pulp tissue, which stimulates a hard tissue 
reparative barrier, but by its physical presence prevents any possible 
regeneration of dentin, as would be possible if a bioactive scaffold or 
collagen sponge were placed instead of hard setting material. However, 
the later tissue engineering-based approach would require a rethink in 
the way dentistry is currently provided as well as the development of a 
new set of approved dental biomaterials. There is little evidence at 
present that there is much development on commercially-developed 
tissue engineering strategies, in spite of evidence that there is consid-
erable academic research activity in this area. 

2.4. To address the deficiencies of current pulp capping materials 

Successful VPT relies upon and is influenced by the pulp capping 
material. Over the years, countless capping materials have been used 
including; gold foil [77], calcium hydroxide [78,79], resin-based 

composites [80], corticosteroid/antibiotic medicaments [81], 
resin-modified glass ionomer [82], and HCSCs [83]. Misconceptions 
regarding the role of a pulp capping material, have suggested that pre-
venting microleakage is the only concern [75]; which perhaps led to the 
use of resin-bonded solutions that irritated pulp tissue and impaired its 
defensive reaction [84,85]. Although the seal of the capping material is 
important and should be provided by either the pulp capping material or 
the overlying restoration, other factors such as biocompatibility, 
pro-mineralization, anti-inflammatory and or anti-microbial properties 
are also key, as well as practical considerations related to handling, 
setting time, cost and radiopacity [86]. As the aim of the pulp capping 
material is to help maintain a viable pulp, the promotion of minerali-
zation through tertiary reparative dentinogenesis increases the thickness 
of dentin between the pulp and the deepest part of any cavity and 
therefore the proximity of the threat to the pulp is distanced. 

Calcium hydroxide materials in non-setting or hard-setting forms 
have been considered the gold standard material for many years [79, 

Fig. 2. Pulpal response to MTA capping after 3 
months. Pulpal response to mineral trioxide aggre-
gate (MTA) capping after 3 months observation. 
Distal microphotographic view (A) of the mesial half 
of a maxillary left third molar (tooth 28) shows the 
remnants of the restorative and capping material (CP) 
and a distinct hard tissue bridge (BR) across the 
exposed pulp (PU). The photomicrograph (B) is part 
of a histological section of the specimen in (A). Note 
the mineralized hard tissue barrier (BR), stretching 
across the full length of the exposed pulp (B, C). The 
rectangular areas demarcated in (C) and (D) are 
magnified in (D) and (E) respectively. Note the 
cuboidal pulpal cells (arrowheads) lining the bridge 
(BR) and absence of pulpal inflammation in (E). 
Original magnifications: a ⋅6, b ⋅8, c ⋅23, d ⋅200. 
Adapted with permission from Ref. [6].   
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87–89]. Indeed, calcium hydroxide application directly onto the pulp 
can be successful clinically [90] and forms a mineral barrier [91]; 
however, the barrier is often porous and of poor quality [6,51]. Notably, 
from a mechanistic perspective the action of calcium hydroxide remains 
unclear [92] and generally forms low quality mineralized osteodentin 
when applied to the exposed pulp [6,51]. As a result, it has largely been 
superseded by the use of new materials such as HCSCs [83], which have 
demonstrated improved results histologically [15] with evidence of 
some tubularity over time [6], as well as clinically compared with cal-
cium hydroxide [16- Hilton et al., 2013]. HCSC use; however, has been 
attributed to occurrences of postoperative tooth discoloration [93], an 
issue which subsequent HCSCs such as Biodentine do not pose to the 
same extent [94], while also favorably inducing mineralization [95] and 
cellular differentiation in vitro [96]. In addition to the biological effects 
of calcium hydroxide and HCSCs on DPCs, they also have the ability to 
induce the release of the aforementioned bound DMCs from dentin [60, 
61]. Current pulp capping materials including HCSC’s, however, are 
limited by their lack of specificity as they are not designed to directly 
target regenerative or inflammatory processes, which is unfortunate as 
GFs [97], drugs [29] and lyophilized DMCs [98] have all been shown to 
improve mineralization and reparative processes in vitro and in vivo. 

Opinion The introduction of HCSCs over 30 years ago has improved 
pulpal tissue responses and clinical outcomes in VPT. However, current 
VPT materials are limited by low-quality tertiary dentin formation, non- 
specific action, and the absence of targeted constituents focused on 
tissue regenerative strategies or targeting inflammation [12,24]. 
Therefore, although there is an urgent need to develop next-generation 
capping material, there is a need to consider not only the bioactivity of 
the material but also the ability of the material to prevent leakage in the 
long-term, so physical properties (although not necessarily strength) 
remain important. 

3. Epigenetic therapeutic solutions – opportunities and 
challenges 

As previously described, there is a need to develop smarter pulp 
capping biomaterials that contain pharmacological inhibitors or 
endogenous morphogens and are focused on pulp regenerative pro-
cesses, thereby overcoming the limitations of existing materials. Several 
potential solutions have been investigated including the direct appli-
cation of GFs [99], Wnt-signaling pathway inhibitors [100], 
anti-oxidants [101], anti-hypertensive drugs [26] and recently 
epigenetic-modifiers [27,102,103]. In the latter so-called, ‘epigenetic 
therapeutic approach’, drugs or epigenetic modifying agents are used to 
treat medical and dental conditions [104]. 

Targeting epigenetic machinery has exciting potential, as epigenetic 
modifications play an essential role in cell development and differenti-
ation by regulating gene expression without altering the DNA sequence 
[105]. Recently, the critical role of epigenetic influence on embryonic 
stem cell (ESC) regulation and DPSC fate, as well as the therapeutic 
potential of orchestrating self-renewal and differentiation has been 
underlined [70,106,107]. The epigenetic regulatory mechanisms that 
have been well researched remain DNA methylation and 
post-translational histone modifications, although the emerging role of 
ncRNAs in the epigenetic regulation of gene expression has been the 
subject of intensive research in medicine and dentistry [108,109]. It is 
evident that epigenetics can control multiple transcriptional mecha-
nisms central to the maintenance of health and response to disease, so 
there is an opportunity to target epigenetic modifications as diagnostic 
biomarkers or as part of a dental therapeutic strategy. 

Dental pulp research in this area has largely focused on DNA- 
associated histone acetylation [103], a nuclear process balanced by 
histone-acetyltransferases (HATs) and histone-deacetylases (HDACs), as 
it has been shown that modifying this balance with pharmacological 
inhibitors can accelerate DPC mineralization and improve wound 
healing in vitro [28,29] as well as in vivo [110]. Targeting HDAC 

enzymes with HDACi seems to be the most promising way to thera-
peutically alter this balance, with a resulting modification of cellular 
transcription. Pan-HDACis target all Zn-dependent HDAC-isoforms and 
include suberoylanilide hydroxamic acid (SAHA) and Panobinostat, 
which are EU and FDA-approved to treat certain forms of cancer [111, 
112], and have been investigated in bone engineering [113] and in-
flammatory modification [114]; however, their use in VPT is novel 
[103] and not commercially approved. 

