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REVIEW

Implications of HIF‑1α in the tumorigenesis 
and progression of pancreatic cancer
Xiao Jin, Lu Dai, Yilan Ma, Jiayan Wang and Zheng Liu* 

Abstract 

Pancreatic cancer is one of the leading causes of cancer-related deaths worldwide and is characterized by highly 
hypoxic tumor microenvironment. Hypoxia-inducible factor-1 alpha (HIF-1α) is a major regulator of cellular response 
to changes in oxygen concentration, supporting the adaptation of tumor cells to hypoxia in an oxygen-deficient 
tumor microenvironment. Numerous studies revealed the central role of HIF-1α in the carcinogenesis and progression 
of pancreatic cancer. This article reviewed the molecular mechanisms of how HIF-1α regulated tumorigenesis and 
progression of pancreatic cancer and suggested that targeting HIF-1α and its signaling pathways could be promising 
therapeutics for pancreatic cancer.
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Background
According to the latest global cancer statistics in 2018, 
pancreatic cancer accounts for 2.5% of new cancers 
worldwide, and mortality accounts for 4.5% of all can-
cer deaths [1]. An assessment of tumor morbidity and 
mortality expects pancreatic cancer to rise to the second 
highest cancer mortality in the United States by 2030 [2]. 
At present, the high malignancy and poor curative effect 
of pancreatic cancer are mostly attributed to hypoxic 
tumor microenvironment [3, 4].

Hypoxia-inducible factor-1 (HIF-1) is a key factor reg-
ulating cell adaptation to hypoxia [5]. HIF-1 consists of 
an oxygen-regulated alpha subunit (HIF-1α) and a con-
stitutively expressed beta subunit (HIF-1β) [6]. Under 
normoxic conditions, the proline and lysine residues on 
the oxygen-dependent degradation domain of HIF-1α are 
hydroxylated, and the modified HIF-1α interacts with the 
Von Hippel–Lindau E3 ubiquitin ligase complex followed 
degradation through the ubiquitin–proteasome path-
way [7]. However, HIF-1α is stable in hypoxia and forms 

heterodimers with HIF-1β with the help of coactivators 
such as cyclic adenosine monophosphate response ele-
ment-binding protein (CBP) and acetyltransferase (p300), 
and then, HIF-1α transfers to the nucleus and binds to 
the target gene hypoxia response element (HRE), a DNA 
sequence consisting of consecutive transcription factor 
binding sites that contains the core sequence of 5′-TAC​
GTG​-3′ (Fig. 1), modulating the targets transcription [5, 
8]. In addition, HIF-1α can also be activated by an oxy-
gen-independent mechanism [9] (Fig. 2). 

Pancreatic cancer possesses hypoxic niche and is 
accompanied by HIF-1α overexpression [10, 11]. Increas-
ing studies explore the roles of HIF-1α in pancreatic can-
cer and pancreas embryonic development. This review 
mainly elucidated the major function of HIF-1α in the 
carcinogenesis and progression of pancreatic cancer as 
well as pancreas embryonic development. Therefore, tar-
geting HIF-1α and its signaling pathways might be effec-
tive therapeutic approaches for pancreatic cancer.

