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Abstract
Cancer-derived myocardial damage is an important cause of death in cancer patients. 
However, the development of dietary interventions for treating such damage has not 
been advanced. Here, we investigated the effect of dietary intervention with lauric 
acid (LAA) and glucose, which was effective against skeletal muscle sarcopenia in a 
mouse cachexia model, on myocardial damage. Treatment of H9c2 rat cardiomyo-
blasts with lauric acid promoted mitochondrial respiration and increased ATP pro-
duction by Seahorse flux analysis, but did not increase oxidative stress. Glycolysis 
was also promoted by LAA. In contrast, mitochondrial respiration and ATP produc-
tion were suppressed, and oxidative stress was increased in an in vitro cachexia 
model in which cardiomyoblasts were treated with mouse cachexia ascites. Ascites-
treated H9c2 cells with concurrent treatment with LAA and high glucose showed 
that mitochondrial respiration and glycolysis were promoted more than that of the 
control, and ATP was restored to the level of the control. Oxidative stress was also 
reduced by the combined treatment. In the mouse cachexia model, myocardiac at-
rophy and decreased levels of a marker of muscle maturity, SDS-soluble MYL1, were 
observed. When LAA in CE-2 diet was orally administered alone, no significant res-
cue was observed in the cancer-derived myocardial disorder. In contrast, combined 
oral administration of LAA and glucose recovered myocardial atrophy and MYL1 to 
levels observed in the control without increase in the cancer weight. Therefore, it 
is suggested that dietary intervention using a combination of LAA and glucose for 
cancer cachexia might improve cancer-derived myocardial damage.
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1  | INTRODUC TION

Cachexia is reported to be present in 40%-80% of all patients with 
advanced cancer,1,2 and it accounts for 20%-30% of all cancer-related 
deaths.3 Weight loss in patients with cancer-related cachexia is as-
sociated with myocardial atrophy,4,5 which is a major cause of death 
in cancer patients.6 Hence, investigating preventive or therapeutic 
methods for cancerous myocardial damage that can greatly affect the 
prognosis of cancer patients, would be useful for medical treatment.

The potential causes of cancer-derived myocardial damage in-
clude direct effects of the cancer, any underlying heart disease in 
the patient, and effects of cancer treatment.7 One of the causes of 
cancer-derived myocardial injury derived from the cancer itself is 
considered to be energy metabolism disorder due to mitochondrial 
dysfunction7; particularly, reduced mitochondrial uncoupling and 
ATP production have been reported.8,9

Medium-chain fatty acids (MCFAs) show a faster intestinal absorp-
tion and uptake into tissues than long-chain fatty acids (LCFAs).10-12 
Furthermore, unlike LCFAs, MCFAs migrate into mitochondria inde-
pendently of the carnitine shuttle and rapidly undergo β-oxidation 
to promote oxidative phosphorylation.12,13 Therefore, in cancer cells 
with an impaired electron transport system complex, abnormal oxi-
dative stress is enhanced by the loading of MCFAs, resulting in cell 
death.14 In contrast, MCFAs and short-chain fatty acids have been re-
ported to increase skeletal muscle in animals,15 and MCFAs showed 
an inhibitory effect on cancer-related sarcopenia in a mouse model.16

Various dietary interventions have been attempted for can-
cer-related sarcopenia. Previously, we succeeded in suppressing 
sarcopenia in a mouse cachexia model using glucose, which has a 
skeletal muscle protective effect but also a tumor-promoting effect, 
in combination with the MCFA, lauric acid (LAA), which has a skele-
tal muscle promoting effect.16 Furthermore, in nutritional interven-
tion for myocardial disorders, the exacerbation of the disorder due 
to calorie restriction has been reported.17 In a mouse heart failure 
model, fatty acid intake promotes mitochondrial fragmentation and 
improves cardiac dysfunction.18 Furthermore, ketogenic diet with 
MCFAs improves succinic dehydrogenase activity, subsequently 
improving the myocardial atrophy and dysfunction.19 In contrast, 
excessive LAA intake induces oxidative stress in the myocardium 
and leads to myocardial atrophy.20 However, there are only a few 
reports on nutritional interventions for cancer-derived myocardial 
disorders. Therefore, we investigated the in vitro and in vivo effects 
of a combination of LAA and glucose on cancer-derived myocardial 
damage and evaluated its efficacy against cancer-related sarcopenia.