Several different types of HDACis have shown considerable promise 
in the field of dental pulp regeneration, including Trichostatin A (TSA), 
SAHA and Valproic acid (VPA) (Table 1). In multiple studies low con-
centrations of these HDACis have been demonstrated to promote dif-
ferentiation and migration in DPC with minimal toxicity in vitro, 
suggesting a potential in vivo role and translation towards clinical 
treatment of exposed dental pulp [115–119]. The first proof of principle 
study using a DPC culture showed that although TSA, VPA reduced DPC 
proliferation they also increased mineralization dose-dependently in a 
dental-pulp derived murine cell line only negatively affecting cell 
viability and cell cycle at the higher concentrations [27]. Although this 
work highlighted the potential of HDACi-enhanced DPC mineralization, 
it raised other questions relating to different responses in primary cul-
tures, which have been demonstrated to react differently to HDACi than 
transformed cell lines [120,121]. 

Subsequent DPC experimentation using primary rodent DPCs [28] as 
well as human DPSC populations have consistently highlighted that 
pharmacological HDAC inhibition induced reparative cellular responses 
(increased cellular mineralization, pro-mineralization gene and protein 
markers) at concentrations which did not stimulate significant cytotoxic 
effects. Generally, pan-HDACi, including TSA, SAHA and VPA have been 
used experimentally [27,28,110,115,116], but recently isoform-specific 
HDACi have shown promising results targeting HDAC2/3 inhibition 
using MI192 [119] and HDAC4/5 inhibition using LM-235 [117], with 
resulting increases in calcific nodule formation in vitro. In vitro experi-
mentation has also raised the issue of dose and concentration of HDACi 
with continuous HDACi administration (14 days), resulting in an inhi-
bition of differentiation [28]. One in vivo study examined the effects of 
HDACis on dental pulp with the developmental effect of HDACi on 
dental tissues after TSA injection into the tails of pregnant mice. Sub-
sequent histological analysis revealed that the volume of dentin 

Table 1 
A selection of studies that have investigated the effects of HDACis and DNMTis 
on mineralization and differentiation in dental pulp cell populations. TSA =
Trichostatin A; SAHA= Suberyolanilide hydroxamic acid; VPA= Valproic acid; 
BMP= Bone morphogenetic protein; OPN= Osteopontin; ALP = Alkaline phos-
phatase. DMP = dentin matrix acidic phosphoprotein; DSPP = dentin sialo-
phosphoprotein. Adapted from Ref. [109].  

Reference Cell 
Population 

Specific 
HDACi or 
DNMTi 

Mineralization-associated 
Gene Expression Changes 

[27] Duncan 
et al., 2012 

DPC line 
(MDPC-23) 

TSA, VPA Up: BMP4, DMP1, TGF-β1 

[115] Kwon 
et al., 2012 

DPC line 
(MDPC-23) 

SAHA Up: DMP1, DSPP, ALP, 
Nestin 

[28] Duncan 
et al., 2013 

Rodent 
Primary DPCs 

TSA, VPA Up: BMP2, BMP4, DMP1, 
DSPP, Nestin 

[110] Jin et al., 
2013 

Human DPSCs TSA Up: BSP, DMP1, DSPP, 
Down: OCN 

[116] Paino 
et al., 2014 

Human DPSCs VPA Up: BSP, OPN 
Down: OCN 

[117] Liu 
et al., 2018 

Human DPSCs LMK-235 Up: DSPP, ALP, RUNX2 

[118] Lee 
et al., 2020 

Human DPSCs MS-275 Up: DMP1, ALP, DSPP and 
RUNX2 

[119] Man 
et al., 2021 

Human DPSCs MI192 Up: BMP2, OCN, ALP 

[102] Zhang 
et al., 2015 

Human DPSCs 5-AZA-CdR Up: DSPP, DMP1, OSX, 
RUNX2, DLX5, ALP  
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deposited was thicker and the number of odontoblasts in the area was 
higher in the HDACi group than in the control group [110]. From a 
translational perspective, the stimulation of mineralization in DPCs 
without toxicity after short-term exposure to the HDACi supported the 
potential chairside application of these materials as pulp capping agents 
within VPT or even ostensibly as part of a tissue engineering strategy to 
replace lost pulp tissue (Fig. 3). 

Mechanistically, researchers have attributed the action of HDACi to 
stimulate an increase in transcription, with one high-throughput study 
highlighting that SAHA promoted mineralization and cell migration in 
rodent DPCs by inducing the expression of matrix metalloproteinase 13 
(Mmp13). Importantly, cell proliferation was not compromised when 
low concentrations of SAHA were applied [29). More recently, a variety 
of HDACis including TSA, VPA, sodium butyrate (NaB) and MS-275 were 
applied to a rodent odontoblast-like cell line, MDPC-23 [122]. All of the 
HDACi employed increased the expression of a range of 
mineralization-associated genes such as bone morphogenetic protein-2 
(Bmp2), Bmp4, Osteocalcin (Ocn), dentin matrix acidic phosphoprotein 
(Dmp-1); dentin sialophosphoprotein (Dspp) and Runt-related transcription 
factor 2 (Runx2), albeit to varying extents. MS-275, VPA and NaB all 
increased mineralization of the cell line, as determined by Alizarin Red S 
staining. Notably, TSA did not significantly increase mineralization at 
any concentration ranging from 1 nM to 100 nM [122], which is 
consistent with the findings of the Duncan et al. [27], and supports the 
previously mentioned observation that transformed cell lines are less 
susceptible to the effects of HDACis. 

To improve the clinical relevance of HDACi application specific to 
the tooth, the interaction between HDACis and dentin matrix was 
investigated in order to replicate the interface between dental 

restorative materials and pulp capping biomaterials after pulp exposure 
[63]. A range of restorative and pulp capping materials have previously 
been shown to release bioactive DMCs, which promote reparative events 
and guide tertiary reparative dentinogenesis [60]. HDACis released 
DMCs consisting of GFs previously identified as being released from 
dentin by endodontic irrigants and dental materials [21,57,60], as well 
as novel GFs [63]. Notably, the HDACis extracted GFs less efficiently 
than the well-characterized extractant EDTA for certain GFs (e.g., 
TGF-β1), but more effectively for others (e.g., GDF15, BDNF), while in 
comparison different HDACi had differing extraction profiles. 

From a pulp capping perspective, the promotion of mineralization 
and the control of inflammation are both crucial to the success of the 
treatment [2]. In addition to the studies focused on the mineralization 
response (Table 1), HDACi are also known to exhibit anti-inflammatory 
properties [12], by reducing pro-inflammatory cytokine production in 
vitro and in vivo [114]. Indeed, lipopolysaccharide (LPS) stimulated cells 
cultured in the presence of SAHA exhibited reduced cytokine production 
for tumor necrosis factor-alpha (TNF-α), interferon-gamma (IFN-γ), and 
interleukin-1-beta (IL-1β), in a dose-dependent manner [114]. Further-
more, several HDACi including SAHA have been shown to reduce in-
flammatory related pain in a rat model [123]; this is a finding which 
could be beneficial for a pulp capping material in the treatment of 
symptomatic pulpitis or classic ‘toothache’. As HDACi appear to have a 
pro-mineralization and anti-inflammatory effect in DPC populations, 
future research should focus on the effect on reparative effects under 
pulpitic conditions or in conditions of high glucose or oxidative stress. 
These environmental stressors will affect cell differentiation and likely 
reparative response. At present, in order to limit the influence of con-
founding factors current studies tend to examine mineralization or 

Fig. 3. Schematic diagram highlighting the therapeutic potential of HDACi in regenerative endodontics. (A) Vital pulp treatment. (i) Deep carious lesion exposes 
pulp tissue. (ii) HDACi topically applied to exposed pulp, potentially as a component of a dental restorative material [e.g., mineral trioxide aggregate (MTA), calcium 
hydroxide, resin-based composite (RBC)] promotes tissue-repair processes (mineralization, modulated inflammation and cell migration). (iii) Tooth permanently 
restored with amalgam and mineralized bridge formation evident under dental pulp capping material. (B) Pulp tissue engineering. (i) Pulp necrosis (ii) Necrotic tooth 
chemo-mechanical debrided and EDTA, NaOCl applied to dentine to release matrix components. (iii) HDACi applied within a cell or non-cell based scaffold stimulates 
further growth factor release, cell migration and differentiation. (iv) Tooth restored and new pulp-like tissue formed promoting continued root growth and restoring 
tooth tissue vitality. Reproduced from Ref. [109]. 
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inflammation in isolation rather than examining the effect of HDACi in 
inflamed tissue or after carious exposure in vivo. This represents a lim-
itation of the current literature in this area [103]. 