HIF‑1α in pancreas embryonic development 
and homeostasis
Pancreatic blood flow is low and cells are hypoxic dur-
ing the early stages of embryogenesis. Later, increasing 
oxygen concentration facilitates pancreatic cells further 
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Fig. 2  HIF-1α degradation and activation. ↑, promote. Under normoxia, HIF-1α is hydroxylated by prolyl hydroxylases and binds to VHL which 
recruits E3-ubiquitin ligase to interact with HIF-1α, resulting in degradation of HIF-1α in a ubiquitin–proteasome way. Besides, the existence of 
ROS in normoxia inhibits the acetylation of HIF-1α via blocking the activation of PHDs, protecting HIF-1α from degradation. In hypoxia, oxygen 
deficiency inhibits hydroxylation of HIF-1α, HIF-1α forms heterodimers with HIF-1β with help of CBP/p300 and transfers to the nucleus to bind to its 
target genes
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differentiation [12]. HIF-1α level gradually decreases 
and plays a central role in responding to changes in oxy-
gen during pancreas embryonic development [13]. Low 
expression of HIF-1α in islets regulated glucose-stim-
ulated insulin secretion and protected β-cells reserve 
and function via binding to HRE in the promoter of aryl 
hydrocarbon receptor nuclear translocator (ARNT), but 
deletion of HIF-1α impaired β-cells function [14]. Con-
gruously, appropriate level of HIF-1α-mediated vascu-
lar endothelial growth factor A (VEGF-A) expression 
contributed to normal pancreatic growth and develop-
ment of islet-specific capillary fenestrations, maintain-
ing islet β-cells mass and function [15]. However, high 
expression of HIF-1α lost the function of maintaining 
pancreas development and its homeostasis. Studies sug-
gested overexpressed HIF-1α inhibited the differentiation 
of pancreatic endocrine progenitor cells via suppressing 
the expression of neurogenin3, a pro-endocrine tran-
scription factor, through activating mTOR complex I 
signaling, and suppressed islet β-cells differentiation via 
mediating hypervascularization [13, 16, 17]. Besides, data 
indicated diabetes and higher blood glucose levels among 
those without diabetes were potential risks of pancreatic 
cancer, hyperglycemiainduced HIF-1α overexpression 
and microenvironment hypoxia, upregulating MMP-9 
expression and promoting pancreatic cancer progres-
sion in a HIF-1α-dependent manner. Hyperglycemia was 
mostly attributed to β-cells dysfunction,  while low level 
of HIF-1α was required for β-cells function maintenance. 
This might imply that the different roles of HIF-1α in 
development and carcinogenesis of pancreas depended 
on the difference in its expression levels [18, 19]. Surpris-
ingly, upregulation of HIF-1α does not necessarily exert 
pathogenic or carcinogenic effects in pancreas. HIF-1α 
acted as a downstream molecule of mTOR and regu-
lated glucagon-like peptide-1 (GLP-1) receptor-induced 
metabolism reprogramming via PI3K/mTOR pathway, 
enhancing mice islet viability [20, 21]. Moreover, HIF-1α 
accumulation contributed to pancreas tissue regeneration 
via inhibiting intrapancreatic B lymphocytes accumula-
tion in cerulein-induced experimental mice pancreatitis 
[22]. In addition, islets cultured in  vitro tended to lose 
their heavy vascularization, but hypoxia-induced HIF-1α 
could maintain this vasculature via enhancing vascular 
length and endothelial cells area through upregulating 
VEGF-A expression, facilitating transplantation survival 
[23]. Additionally, the protective effect of exendin-4, a 
GLP-1 receptor agonist, for transplantation islets during 
hypoxic phase was also attributed to overexpression of 
HIF-1α [24]. However, current researches have consist-
ently revealed that HIF-1α is overexpressed in patients 
with pancreatic cancer and regulated various genes 

expression (Table 1), acting as an oncogene in pancreatic 
cancer [10, 11].

HIF‑1α and pancreatic cancer parenchyma
Survival and proliferation
Aberrant cells proliferation is the most basic feature in 
the tumorigenesis. Studies indicate HIF-1α promotes the 
proliferation of pancreatic cancer cells through various 
mechanisms. lncRNA is involved in the modulation of 
HIF-1α in the carcinogenesis [25]. In pancreatic cancer, 
HIF-1α bound to the HRE of lncRNA-NUTF2P3-001, 
upregulating its expression. Overexpressed lncRNA-
NUTF2P3-001 competitively bound to miR-3923, 
increasing V-Ki-ras2 Kirsten Rat Sarcoma Viral Onco-
gene Homolog (KRAS) expression, which resulted in 
significant improvement of tumor cells survival rate 
and proliferation [26]. Besides, lncRNA-FEZF1-AS1 
enhanced pancreatic cancer cells proliferation via 
the miR-142/HIF-1α axis in hypoxia [27]. Moreover, 
decreased IncRNA-CF129 regulated by HIF-1α/his-
tone deacetylase 1(HDAC1) complex facilitated pancre-
atic cancer progression via increasing forkhead box C2 
(FOXC2) expression, and FOXC2 overexpression was 
induced by E3 ligase MKRN1-mediated p53 ubiquitin 
degradation. Furthermore, FOXC2 and HIF-1α regulated 
reciprocally and formed a positive feedback loop [28]. 
Stromal interaction molecule 1 (STIM1) is regulated by 
HIF-1α and is implicated in the cells proliferation. The 
study indicated STIM1 expression was upregulated, 
accompanied by HIF-1α overexpression in pancreatic 
cancer tissues. HIF-1α bound to the HRE of STIM1 and 
elevated its expression, thereby increasing the prolifera-
tion of pancreatic cancer cells [10].