2  | MATERIAL S AND METHODS

2.1 | Cell culture

The CT26 mouse colon cancer cell line was a kind gift from Professor 
IJ Fidler (MD Anderson Cancer Center). CT26 cells were cultured in 

Dulbecco's modified Eagle's medium (DMEM; Wako Pure Chemical 
Industries, Ltd.) supplemented with 10% fetal bovine serum (Sigma-
Aldrich Chemical Co.). The embryonic rat heart-derived H9c2 car-
diomyoblast cells were purchased from American Type Culture 
Collection, and cultured in DMEM with 10% fetal bovine serum 
(Sigma-Aldrich). Cell proliferation was assessed by counting cell 
number with a hemocytometer (Sysmex). H9c2 cardiomyoblast cells 
were treated with LAA (40 μg/mL)16 and/or high glucose (450 mg/
dL).14,16

2.2 | Animals

Five-wk-old male BALB/c mice were purchased from SLC Japan. 
The animals were maintained in a pathogen-free animal facility 
under a 12 h  : 12 h, light  : dark cycle in a temperature-controlled 
(22°C) and humidity-controlled environment, in accordance with 
the institutional guidelines approved by the Committee for Animal 
Experimentation of Nara Medical University, Kashihara, Japan, fol-
lowing current regulations and standards of the Japanese Ministry 
of Health, Labor and Welfare (approval nos. 11812, 11857, 11916, 
12043, and 12262). Animals were acclimated to their housing for 7 
d before the start of the experiment. Mice were fed with CE-2 diet 
(containing 5% crude fat, mainly derived from soy bean oil; CLEA 
Japan, Inc).

To measure tumor weight, mice were euthanized by aortic blood 
removal under the anesthesia sevoflurane (Maruishi Pharmaceutical 
Co. Ltd.) and the peritoneal tumors were dissected from the intes-
tine, mesenterium, diaphragm, and abdominal wall, grossly removing 
non-tumoral tissues.

For preparation of the heart, after euthanasia, the heart was ex-
cised, its weight was measured and then divided into 2 at 2/5 from 
the apex of the heart. The upper part was used for histological anal-
ysis, and the lower part was used for analyzing protein expression. 
The image of the cut surface of the heart was captured on a com-
puter, and the areas of the myocardium and the lumen of the heart 
were traced using ImageJ (GitHub).

For preparation of skeletal muscles, the QFM was cut at the mus-
cle end on the upper edge of the patella, peeled off from the femur, 
and separated at the muscle origin on the frontal surface of the an-
terior lower iliac spine. The excised QFM was weighed immediately, 
avoiding drying, and then stored at −80°C.

2.3 | Diet and drink

Glucose solution (50% glucose for injection, Otsuka Pharmaceutical 
Co. Ltd.) was used directly or diluted to 10% with distilled water for 
drinking.16 CE-2 diet (CLEA Japan, Inc) was used as control diet. LAA 
diet was prepared by mixing 0% or 2% (w/w) LAA, Tokyo Chemical 
Industry Co., Ltd.) with control diet (CE-2).16 Glucose drink and LAA 
diet were administered by free intake.16
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2.4 | Histological analysis

Myocardial tissues were fixed in 4% paraformaldehyde, dehydrated, 
and embedded in paraffin. After slicing the created block to 3 μm, 
hematoxylin and eosin staining was performed to observe the 
morphology.

2.5 | Protein extraction

The lower part of the excised heart stored at −80°C was crushed 
with a hammer to remove tendons and fascia. Only the muscle tissue 
was washed with cold phosphate-buffered saline and pelleted with 
a sonicator (QSONICA, WakenBtech Co. Ltd.). Whole-cell lysates 
were prepared as previously described using 0.1% SDS-added RIPA-
buffer (Thermo Fisher Scientific). Protein assay was performed using 
a Protein Assay Rapid Kit (Wako Pure Chemical Corporation).

2.6 | Enzyme-linked immunosorbent assay 
(ELISA) and colorimetric assay

ELISA kits were used to measure the concentration of myosin light 
chain (MYL)-1 (Cusabio Biotech Co., Ltd.), high mobility group box 
(HMGB)-1 (Shino-Test Co.), mouse tumor necrosis factor (TNF)-α (R&D 
Systems, Inc), 4-hydroxynonenal (HNE) and ATP (Abcam). Ascites lac-
tate was measured using a colorimetric assay kit (BioVision, Inc). The 
assays were performed in accordance with the manufacturers' instruc-
tions, and whole-cell lysates were used for the measurements.