Notably, a solitary study analyzed the effects of the DNMTi 5-AZA- 
CdR on DPCs [102] and demonstrated that although mineralization- 
and dentinogenic-associated gene expression, including DSPP, DMP1, 
Osterix (OSX) and RUNX2, were all upregulated and calcific nodule 
formation was accelerated (Table 1) it was accompanied by a significant 
reduction in cell viability at all concentrations. 

Opinion A series of studies have highlighted the potential benefit of 
developing new dental biomaterials targeted towards epigenetic pro-
cesses. The promise of HDACi stems from their dual action of possessing 
pro-mineralization and anti-inflammatory properties. These effects have 
been demonstrated using rodent and human cells as well as in vivo 
models. However, in order to translate these potential next-generation 
therapies into clinical material for dentists, clinical trials on human 
subjects must be planned and funded. This has not to date been 
straightforward in dentistry with notable reticence of dental manufac-
turers to get involved in what they describe as ‘early-phase’ translational 
research (preferring to enter product development at a later stage) 
coupled with increasing regulatory hurdles, which makes the develop-
ment of these smart restorations costly and time consuming. Unfortu-
nately, these challenges risk holding back conservative treatment of 
carious induced disease, one of the most prevalent diseases globally. 

4. What are the specific materials used for potential drug 
delivery in VPT? 

4.1. Unintended therapeutic effects in traditional pulp-dressing materials 

Historically, pulp capping materials have been an area of VPT in 
which new innovations have been investigated with the subsequent 
response to the new material analyzed [124]. As a result of the capping 
material directly contacting dental pulp tissue, the material represents 
the perfect vehicle to possess potentially beneficial pharmacological 
additives. Notably, traditional pulp capping materials were not doped 
but rather were ‘unintentionally’ equipped with the pharmacological 
effects that were beneficial to pulp tissue. 

For example, the classic pulp capping material, calcium hydroxide, 
causes necrosis of the superficial layer of the pulp tissue by its high pH, 
which subsequently induces pulp defense and repair processes [125]. It 
has been postulated that the beneficial effect of calcium hydroxide is due 
to the calcium ions it releases [126] as well as an inherent ability to 
extract GFs from dentin [60], which can subsequently stimulate 
odontoblast-like cell differentiation of progenitor cells in the pulp tissue. 
MTA, which has largely replaced calcium hydroxide as the pulp capping 
material of choice, has succeeded and expanded the favorable charac-
teristics of calcium hydroxide [127]. MTA application upregulates BMP 
expression in DPCs in vitro [128], which can stimulate subsequent ma-
trix mineralization. MTA also induces DPC expression of the transcrip-
tion factor Runx2, as well as other pro-mineralization molecules 
including OCN, alkaline phosphatase, dentin sialoprotein, and vascular 
endothelial growth factor (VEGF) [129]. Furthermore, MTA has been 
shown to release TGF-β1, adrenomedullin (ADM) and hepatocyte 
growth factor (HGF) from dentin [21,130]. Presently, a variety of 
bioactive molecules, including SCF, M-CSF, GM-CSF, IGF-1, IGFBP-1, 
NGF, and GDNF, are known to be liberated from dentin by MTA’s ef-
fect [131,132]. The beneficial effects of HCSC pulp materials have been 
integrated into newer products, such as tricalcium silicate-based 
cement, Biodentine (Septodont, Saint-Maur-des-Fosses, France) or the 
resin-modified calcium silicate, TheraCal (Bisco, Schaumburg, IL, USA) 
[133- Kim et al., 2021]. Biodentine has been shown to induce TGF-β1 
release from human DPCs and stimulate early dental pulp mineralization 
[134 – Laurent et al., 2012], while DPSCs incubated with TheraCal 
exhibited higher Runx2 expression [133]. Notably, although materials 
such as calcium hydroxide and MTA induce reparative processes, there 

is no controlled release of bioactive components or targeted therapeutic 
action. 

The critical features of a vital pulp capping material are that they 
should provide a seal to microbes, be biocompatibility, pro- 
mineralization, anti-inflammatory and or anti-microbial, as well as 
practical considerations related to handling, setting time, cost and 
radiopacity. Furthermore, if possible particularly in the case of scaffolds 
the material should be capable of promoting regeneration [86]. 

4.2. Early attempts to incorporate bioactive reagents into pulp capping 
materials 

Attempts to incorporate bioactive compounds into pulp capping 
materials is not new with documented experiments recorded in the 
1970s. Anneroth and Bang capped the exposed pulp tissue of a Java 
monkey with demineralized dentin matrix and observed subsequent 
hard tissue formation in the teeth at the exposure site [135]. This 
experiment implemented the previously demonstrated ability of dem-
ineralized dentin matrix to induce ectopic bone formation [136], which 
later led to the discovery and purification of BMP from rat dentin [137, 
138]. The finding of BMPs in dentin stimulated scientists to apply these 
proteins to dental pulp, expecting the formation of reparative tertiary 
dentin. Nakashima and other groups implanted crude or purified BMPs 
on the surface of amputated pulp of dog or monkey and observed 
reparative dentin formation [139–141]. From a materials perspective 
these experiments utilized collagen matrix or the mixture with chon-
droitin as the carrier of BMPs and highlight the potential for scaffolds to 
act as vehicles to deliver bioactive components to the injury site with the 
tooth. 

4.3. Recent attempts to incorporate drug delivery in VPT materials 

Polymeric substrates, as a carrier of bioactive reagents, have 
distinctive advantages as for several reasons [142]: (i) they protect the 
bioactive reagents from degradation; (ii) they enable the localized and 
sustained release of active reagents, ensuring bioavailability of critical 
concentrations of the reagent; (iii) they serve as extracellular matrix 
(ECM)-mimicking scaffold supports allowing tissue ingrowth during 
tissue regeneration. Polymeric substrates are currently applied in 
various forms, such as scaffolds, hydrogels, and nanoparticles, as well as 
the combinations of these forms [142]. 

4.3.1. Naturally-derived polymeric materials 
Naturally derived materials use molecules derived from the cells 

themselves. Their characteristics and functionality are preferable for 
drug delivery and occur as a result of years of natural selection. The 
advantage of natural materials cannot be overemphasized or readily be 
surpassed by any synthetic material, which can be tested for suitable 
characteristics over a relatively short time. A further advantage of nat-
ural materials is that they are relatively easily obtained due to their 
abundancy and production without strict reaction control or compli-
cated steps. Presumably due to these advantages, naturally derived 
materials have been preferred for endodontic procedures and regener-
ative strategies for many years (Table 2). Several important natural 
materials are reviewed below. 