Metabolism reprogramming
High metabolism is a notable property of tumor cells. 
Aerobic glycolysis pathway can produce large amounts 
of adenosine triphosphate in a short period of time and 
is one of the most important metabolic modes of tumor 
cells [29]. HIF-1α is considered as a primary condi-
tioner of metabolism reprogramming [30]. Decreased 
Rho GTPase-activating protein 4 (ARHGAP4) facili-
tates aerobic glycolysis of pancreatic cancer through 
activating HIF-1α pathway and upregulating M2 iso-
form of pyruvate kinase (PKM2) expression [31]. 
Mucin1 is a type I transmembrane protein which is 
widely expressed in pancreatic cancer tissues and 
regulates anabolic glucose metabolism in a HIF-1α-
dependent manner in pancreatic cancer [32]. Mucin1 
enhanced the stability of HIF-1α and recruited HIF-1α 
and p300 to bind to the promoter of glycolytic genes 
such as enolase1 (ENO1) and phosphoglucomutase-2 
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(PGM2), upregulating their expression which contrib-
uted to increased glucose uptake and lactate production 
in pancreatic cancer cells [33]. Moreover, mucin1-
mediated HIF-1α stability enhanced gemcitabine 
resistance via increased glucose metabolism [34]. Simi-
larly, several studies confirmed that HIF-1α increased 
expression of glycolytic-related enzymes and the pro-
duction of lactic acid, meeting the metabolic needs of 
pancreatic cancer cells [34, 35]. Besides, the transcrip-
tion factor 7-like 2 (TCF7L2) is correlated with the 
glycolysis in tumor cells [36]. The research indicated 
upregulation of TCF7L2 inhibited the promoter activity 
of Egl-9 family hypoxia-inducible factor 2 (EGLN2) and 

suppressed its expression, which enhanced the stability 
of HIF-1α, enhancing glycolysis-related genes expres-
sion and increasing glycolysis in pancreatic cancer cells 
[37].

Anti‑apoptosis and autophagy
Numbers of studies revealed high expression of HIF-1α 
markedly enhanced the anti-apoptotic capacity of pan-
creatic cancer cells [34, 35]. In addition, research showed 
HIF-1α bound directly to the HRE of cyclophilin A 
(CypA) and upregulated its expression, which inhibited 
pancreatic cancer cells apoptosis [38]. Besides, miR-21 
is associated with tumor cells evading apoptosis [39]. 

Table 1  Genes induced by HIF-1α in pancreatic cancer tumorigenesis and progression

↑, promote; ↓, inhibit; KRAS, V-Ki-ras2 Kirsten Rat Sarcoma Viral Oncogene Homolog; FOXC2, forkhead box C2; STIM1, stromal interaction molecule 1; PKM2, M2 
isoform of pyruvate kinase; ENO1, enolase 1; PGM2, phosphoglucomutase-2; GLUT1, glucose transporter type 1; LDHA, lactate dehydrogenase A; HK2, hexokinase 
2; CypA, cyclophilin A; MT2-MMP, membrane type-2 matrix metalloproteinase; MTA2, metastasis-associated protein 2; EMT, epithelial mesenchymal transition; ZEB1, 
zinc finger E-box-binding protein 1; MMP-2, matrix metalloproteinase 2; RER1, retention in endoplasmic reticulum 1; ATG5, autophagy related 5; ABCG2, ATP-binding 
cassette subfamily G member 2; CXCR4, chemokine receptor 4; VEGF-A, vascular endothelial growth factor A; STAT3, signal transducer and activator of transcription 3; 
CHC, clathrin heavy chain; MMP-9: matrix metalloproteinase 9; ADAM10, a disintegrin and metalloproteinase domain 10; mMICA, membrane major histocompatibility 
complex class I molecular associated proteins A; sMICA, soluble major histocompatibility complex class I molecular associated proteins A; NKG2D, natural killer group 
2 member D; CCL2, chemical chemokine 2; α-SMA, α-smooth muscle actin; SHH, sonic hedgehog; HH, hedgehog

Target genes Acting mechanisms References

LncRNA-NUTF2P3-001 ↑LncRNA-NUTF2P3-001, ↓miR-3923, ↑KRAS, ↑cells viability, proliferation and invasion [26]

LncRNA-CF129 ↓LncRNA-CF129, ↑p53, ↑FOXC2, ↑cells proliferation [28]

STIM1 ↑STIM1, ↑cells proliferation, invasion and anchorage independent growth [10]

PKM2 ↑PKM2, ↑glycolysis [31]

ENO1, PGM2 ↑ENO1 and PGM2, ↑glycolysis [33]

GLUT1, LDHA, HK2 ↑GLUT1, LDHA and HK2, ↑glycolysis [37]

CypA ↑CypA, ↓apoptosis, ↑cells proliferation, migration and invasion [38]

MiR-21 ↑MiR-21, ↓apoptosis, ↑cells proliferation [40]

MT2-MMP ↑MT2-MMP, ↓apoptosis, ↑cells proliferation and invasion [42]

MTA2 ↑MTA2, ↓E-cadherin, ↑EMT, cells migration and invasion [49]

Twist ↑Twist, ↓ E-cadherin, ↑EMT and cells proliferation [50]

Snail ↑Snail, ↓E-cadherin, ↑N-cadherin, ↑EMT, cells migration and invasion [51]

LncRNA-BX111 ↑LncRNA-BX111, ↑ZEB1, MMP-2, ↓E-cadherin, ↑EMT, ↑tumor growth and metastasis [52]

CD133 ↑CD133, ↑tumor stem cell properties, ↑cells migration and invasion [56]

RER1 ↑RER1, ↑N-cadherin, Vimentin and Snail, ↓E-cadherin, ↑Sox2, Bmi1, Lin28 and Nanog, ↑EMT and 
cancer stem cell-like properties

[58]

ATG5, Beclin1 ↑ATG5 and Beclin1, ↑autophagy and cancer stem cell-like properties [59]

ABCG2 ↑ABCG2, ↑ chemoresistance [64]

NF-κB ↑NF-κB, ↓E-cadherin, ↑N-cadherin, Vimentin, Snail, Twist, ↑EMT and chemoresistance [65]

CXCR4 ↑CXCR4, ↑chemoresistance [66]

IL-37 ↓IL-37, ↑chemoresistance [68]

VEGF-A ↑VEGF-A, ↑angiogenesis, ↑tumor growth [73]

STAT3, VEGF-A ↑VEGF-A and STAT3, ↑angiogenesis, ↑tumor growth [75]

CHC, VEGF-A ↑CHC and VEGF-A, ↑angiogenesis, ↑tumor growth [77]

VEGF, MMP-2, MMP-9 ↑VEGF, MMP-2 and MMP-9, ↑angiogenesis, ↑tumor growth [78]

ADAM10 ↑AMAD10, ↓mMICA, ↑sMICA, ↓NKG2D, ↓NK cells cytotoxicity, ↑immune evasion [82]

CCL2 ↑CCL2, ↑α-SMA, ↑desmoplasia [85]

SHH ↑SHH, ↑HH signaling, ↑ collagen Ι and fibronectin, ↑desmoplasia [84, 86]
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In pancreatic cancer, HIF-1a induced miR-21 overex-
pression, preventing tumor cells from apoptosis in an 
oxygen-deficient environment [40]. Membrane type-2 
matrix metalloproteinase (MT2-MMP), one of the mem-
bers of the matrix metalloproteinase family, is expressed 
in tumor cells and is  implicated in  proliferation, migra-
tion and invasion of them [41]. Recent researches showed 
MT2-MMP was a new component in an anti-apoptotic 
pathway network in tumor cells and was also a novel tar-
get of HIF-1α. HIF-1α bound to the HRE of MT2-MMP 
and activated its transcription, overexpressing MT2-
MMP clearly mitigated the apoptosis of pancreatic can-
cer cells [42]. Nevertheless, the roles of HIF-1α in the 
apoptosis of pancreatic cancer cells remain controversial. 
Dai et al. reported that HIF-1α could induce cells apopto-
sis in pancreatic cancer [43]. Therefore, the involvement 
of HIF-1α in the regulation of apoptosis in pancreatic 
cancer in hypoxia requires further exploration.