4.3.1.1. Collagen/gelatin. Collagen/gelatin has been used as a drug 
carrying material in endodontic research for many years [143,144]. 
Collagen/gelatin is the principle component of natural ECM and as a 
result shows low cytotoxicity [145], prominent biocompatibility [146], 
and low immunogenicity in humans [147]. Additionally, collagen/ge-
latin can be used in solid form such as a sponge or matrix, as well as 
hydrogel when enzymatically processed (Table 2). Recently, the usage of 
collagen/gelatin continues to be high; with workers employing a gelatin 
methacrylate (GelMA), collagen molecule modified with reactive side 
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Table 2 
Natural polymeric materials used for in vivo transplantation as well as human studies with multiple patients are listed. Reports using inorganic materials, in vitro 
research, and case reports describing single patient were not included. For individual studies with #, normal, and bold entries indicate ectopic, orthotopic trans-
plantation, and human studies, respectively. The modification to the reagents used is briefly explained in parenthesis when necessary. 
BMC = bone marrow cell; BMSC = bone marrow stem cell; BMMSC = bone marrow mesenchymal stem cell; DFSC = dental follicle stem cell; DMC = dental 
mesenchymal cell; DPC = dental pulp cell; DPSC = dental pulp stem cell; SCAP = stem cell from the apical papilla; SHED = stem cell from human exfoliated deciduous 
teeth; UCMSC = umbilical cord mesenchymal stem cell; ECM = extracellular matrix; GelMA = gelatin methacrylate; PEG = polyethylene glycol; PRP= platelet-rich 
plasma.  

Material Reagents used Cell type First author Year Ref. 

Collagen/gelatin  
<fiber/membrane/sponge> BMP2, BMP4, TGF-β1 - Nakashima 1994 [143]  

OP-1 (BMP7) - Rutherford 1994 [144]  
BMP7 - Jepsen 1997 [180]  
BMP7 - Rutherford 2000 [181]  
BMP7 - Six 2002 [182]  
DMP-1 - Almushayt 2006 [183]  
#(collagen sponge) swine DPC Sumita 2006 [147]  
#(collagen sponge) hDPSC Zhang 2006 [184]  
FGF-2 - Kikuchi 2007 [185]  
#DMP-1, ceramic powder hDPSC Prescott 2008 [146]  
(collagen I/III sponge) dog CD31(− )/CD146(− ) DPC Iohara 2009 [186]  
FGF-2 - Ishimatsu 2009 [187]  
(collagen sponge) - Inuyama 2010 [188]  
#nano-hydroxyapatite rat DPSC Yang 2010 [189]  
(collagen membrane), PRP (þcollagen sponge) - Goyal 2011 [190]  
SDF-1 dog CD105+ DPC Iohara 2011 [191]  
SDF-1 dog CD31-/CD146- DPC, CD105+

DPC 
Nakashima 2011 [192]  

#(chondroitin sulfate, hyaluronic acid) rat DPSC Zhang 2012 [193]  
SDF-1 dog CD31− DPC, CD105+ DPC, 

BMC 
Ishizaka 2012 [194]  

#BMP4, FGF2 rat DPC Srisuwan 2012 [195]  
(collagen sponge) dog DPSC Wang 2013 [196]  
#BMP7 hDPSC Yang 2012 [197]  
G-CSF, (atelocolagen) dog DPSC, DPC Iohara 2013 [198]  
#SCF hDPC Pan 2013 [199]  
G-CSF, (atelocolagen) dog mobilized DPSC Iohara 2014 [200]  
(intrafibrillar-silicified collagen) hDPSC Niu 2014 [201]  
#(nanofibrous-gelatin), Magnesium phosphate hDPSC Qu 2014 [202]  
EDTA-treated swine dentin matrix, (swine dental pulp ECM), 
PLGA-Gelatin sheet 

transduced swine DFSC Chen 2015 [164]  

#(nanofibrous-gelatin) hDPSC Qu 2015 [203]  
#Exosome hDPSC, hBMSC Huang 2016 [204]  
G-CSF dog DPSC Iohara 2016 [205]  
(gelatin sponge), simvastatin dog DPSC Jia 2016 [206]  
(collagen membrane) - Sharma 2016 [207]  
(collagen membrane), (gelatin foam) - Fahmy 2017 [208]  
(collagen membrane) - Jiang 2017 [209]  
G-CSF, (atelocollagen) mobilized hDPSC Nakashima 2017 [210]  
preameloblast-conditioned medium - Bucchi 2019 [211]  
leptin - Choi 2019 [212]  
(collagen sponge) - Zaky 2020 [213]  
(collagen sponge), β-Defensin 4 - Zhai 2020 [214]  
blood clot - Shetty 2021 [215]  
(collagen membrane) - Jiang 2022 [216]  
#(nanofibrous gelatin) amphiregulin-treated hDPSC Li 2022 [217]  
lithium chloride, Wnt3a - Sukarawan 2023 [218]   

<gel> FGF-2 - Kikuchi 2007 [185]  
FGF-2 - Ishimatsu 2009 [187]  
#(collagen/chitosan blend) HAT-7 epithelial cell, hDPSC Ravindran 2010 [219]  
#FGF-2, VEGF, PDGF, NGF, BMP-7 - Kim 2010 [220]  
#SDF-1, bFGF, BMP-7 hDPC Suzuki 2011 [221]  
#FGF-2, VEGF, PDGF -containing gelatin beads rat DPC Srisuwan 2013 [222]  
FGF-2, VEGF, PDGF -containing gelatin beads rat DPC Srisuwan 2013 [222]  
#G-CSF mobilized hDPSC, CD31− hDPC, 

hDPSC, hiPSC 
Murakami 2013 [223]  

#(recombinant human collagen type I) transduced SHED Rosa 2013 [224]  
#(Collagen TE®) mobilized hDPSC, hDPSC Horibe 2014 [225]  
bFGF - Nagy 2014 [226]  
(type I collagen) indium-111-oxine-labeled rat DPC Souron 2014 [227]  
#bFGF, G-CSF - Takeuchi 2015 [228]  
#SDF-1 - Zhang 2015 [229]  
#PDGF-BB, NGF, BDNF - Li 2016 [230]  
#(GelMA) hDPSC, HUVEC Khayat 2017 [231]  
#(rat tail collagen-I) ECM-treated hDPSC Zhang 2017 [232]  
(Collagen TE®) swine DPSC Zhu 2018 [233] 

(continued on next page) 
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Table 2 (continued ) 

Material Reagents used Cell type First author Year Ref.  