It is well known that hypoxia-induced autophagy could 
promote tumor progression [44]. Autophagy is a meta-
bolic pathway in which cells transport their proteins 
and organelles to lysosomal degradation, reducing their 
oxidative stress [45]. The study indicated that HIF-1α-
induced autophagy potentiated epithelial mesenchymal 
transition (EMT) and migration of pancreatic cancer 
stem cells, increasing the malignancy of pancreatic can-
cer [46]. Besides, HIF-1α-mediated autophagy reduced 
lumican level secreted by pancreatic stellate cells, pro-
moting pancreatic cancer progression [47].

EMT, invasion and metastasis
A large number of studies demonstrated HIF-1α-
mediated pancreatic cancer cells EMT, invasion and 
metastasis in hypoxia. Current researches focus on 
HIF-1α regulating EMT processes via affecting EMT-
related proteins expression. Epithelial cell cadherin 
(E-cadherin) is a single transmembrane glycoprotein 
encoded by the cadherin1 gene that maintains epithelial 
cell polarity and cell-to-cell contact. Deletion of E-cad-
herin induces EMT, relating to invasion and metastasis in 
cancers [48]. HIF-1α could inhibit E-cadherin expression 
via recruiting metastasis-associated protein 2 (MTA2)/
HDAC1 complex to bind to E-cadherin promoter, induc-
ing EMT in pancreatic cancer cells [49]. Besides, the 
transcription of E-cadherin is also regulated by Twist, 
which is regulated by HIF-1α in hypoxia and serves as 
an important transcription factor promoting EMT of 
tumor cells. In pancreatic cancer, Twist recruited Ring1B 
and enhancer of zeste homolog 2 (EZH2), members of 
polycomb family, to bind to the promoter of E-cadherin 
and suppressed its transcription, inducing EMT [50]. 
Moreover, HIF-1α increased Snail transcription through 
binding to its HRE, contributing to EMT in pancreatic 

cancer [51]. Furthermore, numerous studies showed 
lncRNAs were involved in the regulation of EMT. Deng 
et  al. reported that HIF-1α and lncRNA-BX111887 
were overexpressed in pancreatic cancer tissues. Under 
the mediation of HIF-1α, lncRNA-BX111887 recruited 
transcriptional factor Y-box protein to the promoter of 
zinc finger E-box-binding protein 1 (ZEB1), a major fac-
tor inducing EMT, and promoted its transcription [52]. 
Additionally, miRNAs are implicated in the regulation 
of HIF-1α on the EMT of pancreatic cancer cells. MiR-
142 expression in pancreatic cancer tissues and pancre-
atic cancer cell lines was significantly lower than that in 
normal tissues. Down-regulated miR-142 increased the 
expression of HIF-1α, upregulating EMT-related pro-
teins, enhancing the invasion and migration of pancreatic 
cancer cells [53].

Tumor stem cells
It is well known that tumor stem cells are the key to 
tumor cells clone formation, proliferation and migration, 
which are not easily eliminated by anti-tumor drugs and 
can further differentiate as well as support tumor devel-
opment [54]. One of the reasons for pancreatic cancer 
recrudescence and treatment resistance is the presence 
of tumor stem cells [55]. CD133 is one of surface mole-
cules of pancreatic cancer stem cells, and its expression 
is increased in a HIF-1α-dependent manner in hypoxia 
[56]. Moreover, CD133 elevated HIF-1α transcriptional 
activity in pancreatic cancer cells in hypoxia, initiat-
ing its expression and activating its target genes, which 
in turn induced EMT phenotype and tumor cells migra-
tion [57]. Besides, the study indicated HIF-1α bound to 
the regulatory region in the upstream of the initiation 
codon of retention in endoplasmic reticulum 1 (RER1) 
and increased its transcriptional activity, enhancing pan-
creatic cancer stem cells properties and inducing EMT 
[58]. Additionally, the study elucidated that HIF-1α-
induced autophagy mediated the conversion of non-stem 
pancreatic cancer cells to pancreatic cancer stem cells in 
hypoxia, enhancing the malignancy of pancreatic cancer 
[59].

Chemoresistance and radiotherapy resistance
Most pancreatic cancer patients are diagnosed in the 
advanced stages or even with distant metastasis due to 
absence of early recognizable symptoms, missing the 
opportunity for radical surgical resection. Thus, chemo-
therapy and radiotherapy have become the main thera-
pies for pancreatic cancers currently, but the efficacy of 
chemotherapy and radiotherapy are limited by factors 
inside and outside the tumor cells [60, 61]. The study sug-
gested hypoxia-induced HIF-1α contributed to chem-
oresistance and radiotherapy resistance in pancreatic 
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cancer [62]. ATP-binding cassette subfamily G member 
2 (ABCG2) is a multidrug resistant pump that is associ-
ated with drug resistance in numerous malignancies [63]. 
In pancreatic cancer, hypoxia-induced phosphoryla-
tion of ERK1/2 activated HIF-1α, increasing the accu-
mulation of HIF-1α in the cytoplasm and translocating 
to the nucleus, and then bound to the HRE of ABCG2 
and promoted its transcription, thereby enhancing 
the drug resistance [64]. Several studies revealed that 
HIF-1α and NF-κB expression were increased in pan-
creatic cancer tissues and there was a positive feedback 
regulation between them, resulting in chemoresistance 
partly. In pancreatic cancer, gemcitabine treatment acti-
vated NF-κB and HIF-1α via ROS-mediated activation 
of ERK1/2 and Akt, upregulating chemokine receptor 4 
(CXCR4) expression and contributing to gemcitabine 
resistance by CXCR4/chemokine 12 (CXCL12) signal-
ing [65, 66]. Besides, hypoxia-induced miR-301a overex-
pression induced gemcitabine resistance via enhancing 
HIF-1α accumulation through suppressing expression of 
TAp63 which could down-regulate HIF-1α expression 
through proteasomal degradation [67]. IL-37 expression 
was decreased in pancreatic cancer, down-regulated IL-
37-mediated gemcitabine resistance via interacting with 
HIF-1α and signal transducer and activator of transcrip-
tion 3 (STAT3) and forming the HIF-1α/IL-37/STAT3 
negative feedback [68]. Heat shock protein90 (HSP90) is 
a pivotal molecular chaperone of HIF-1α, which plays a 
crucial role in the correct folding, stability and transcrip-
tion of HIF-1α. Inhibiting HSP90 could reverse HIF-1α-
mediated resistance to radiotherapy and chemotherapy 
in pancreatic cancer [69, 70].

HIF‑1α and pancreatic cancer stroma
Angiogenesis
Tumor angiogenesis is known to be essential for growth 
and metastasis of pancreatic cancer [71]. VEGF regulated 
by HIF-1α at transcription level is essential to angiogen-
esis [72]. Azoitei et  al. reported VEGF-A was not only 
a target of HIF-1α, but also of NF-κB transcription fac-
tor, involved in regulating tumor progression. In pan-
creatic cancer, PKM2 upregulated HIF-1α in a NF-κB/
p65-dependent manner, inducing VEGF-A expression 
which contributed to tumor angiogenesis and growth 
[73]. The study showed both STAT3 and HIF-1α were cli-
ent proteins of HSP90 [74]. In pancreatic cancer, HSP90 
promoted VEGF-mediated angiogenesis via activat-
ing IL-6/HIF-1α/STAT3 autocrine loop [75]. Serine/
threonine kinase 33 (STK33), a serine/threonine kinase, 
is a new client protein of HSP90. STK33 participated in 
tumor angiogenesis promoted by HSP90 chaperone via 
upregulating HIF-1α accumulation and its target gene 
VEGF secretion in pancreatic cancer [76]. Clathrin is 

a trimer of heavy chains, each paired with a light chain. 
Clathrin heavy chain (CHC) interacted with HIF-1α and 
co-localized to the HRE in the VEGF-A promoter region, 
upregulating VEGF-A expression to increase angiogen-
esis in pancreatic cancer [77]. Intriguingly, HIF-1α could 
also mediate stress-induced pancreatic tumor growth 
and angiogenesis via regulating the expression of VEGF, 
matrix metalloproteinase 2 (MMP-2) and matrix metal-
loproteinase 9 (MMP-9) [78].