(collagen granule) - Mittal 2019 [234]  
#bioactive glasses, FGF2 - Washio 2019 [235]  
#exosome-like vehicle rat dental papilla cell Zhang 2020 [236]  
(synthetic collagen) - Mittal 2021 [237]  
#(GelMA) hDPSC, HUVEC Liang 2022 [148]   

<microsphere/particle> FGF-2 - Kikuchi 2007 [185]  
FGF-2 - Ishimatsu 2009 [187]  
#FGF-2, VEGF, PDGF - Srisuwan 2012 [195]  
FGF-2, VEGF, PDGF - Srisuwan 2012 [195]  
#VEGF hDPSC Li 2016 [238]  
#(GelMA) hDPSC Yang 2021 [239] 

Alginate  
<fiber/membrane/sponge> - - Machado 2020 [240]   

<gel> #- rat DPC Fujiwara 2006 [241]  
#- hDPC Kumabe 2006 [242]  
emdogain, (propylene glycol alginate) - Orhan 2012 [243]  
#- hSCAP cell line RP89 Lambricht 2014 [168]  
emdogain, (propylene glycol alginate) - Matsumoto 2014 [244]  
#VEGF, laponite, (RGD-alginate) hDPSC Zhang 2020 [154]  
#(GelMA) hDPSC, HUVEC Liang 2022 [148]   

<microsphere/particle> OP-1 (BMP7), TGF-β1 - Oliva-Rodríguez 2011 [245]  
#calcium chloride, thrombin ferret DPSC Verma 2017 [246]  
#TGF-β1, dexamethasone - Shrestha 2019 [247]  
#VEGF, laponite, (RGD-alginate) hDPSC Zhang 2020 [154]  
#(GelMA) hDPSC, HUVEC Liang 2022 [148] 

Chitosan  
<fiber/membrane/sponge> #(carboxymethylcellulose) - Chen 2016 [161]  

#BMP7 hDPSC Yang 2020 [197]  
- - Mittal 2019 [234]  
dexamethazone corticosteroid, bone matrix - Abbas 2020 [248]  
- - Machado 2020 [240]  
#simvastatin, calcium hydroxide - Soares 2021 [249]  
#ciprofloxacin, IDR-1002, (Polyvinyl alcohol/Chitosan) hSCAP cell line RP89 Gonçalves da Costa 

Sousa 
2022 [250]   

<gel> #(collagen/chitosan blend) HAT-7 epithelial cell, hDPSC Ravindran 2010 [219]  
silver-doped bioactive glass - Zhu 2019 [251]  
(photobiomodulation therapy) - Moreira 2021 [252]   

<microsphere/particle> #TGF-β1, dexamethasone - Shrestha 2019 [247] 
Acemannan  
<fiber/membrane/sponge> (Acemannan) - Jittapiromsak 2010 [253]  

(Acemannan) - Songsiripradubboon 2016 [254]  
(Acemannan) - Songsiripradubboon 2017 [254] 

Hyaluronic acid  
<fiber/membrane/sponge> (dried hyaluronic acid sponge) - Inuyama 2010 [188]   

<gel> #(Colgel®) hSCAP cell line RP89 Lambricht 2014 [168]  
#TGF-β1 swine DMC Tan 2015 [255]  
TGF-β1 swine DMC Tan 2015 [255]  
#platelet lysate, cellulose crystal hDPC Silva 2018 [256]  
#- swine DPSC Zhu 2018 [233]  
- swine DPSC Zhu 2018 [233] 

Fibrin  
<fiber/membrane/sponge> #extraction of dentin matrix proteins, TGF-β1, (fibrin 

sealant) 
(homing hDPSC) Widbiller 2018 [257]   

<gel> #(PEGylated fibrin) SHED Galler 2011 [258]  
#- - Ruangsawasdi 2016 [259]  
#SCF - Ruangsawasdi 2017 [260]  
#dentin matrix proteins hDPSC Galler 2018 [261]  
#extraction of dentin matrix proteins, TGF-β1 (homing hDPSC) Widbiller 2018 [257]   

<microsphere/particle> #calcium chloride, thrombin ferret DPSC Verma 2017 [246] 

Demineralized dentine matrix  
<fiber/membrane/sponge> #- rat DPSC Zhang 2012 [193] 

Small intestinal submucosa  
<fiber/membrane/sponge> #- rat DPSC Zhang 2012 [193] 

(continued on next page) 

H.F. Duncan et al.                                                                                                                                                                                                                              



Bioactive Materials 27 (2023) 574–593

583

group, for the scaffold harboring DPSC [148]. GelMA can also be 
crosslinked with UV irradiation (photo-crosslink) to add a high melting 
temperature to the gel, overcoming the drawbacks of a gelatin gel. 

4.3.1.2. Alginate. Alginate is a heteropolysaccharide mainly produced 
from the cell wall of brown algae. It is biocompatible, biodegradable 
[149] and non-toxic material [150]. Ultimately, alginate capacity to 
form gel is the major reason for its use in tissue engineering and wound 
healing [151], indeed, many endodontic studies have used alginate in 
the gel form (Table 2). However, they have deficiencies such as poor 
mechanical stiffness, uncontrolled degradation rates in vivo [152], and 
no ability to support cell adhesion. These drawbacks have been coun-
teracted by adding materials to the alginate structure, producing a more 
robust structure [151], or by modification with cell adhering residue 
such as RGD [153]. Excellent results have been shown in regenerating 
pulp-like tissue in vivo using a scaffold based on modified alginate [154]. 

4.3.1.3. Chitosan. Chitosan is a deacetylated form of chitin, an amino 
polysaccharide polymer produced mainly by arthropods. Chitosan is 
completely biodegradable, non-antigenic, biocompatible, and even 
antimicrobial [155,156]. Furthermore, it can be readily fabricated to a 
desirable shape and has been shown to induce osteogenic differentia-
tion, making it a desirable scaffold material for bone tissue engineering 
[157,158]. Chitosan does possess some drawbacks for use as a scaffold, 
with a low mechanical strength and high degradation speed in human 
tissue [159]; however, these deficiencies have been addressed by adding 
other functional materials such as hyaluronic acid or collagen [160]. In 
endodontics, Chen et al. added carboxymethylcellulose to chitosan 
scaffolds and applied them to a pulp regeneration model [161]. Addition 
of carboxymethylcellulose decreased the pore diameter and increased 
internal porosity of the scaffold. The pulp cells co-cultured in the scaf-
folds show improved adhesion, spreading, cell capacity, and 
three-dimensional configurations [161]. Da Costa Sousa et al. added 
poly(vinyl alcohol) to produce nanofiber, in which they incorporated 
the antibiotic and immunomodulatory peptide IDR-1002 [162]. This 
scaffold with SCAP was subsequently embedded in tooth fragment and 
subcutaneously implanted in mice, resulting in pulp-like tissue genera-
tion within the scaffold [162]. 

4.3.1.4. Extracellular matrix (ECM). Native ECM, produced by decel-
lularization of native tissue generally using appropriate detergents such 
as Triton-X, has a potential to be an ideal scaffold because it includes all 
functional and structural molecules to support DPC activity [163]. 
Furthermore, ECM scaffold is biodegradable, biocompatible, and has 
preferable mechanical structure for seeded DPCs. Utilizing these merits 
of ECM scaffold in endodontic research, decellularized dental pulp ECM 
has been frequently used to harbor stem cells (Table 2) [164–167]. Also, 
commercially available gel-form ECM (Matrigel®) has been used for 
pulp regeneration [168–170]. One significant drawback of native ECM is 
its immunogenicity mainly caused by incomplete decellularization and 
damage-associated molecular patterns (DAMPs) [171]. To bypass this 
problem, apoptosis-assisted decellularization, efficient antigen removal, 
crosslinking to restore protein distortion caused by decellularization, 
have been proposed as solutions (reviewed in Ref. [171]). 

4.3.2. Synthetic polymers 
Design flexibility when using synthetic polymers enables their 

physicochemical properties, such as degradation rate, microstructure, 
and mechanical strength [172]. However, due to the inherent absence of 
bioactive components, DPCs cannot readily proliferate, differentiate, or 
migrate in synthetic polymers [173]. Furthermore, there remains a need 
to establish their harmlessness before advocating their use in human 
teeth. Indeed, although there have been multiple synthetic polymers 
investigated, only three endodontic clinical studies using synthetic 
polymer scaffolds have been reported so far (Table 3). Notably, chemical 
modification and the incorporation of bioactive molecules into synthetic 
polymers can allow them to mimic the native environment [173]. 

Polyglycolic acid (PGA), poly-l-lactic acid (PLLA), polylactic-glycolic 
acid (PLGA), and poly(ε-caprolactone) (PCL) are repeatedly used in pulp 
regeneration research (Table 3). These polymers are used due to them 
being nontoxic, biodegradable, and their physicochemical properties 
such as mechanical stiffness, degradation speed, porosity, and micro-
structure can be controlled [174]. With these advantages, these four 
materials are approved by the FDA for some kind of medical use (PGA 
for absorbable suture, PLLA as a hydrophobic aliphatic polyester in 
different biomedical applications, PLGA for drug delivery, and PCL for 
use as an implant polymer material) [175]. However, local 

Table 2 (continued ) 

Material Reagents used Cell type First author Year Ref. 

Hydroxyethylcellulose 
(Natrosol®)  

<gel> Chlorhexidine gluconate, Calcium hydroxide - Nagata 2014 [262] 

ECM  
<fiber/membrane/sponge> #(swine dental pulp ECM) - Chen 2015 [164]  

EDTA-treated swine dentin matrix, (swine dental pulp ECM), 
PLGA-Gelatin sheet 

transduced swine DFSC Chen 2015 [164]  

#dentin matrix hDPSC Tran 2015 [263]  
#(swine dental pulp ECM) hDPSC Hu 2017 [264]  
(swine dental pulp ECM) - Alqahtani 2018 [166]  
#(DPSC ECM, HUVEC ECM) hBMMSC, hDPSC Huang 2018 [265]  
#(bovine dental pulp ECM) - Bakhtiar 2021 [167]  
#(human amniotic membrane ECM) hDPSC Bakhtiar 2022 [266]   

<gel> #(Matrigel®) SCAP cell line RP89 Lambricht 2014 [168]  
#(Matrigel®) hUCMSC, HUVEC Zhang 2020 [169]  
#(Matrigel®) hUCMSC, VEGF-induced hUCMSC Zhang 2020 [170]  
(treated dentin matrix) - Holiel 2021 [267] 

Silk fibroin  
<fiber/membrane/sponge> #SDF-1α hDPSC Yang 2015 [268]  

SDF-1α - Yang 2015 [268]  
#bFGF hDPSC Yang 2015 [269] 

Glycerin  
<gel> propolis - Pagliarin 2016 [270] 

Cotton pellet  
<fiber/membrane/sponge> BMP9 - Li 2021 [271]  
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Table 3 
Synthetic polymeric materials used for in vivo transplantation as well as human studies with multiple patients are listed. Reports using inorganic materials, in vitro 
research, and case reports describing single patient were not included. For individual studies with #, normal, and bold entries indicate ectopic, orthotopic trans-
plantation, and human studies, respectively. The modification to the reagents used is briefly explained in parenthesis when necessary. Materials approved by the FDA 
for some medical purpose are shown in underlined. 
BMMSC = bone marrow mesenchymal stem cell; DFSC = dental follicle stem cell; DMC = dental mesenchymal cell; DPC = dental pulp cell; DPSC = dental pulp stem 
cell; HDMEC = human dermal microvascular endothelial cells; HUVEC = human umbilical vein endothelial cell; SCAP = stem cell from the apical papilla; SHED = stem 
cell from human exfoliated deciduous teeth; ECM = extracellular matrix; MTA = mineral trioxide aggregate; PEG = polyethylene glycol; PGA = polyglycolic acid; 
PLGA = poly(lactic-co-glycolic acid); PLLA: poly-L-lactic acid.  

Material Reagents used Cell type First Author Year Ref. 

PGA  
<fiber/membrane/ 

sponge>
#- hDPC, human gingival fibroblast Buurma 1999 [272]  

#- swine DPC Sumita 2006 [147]  
#TGF-β1, (+10% PLLA) swine DMC Tan 2015 [255]  
#(+3% PLLA) rat tooth bud cell Duailibi 2004 [273]  
#(+3% PLLA) swine tooth bud cells Young 2002 [274] 

PLLA  
<fiber/membrane/ 

sponge>
#- SHED, HDMEC Cordeiro 2008 [275]  

#- SHED Casagrande 2010 [276]  
#- hDPSC Demarco 2010 [277]  
#- SHED Sakai 2010 [278]  
#dexamethasone, ascorbic acid, β-glycerophosphate, BMP7 hDPSC Wang 2010 [279]  
#- hDPSC Wang 2011 [280]  
#VEGF hDPSC Li 2016 [238]  
#BMP2 hSCAP Wang 2016 [281]  
#Matrigel® transduced hDPSC Zhang 2016 [282]  
Matrigel® rat BMMSC Ito 2017 [283]  
#- transduced hDPSC Silva 2017 [284]  
Matrigel® rat BMMSC,rat endothelial cell Sueyama 2017 [285]  
#simvastatin hDPC Soares 2018 [26]  
Matrigel® LacZ-labeled rat BMMSC Kaneko 2019 [286]  
Matrigel® rat DPSC Zaw 2022 [287]  
#- transduced hDPSC Zhang 2022 [288]   

<microsphere/particle> #- hDPSC Kuang 2015 [289]  
- hDPSC Kuang 2016 [290]  
#BMP2 hSCAP Wang 2016 [281] 

PLGA  
<fiber/membrane/ 

sponge>
#- hDPSC, hSCAP Huang 2010 [291]  

#- rat DPSC Zhang 2011 [193]  
#hydroxyapatite, tricalcium phosphate, calcium carbonate 
hydroxyapatite 

hDPSC, rat tooth bud cells Zheng 2011 [292]  

#- hDPSC Sun 2014 [293]  
EDTA-treated swine dentin matrix, (swine dental pulp ECM), PLGA- 
Gelatin sheet 

transduced swine DFSC Chen 2015 [164]  

- - Sharma 2016 [207]  
#- rat tooth bud cell Duailibi 2004 [273]  
#- hDPSC grown in microgravity 

condition 
Li 2017 [294]  

#- swine tooth bud cells Young 2002 [274]   

<gel> collagen, risedronate, lornoxicam - Shamma 2017 [295] 

PCL (poly(ε-caprolactone))  
<fiber/membrane/ 

sponge>
SDF-1, BMP7 - Kim 2010 [296]  

#nano-hydroxyapatite rat DPSC Yang 2010 [189]  
MTA - Lee 2011 [297]  
#NGF mouse tooth germ cells Eap 2013 [298]  
#DMOG hDPC Yoo 2018 [299] 

Self assembling peptide 
(SAP)  

<gel> #FGF-2, TGF-β1, VEGF, (MMP2-cleavable peptide with RGD motif) hDPSC Galler 2011 [178]  
#FGF-2, TGF-β1, VEGF, (MMP2-cleavable peptide with RGD motif) hDPSC Galler 2012 [300]  
#(RADA16-I) SHED Rosa 2013 [224]  
#(RADA16-I) hDPSC, HUVEC Dissanayaka 2014 [301]  
(RADA16-I) swine DPC Mangione 2017 [302]  
#dentin matrix proteins, (MMP2-cleavable peptide with RGD motif) hDPSC Galler 2018 [261]  
extraction of dentin matrix proteins, TGF-β1, (MMP2-cleavable peptide 
with RGD motif) 

- Moon 2018 [303]  

#extraction of dentin matrix proteins, TGF-β1, (MMP2-cleavable peptide 
with RGD motif) 

(homing hDPSC) Widbiller 2018 [257] 

(continued on next page) 
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accumulation of acidic degradation products of these polymers can 
evoke a strong inflammatory response, which limits their biomedical 
applications [176]. 