Immune evasion
The surfaces of tumor cells generally express new anti-
gens, which are recognized by immune system, sub-
sequently activating innate and acquired immune 
responses. However, tumor cells could evade immune 
responses via modifying the surface antigens or alter-
ing the tumor microenvironment [79]. Major histocom-
patibility complex class I molecular-associated proteins 
A (MICA) and major histocompatibility complex class 
I molecular-associated proteins B (MICB) are highly 
expressed on the various tumor cells membrane, acting 
as ligands of natural killer group 2 member D (NKG2D) 
expressed on NK cells and γδT cells. NKG2D interacts 
with its ligand for immune surveillance and lysis of tumor 
cells, and this process is regulated by HIF-1α [80, 81]. In 
pancreatic cancer, HIF-1α and ADAM10, a disintegrin 
and metalloproteinase domain 10 (ADAM10) are highly 
expressed and are negatively regulated by miR-153. Over-
expressed circ-0000977 serves as a sponge for miR-153 to 
counteract miR-153-mediated suppression of HIF-1α and 
ADAM10, promoting the shedding of membrane MICA 
(mMICA) from surface of tumor cells and converting 
into soluble MICA (sMICA). SMICA binds to NKG2D, 
down-regulating NKG2D expression as well as cytotoxic-
ity of NK cells, resulting in immune evasion [82].

Desmoplasia
Pancreatic cancer is characterized by desmoplasia and 
highly hypoxic microenvironment composed of tumor 
cells, extracellular matrix, fibroblasts, endothelial cells 
and immune cells, the both amplify each other in a 
positive feed-back loop and accelerate pancreatic can-
cer progression [83, 84]. In hypoxic microenvironment, 
hypoxia-induced chemokines attract monocytes/mac-
rophages to inflammation, damage tissues and tumor 
tissues. In pancreatic cancer, hypoxia-induced HIF-1α 
bound to the HRE of chemical chemokine 2 (CCL2) and 
increased its expression, recruiting macrophages to infil-
trate tumor tissues to activate pancreatic stellate cells and 
confer it fibroblast phenotypes via increasing the expres-
sion of α-smooth muscle actin, aggravating the hypoxic 
microenvironment of pancreatic cancer and accelerating 
its progression [85]. Studies indicated sonic hedgehog 
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(SHH) ligand was conducive to occurrence of desmopla-
sia, and paracrine hedgehog (HH) signaling played a cen-
tral role in tumorigenic communication between tumor 
cells and fibroblasts in the stroma in pancreatic cancer. 
Hypoxia increased the expression of SHH in a HIF-1α-
dependent manner, and its overexpression activated HH 
signaling and collagen Ι fibronectin formation, inducing 
desmoplasia and enhancing tumor aggressiveness in pan-
creatic cancer [84, 86].

Prospective into clinical application
HIF-1α manipulates the malignant biological features 
of pancreatic cancer through various pathways. Hence, 
targeting HIF-1α and its signaling pathways could be 
potential therapeutics for pancreatic cancer. It is difficult 
to block HIF-1α directly because it is a transcription fac-
tor and mainly locates in the nucleus [5]. Currently, pro-
moting the degradation of HIF-1α protein and targeting 
certain molecules in the HIF-1α signaling pathways are 
effective therapeutics for pancreatic cancer. As is known 
to all, HIF-1α is degraded via the ubiquitin-mediated 
proteasome-dependent pathway under normoxia and is 
stable in hypoxia. Nevertheless, infection of pancreatic 
cancer cells with oncotropic H-1 parvovirus could rapidly 
degrade HIF-1α in a proteasome-dependent manner in 
hypoxia, and this process was independent of Von Hip-
pel–Lindau and receptor of activated protein C kinase 
[87]. Analogously, pharmacologic ascorbate (P-AscH) 
rapidly degrades HIF-1α in a proteasome-dependent 
pathway in pancreatic cancer cells which is independent 
of 2-oxoglutarate-dependent prolyl hydroxylase (PHD-2). 
P-AscH can also increase extracellular H2O2 and trans-
port it into tumor cells through the plasma membrane 
to inhibit the expression of HIF-1α and VEGF, exerting 
a killing effect on pancreatic cancer cells [88]. Besides, 
extracellular superoxide dismutase could accelerate the 
degradation of HIF-1α via reducing peroxides in pan-
creatic cancer [89]. The study showed xylene derivative 
TEL03 could bind to HIF-1α to block the combination of 
HIF-1α and p300, and induce the degradation of HIF-1α 
by proteasome pathway in pancreatic cancer. Moreover, 
TEL03 could inhibit the phosphorylation of STAT3, act-
ing as an upstream molecule and transcriptional factor 
of HIF-1α, suppressing HIF-1α expression [90]. Notably, 
TX-2098, a hypoxia cytotoxin, directly down-regulated 
the protein level of HIF-1α and its downstream targets 
such as VEGF, glucose transporter type 1 and aldolase A 
in pancreatic cancer, inhibiting its progression [91]. Pro-
lyl hydroxylase domain 3 (PHD3), a rate-limiting enzyme 
regulating HIF-1α degradation, improves radiotherapy 
efficacy through inhibiting p-EGFR/HIF-1α signaling in 
pancreatic cancer [92].