Self-assembly peptides (SAP) are used in endodontic research prin-
cipally as a hydrogel (Table 3). SAP monomers bind to each other via the 
hydrophobic sequence or by hydrogen bonds to form a nanofiber con-
sisting of a β-sheet, β-helix, or α-helix structure, resulting in a hydrogel 
by way of their entanglement [177]. Modifications of the monomer 
sequence have added functionality to each gel; for example, the addition 
of RGD-motif and MMP2 digestion site, enabled the gel to be more 
biocompatible and biodegradable [178]. This hydrogel successfully 
induced hDPSC to differentiate into odontoblast-like cells [178]. 
Further, SAP with VEGF motif have been used to induce angiogenesis 
into a scaffold embedded in dog’s teeth, which enhanced cell survival in 
the scaffold [179]. 

Opinion A plethora of research studies have been carried out in 
recent years to investigate and develop new scaffold materials princi-
pally related to a tissue engineering approach (Tables 2 and 3). These 
approaches allow the incorporation of bioactive components or drugs 
which may target aspects of the tissue inflammation and repair. Existing 
materials such as calcium hydroxide or MTA adopt a different approach, 
being solid in nature and directly contacting the exposed pulp tissue. 
Although these materials, exhibit pro-reparative effects they are not 
designed to allow tissue expansion or replacement of lost tissue, so are 
by their very nature not regenerative materials. By contrast synthetic 
and non-synthetic materials offer the prospect of tissue outgrowth and 
the regeneration of lost tissue. Several natural and synthetic materials 
have been investigated in vitro and in vivo and have the potential when 
doped with bioactive GFs or HDACi to improve the healing response. 
Notably, however, no scaffold either doped or not doped with bioactive 
components is currently available for dental practitioners to use. In the 
next section we explore what the potential reasons are for this. 

5. Are epigenetic-based or other ‘smart’ next-generation dental 
materials likely to be developed? 

Even if extensive preclinical laboratory biological testing of novel 

biomaterials addresses pertinent issues, for example in the case of 
HDACi-augmented pulp capping materials including off-target effects, 
delivery mechanisms, release kinetics, potentially altered mechanical 
properties as well as esthetic aspects relevant to dentistry [109], other 
‘clinical’ hurdles have to be addressed. This testing is becoming more 
complex and has significant cost and time implications even for 
academic-industry research collaborations attempting to introduce new 
bioactive therapies. These regulatory obstacles can delay even strong 
ideas as industrial partners may question the likelihood of profit after 
several years of preclinical and clinical development. To take the 
example used throughout the current article, despite strong in vitro and 
in vivo biological evidence supporting the use of HDACi as part of a 
targeted dental restoration, much work remains to develop a 
next-generation dental product that is available for dentists to use. So 
why is this the case and is it likely to become easier for innovative dental 
products to evolve in the future? 

Dentistry is an unusual area, because it rarely attracts the levels of 
funding (exchequer, international or industrial-based) evident in related 
medical disciplines, despite containing some of the most prevalent 
global human diseases including caries and periodontal disease and the 
5th most prevalent human condition in dental trauma [43,314,315]. 
Furthermore, dental materials are the most commonly placed biomate-
rial in the human body with an estimated 175 million placed per annum 
in the United States alone [316], yet mysteriously there is not a so-
phisticated targeted dental biomaterial available for routine use by 
dentists in operative dentistry and endodontics, despite evidence to 
suggest that these new materials may provide better outcomes for pa-
tients [317]. Obtaining regulatory approval for a new dental material is 
becoming more complex, and was modified at least with Europe in May 
2021, by the introduction of new regulation on medical devices [318]. 
Within EU law, medical devices regulation, which includes dental filling 
materials, has classified devices to class I, IIa, IIb and III according to 
their intended purpose and any potential associated-risks [318]. For 
pulp capping materials, which contact the dental pulp inside a tooth the 
categorization is clearly now stated as Class IIa without a drug substance 
and Class III if a drug (or likely active additive component is added). If 
we examine more closely the regulations as they pertain to dentistry and 

Table 3 (continued ) 

Material Reagents used Cell type First Author Year Ref.  

#- gene-modified hDPSC Zhu 2019 [304]  
(RGD- and VEGF-mimetic peptide) hDPSC Xia 2020 [305]  
#(angiogenic hydrogel), FGF4, FGF9 hCNC-like cell Kobayashi 2021 [306]  
#(angiogenic hydrogel) - Siddiqui 2021 [179]  
(angiogenic hydrogel) - Siddiqui 2021 [179] 

PEG  
<gel> Chlorhexidine gluconate - Rodríguez- 

Benítez 
2014 [307]  

metronidazole, ciprofloxacin, minocycline - Rodríguez- 
Benítez 

2014 [307]  

metronidazole, ciprofloxacin, minocycline - Pagliarin 2016 [270]  
#dentin matrix proteins hDPSC Galler 2018 [261]  
metronidazole, ciprofloxacin, minocycline - Neelamurthy 2018 [308] 

Polydioxanone  
<fiber/membrane/ 

sponge>
#VEGF - Yadlapati 2017 [309]  

metronidazole, ciprofloxacin, minocycline - Bottino 2019 [310] 

Poly-N- 
isopropylacrylamide  

<fiber/membrane/ 
sponge>

#- hDPSC Itoh 2018 [311] 

Polyvinyl alcohol 
<fiber/membrane/ 
sponge>

#chlorhexidine gluconate - Kalyan 2019 [312] 
chlorhexidine gluconate - Kalyan 2019 [312] 
#ciprofloxacin, IDR-1002, (Polyvinyl alcohol/Chitosan) hSCAP cell line RP89 da Costa Sousa 2022 [162] 

Vitrogel 3D 
<gel> #SDF-1α, BMP-2 hSCAP Xiao 2019 [313]  
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examine Annex VIII of the Medical Device Regulation rule 8 [318], 
which suggests that ‘All implantable devices and long-term surgically 
invasive devices are classified as class IIb unless they: are intended to be 
placed in the teeth, in which case they are classified as class IIa’; 
evidently, existing pulp capping materials such as calcium hydroxide or 
MTA are considered in this IIa category. Closer examination of pulp 
capping agents within Annex VIII rule 14 [318 - Regulation (EU) 
2017/746 of the European Parliament] states that ‘All devices incor-
porating, as an integral part, a substance which, if used separately, can 
be considered to be a medicinal product, including a medicinal product 
derived from human blood or human plasma, and that has an action 
ancillary to that of the devices, are classified as class III.’ suggests that 
GFs, and even natural products contained within blood or extracellular 
matrix may be considered a drug or medicinal products and therefore 
class III. Note that a medicinal product has previously been defined 
within Europe [319] ‘as any substance or combination of substances 
presented as having properties for treating or preventing disease in 
human beings or any substance or combination of substances which may 
be used in or administered to human beings either with a view to 
restoring, correcting or modifying physiological functions by exerting a 
pharmacological, immunological or metabolic action, or to making a 
medical diagnosis’. A substance is further explained (Table 4). In the 
USA, a similar division exists within the FDA using three, not four cat-
egories. Generally, the higher the risk of the medical device, the higher 
the medical device classification with the result that Class III including 
pulp capping materials are considered the highest risk. With a higher 
classification comes more stringent data requirements to demonstrate 
the device’s safety, effectiveness, and performance in a clinical biolog-
ical environment and by extension more time to evaluate and more 
financial cost. One fundamental difference between class IIa and class III 
is the need for more clinical data for example, a clinical trial to be car-
ried out for class III, which inevitably adds both time and cost into a 
project that ultimately affects a company’s return to investment. For 
that reason, considerable legal debate is ongoing with regulators and the 
dental industry about the definition of what constitutes an ‘active 
component’, whether components are ‘leached’ out of the material as 
well as considerations about whether the effects of the added substances 
are direct or indirect. 

EU Class III medical devices will involve more testing than IIa with 
objective clinical testing (by way of a clinical trial), an assessment of 
benefit and risk, safety and an analysis of whether existing clinical ev-
idence from other medical uses can be extrapolated to the new purpose, 
so called ‘off-label’ use [318]. This type of regulation is difficult for 
academics to navigate and time consuming even for industrial partners 
with significant associated administrative burden. That said, the new 
regulation also present opportunities in that the addition of drugs or 
bioactive substances into a dental material will mean Class III testing 
rather than a separate testing route for medicinal products. There is an 
argument that at least for targeted pulp capping material development, 
this path has now become more straightforward in Europe. 

The challenges of dental biomaterial development are shared in 
medicine where the rapid increase over the last 20 years in miRNA- 
related patents for diagnosis or targeted therapy has not yet resulted 
in an (FDA)-approved miRNA-based therapeutic [320]. This highlights 
not only the obstacles associated with development of a clinical product, 
but also regulatory issues, with product development taking time [321], 
albeit less time for medical devices than medicinal products [322,323]. 
In the past, new dental materials requiring simpler testing routes may 
have been prioritized over materials that require a medicinal product 
development for reasons of cost and expediency; however, within 
Europe the new legislation may imply that at least for VPT this is no 
longer an abbreviated route, which could provide the stimulus required 
for companies to support new ‘smart’ product development. Within the 
new EU regulation, the insertion of an epigenetic-modifying agent, the 
dental material remains a device, albeit now at class III. These devel-
opment costs as before may have a ‘knock-on’ effect to the patient as 
they have to be incorporated into the product price which often in 
dentistry is borne by the patient rather than a third-party insurance 
company. So, the question manufacturers may ask themselves is, will the 
costs of biomaterial development result in a product that a significant 
number of high street dentists will avail of, albeit at a modestly but not 
significantly increased price? 

Other groups have discussed the use of other pharmacological in-
hibitors, focused on the stimulation of Wnt/β-catenin pathway and used 
at low concentrations in VPT [317]. The use of these inhibitors, which 
have been prescribed therapeutically for diseases in other parts of the 
body, is an example of what the authors called ‘drug repurposing’ for 
dentistry [324], and is similar to the dental use of HDACi where FDA and 
EU-approval is available for treatment of myeloma [12]. The repur-
posing as part of a dental material offers the hope that a candidate drug 
can be immediately tested in vivo to investigate tertiary dentinogenesis 
responses [325]. Although the authors concluded that this approach 
bypasses the high level of economical and time investment that are 
usually required in novel drug discoveries, this is only partly true. In 
order to develop a dental material, the inhibitor will still need to un-
dergo significant investigation in an animal pulp capping model before 
embarking on extensive human testing. This will require considerable 
funding and industrial partnerships, but potentially less than other new 
drugs. 

Other indirect techniques within VPT have proposed using a modi-
fied glass ionomer dental restoration containing lithium to promote the 
Wnt-signaling pathway [326]. Unfortunately, this suggestion has not 
been adopted by dental materials manufacturers, partly due to the fact 
that glass ionomer for biological reasons is not recommended as a direct 
pulp capping agent [327]. 

Opinion Dental materials are classed as medical devices, which are 
subject to legal regulatory control in Europe and the United States. 
Recent changes in EU legislation have introduced new rules and obli-
gations in this area, which classifies pulp capping agents as Class IIa or 
Class III if they contain a bioactive substance, medicinal product oDMCr 
drug. The definition for these substances is broad, with the result that 
new pulp capping materials including ‘smart’ vital pulp biomaterials 
including those with added ‘natural’ morphogens or in this example 
epigenetic modifiers will come under Class III. Although this will in-
crease the experimental and regulatory burden for the development of 
these materials, it also provides genuine opportunity for new targeted 
material to develop. Development of such next-generation materials can 
only realistically occur in collaborations between industry and research 
partners or by ‘spin-put’ companies formed as a result of academic en-
deavors. Up to this point, dental companies have not been keen to fund 
the type of ‘early-stage’ development required to foster the type of re-
lationships required to shift materials from proof of concept towards 
product development. Within the regenerative medicine space at least 
this type of partnership has worked in medical disciplines, but has been 
much less evident within dentistry. Potentially for this type of important 
partnership to blossom, governmental intervention and legislative 

Table 4 
Definition of substance that could be considered as a medicinal product Adapted 
from point 2 of Article 1 of [129 - Directive 2001/83/EC of the European 
Parliament].  

Type of substance (any matter 
irrespective of origin which may be): 

For example: 

Human Human blood and human blood products; 
Animal Micro-organisms, whole animals, parts of 

organs, animal secretions, toxins, extracts, 
blood products; 

Vegetable Micro-organisms, plants, parts of plants, 
vegetable secretions, extracts; 

Chemical Elements, naturally occurring chemical 
materials and chemical products obtained by 
chemical change or synthesis;  
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change is required to incentivize companies to work with translational 
research units to move the discipline and eventually patient care 
forward. 

6. Conclusions and opinion 

Position statements from global international organizations have 
described the difficulties of predictably treating deep caries and as a 
result the conservative management of the exposed pulp has been 
designated a priority area for research activity, in order to promote 
better biomimetic solutions. Recent research has highlighted a range of 
substances, including pharmacological inhibitors or morphogens, that 
could supplement existing restorations or contribute bioactivity to new 
pulp capping dental materials to improve the regenerative healing 
response. These next-generation materials could encompass epigenetic 
therapeutic drugs such as HDACi that promote mineralization, reduce 
inflammation and stimulate reparative processes, with considerable 
volumes of recent research highlighting the potential of using these EU 
and FDA-approved epigenetic modifiers to work as part of a next- 
generation pulp capping material. Other smart restorations could 
include the use of antioxidants, growth factors, Wnt-signaling (GSK-3) 
inhibitors or simvastatin amongst other bioactive components all of 
which have been shown to have potential in improving biological re-
sponses in the dental pulp. In order for robust academic research to 
translate to the clinic, however, academic/industrial partnerships are 
required which aim to develop strong science into new dental products. 
Positively, as a result of new European legislation, the clinical devel-
opment of new pulp capping materials now seems more likely, as all new 
pulp capping agents whether a bioactive substance is added or not will 
be designated in the same category. This in combination with repur-
posing of drugs within dentistry that are approved for other biological 
functions provides opportunity for new smart dental restorations in the 
future. The need for new pulp capping to address the deficiencies of 
existing restorations is evident, and the development of new targeted 
dental materials should be considered a priority area for dental material 
research in the next 10 years. 
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