In addition to the acceleration of HIF-1α degrada-
tion, targeting the  HIF-1α signaling pathway is also 
a momentous avenue to impede the progression of 
pancreatic cancer. Alpha-solanine, a steroidal alka-
loid with anti-tumor effects extracted from plants of 
the family Solanaceae, inhibits pancreatic cancer cells 
proliferation, migration and invasion through target-
ing p-ERK1/2-HIF-1α-VEGF axis [93, 94]. Similarly, 
HS-345, an inhibitor targeting tropomyosin-related 
kinase A, and HS-527, an inhibitor of PI3K, inhibit 
angiogenesis via targeting HIF-1α/VEGF axis in pan-
creatic cancer [95, 96]. Besides, curcumin, a natural 
polyphenol present in turmeric, and its analogues sup-
press the expression of HIF-1α by inhibiting its inter-
action with HSP90 and NF-κB signaling pathway in 
pancreatic cancer [97]. Triptolidenol-1 (LB-1) is a 
derivative of LB, with less toxicity. In pancreatic can-
cer, LB-1 decreased the activity of HIF-1α via inhibit-
ing its upstream pathway PI3K/Akt/mTOR, moreover, 
LB-1 could inhibit the connection between HIF-1α, 
p-STAT3 and p300, repressing VEGF expression, in 
addition, LB-1 accelerated HIF-1α degradation by ubiq-
uitin–proteasome pathway [98]. Additionally, in pan-
creatic cancer, combination of PX-478, a specific agent 
suppressing constitutive and hypoxia-induced expres-
sion of HIF-1α, with gemcitabine induce immunogenic 
cell death which is related to repression of HIF-1α via 
upregulating phosphorylation of eIF2α [99], PX-478 
can enhance radiosensitization by inhibition of HIF-1α 
as well [100].

Notable is, studies indicate that two types of hypoxia 
are present in tumor, chronic and cycling hypoxia. 
Cycling hypoxia more appropriately describes the 
dynamic changes of hypoxia and reoxygenation in 
tumor and has been demonstrated to induce tumor 
aggressiveness more significantly than chronic hypoxia 
[101–103]. At present, the hypoxia status in most 
studies is set to chronic hypoxia, and the duration of 
hypoxia and the oxygen concentration are not consist-
ent among the studies, which cannot completely simu-
late the pancreatic cancer hypoxic microenvironment 
in vivo, causing experimental results instability poten-
tially. Besides, each study selects specific pancreatic 
cancer cell lines, and the molecular mechanisms proven 
in these studies might not be applied to all pancreatic 
cancer cells, which limit their application to the clinical 
treatment of pancreatic cancer possibly. HIF-1α is in a 
complex signaling network and regulates the biologi-
cal characteristics of pancreatic cancer cells in diverse 
manners. Therefore, future studies should focus on the 
entire signal network and explore central regulatory 
molecules to effectively inhibit pancreatic cancer pro-
gression. Our manuscript integrates acting mechanisms 
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of HIF-1α to provide a comprehensive perspective of 
the role of HIF-1α in pancreatic cancer, showing theo-
retical principle for the  targeted therapy of pancreatic 
cancer.

Conclusions
As shown in Fig. 3 in pancreatic cancer hypoxic microen-
vironment, HIF-1α induces tumor cells malignant biolog-
ical characteristics and mediates tumorigenic crosstalk 
between tumor parenchyma and stroma. This suggests 
novel therapeutic strategies targeting HIF-1α and   its 
signaling pathways might be promising for pancreatic 
cancer therapy.
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