2.7 | Mitochondrial stress test (Seahorse assay)

To simulate the cachectic condition, the ascites of CT26-induced ca-
chexia mice were collected. The ascites were filtered with the Sterile 
Millex Filter (pore size 0.22 µm, Sigma). H9c2 cells were cultured in a 
regular medium for 48 h and this culture medium was also filtered. The 
H9c2 cells were cultured in a growth medium in 6-well plates before 
the Seahorse assay with the ascites (20% v/v) or the collected cultured 
medium (20% v/v). OCR of 1 × 104 viable H9c2 cells per well were 
measured using the Seahorse XFe24 Extracellular Flux Analyzer with 
Seahorse XF24 FluxPaks (Agilent Technologies). Seahorse assays were 
carried out as follows: OCR in pmol/min were measured before (basal 
OCR) and after successive injection of 1-µmol/L oligomycin (ATP syn-
thase inhibitor), 2-µmol/L FCCP (carbonyl cyanide-p-trifluoromethoxy 
phenylhydrazone, an uncoupling protonophore), 1-µmol/L rotenone 
(Complex I inhibitor), and 5-µmol/L antimycin A (Complex III inhibi-
tor). From the resulting data, we determined the OCR associated with 
respiratory ATP synthesis (oligomycin-sensitive), the maximum OCR 
in FCCP-uncoupled mitochondria, the rotenone-sensitive OCR at-
tributable to uncoupled Complex I activity, the antimycin-sensitive 
Complex II/III activity, and the OCR by mitochondrial functions other 
than ATP synthesis, including OCR that is mitochondrial membrane 

potential-driven (proton leak), non-respiratory oxygen consumption, 
and the respiratory “spare capacity” (excess capacity of the respiratory 
electron transport chain that is not being used in basal respiration).

2.8 | Glycolytic stress test

The extracellular acidification rate (ECAR) of H9c2 cells was meas-
ured using a modified glycolytic stress test in the Seahorse XFe24 
Extracellular Flux Analyzer with Seahorse XF24 FluxPaks (Agilent 
Technologies). H9c2 cells were cultured in a growth medium in 6-well 
plates with the ascites or the cultured medium before Seahorse experi-
ments. H9c2 cells (1 × 104 cells/well) were later plated in the XF base 
medium (Agilent Technologies) containing 200 mmol/L l-glutamine and 
5 mmol/L HEPES, as recommended by the manufacturer for glycolytic 
assays. The sensor cartridge apparatus was rehydrated 1 d in advance 
by adding 1-mL XF Calibrant to each well and incubating at 37°C until 
needed. The injection ports of the sensor cartridge apparatus were 
loaded with the following drugs, in chronological order of 4 injections, 
to meet the indicated final concentrations in the wells: 10 mmol/L glu-
cose, 1 µmol/L oligomycin, 1 µmol/L rotenone, and 5 µmol/L antimycin 
A (combined injection), and 50  mmol/L 2-deoxyglucose. Treatment 
with the rotenone/antimycin combination allowed assessment of the 
impact of electron transport on ECAR by respiratory acidification cou-
pled to passage of some glycolytic pyruvate through the tricarboxylic 
acid (TCA) cycle to supply respiration.

2.9 | Statistical analysis

Statistical significance was calculated using unpaired Student t tests 
using InStat software (version 3.0; GraphPad Software, Inc). Data 
were expressed as the mean ± standard deviation of 3 independent 
experiments. P < .05 (two-sided) was considered to indicate statisti-
cal significance.

3  | RESULTS

3.1 | Effect of LAA on H9c2 cardiomyoblasts

The effect of LAA on H9c2 cardiomyoblasts was examined for vari-
ous treatment concentrations (Figure 1A). An LAA concentration of 
40 μg/mL promoted cardiomyoblast proliferation, whereas 120 μg/
mL LAA inhibited cell growth. Therefore, the concentration of LAA 
treatment was set to 40 μg/mL in subsequent experiments.

The effect of LAA on the energy production of H9c2 cardiomyo-
blasts was examined by flux analysis (Figure 1B,C). Spare respiration 
was not altered compared to the control; however, basal respiration, 
maximum respiration, and ATP production were all promoted by 
LAA. The proton leak increased upon LAA treatment.

Next, the effect of LAA treatment on mitochondrial po-
tential, mitochondrial volume, and oxidative stress of H9c2 
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cardiomyoblasts was examined (Figure 1D). LAA did not affect 
the oxidative stress, whereas LAA increased the mitochondrial 
membrane potential and the mitochondrial volume. In contrast, 
ECAR was increased by LAA in both baseline and stressed 

phases (Figure  1E). When the cell energy phenotype profile 
was obtained (Figure 1F), LAA was found to promote both oxi-
dative phosphorylation and glycolysis in baseline and stressed 
phases.

F I G U R E  1   Effect of LAA in H9c2 
cardiomyoblasts. A, Cell proliferation in 
LAA-treated H9c2 cells. B, Flux analysis 
of LAA-treated H9c2 cells. C, Effect of 
LAA on mitochondrial respiration, ATP 
production, and proton leak. D, Effect of 
LAA on mitochondrial membrane voltage 
(evaluated using TMRE), mitochondrial 
volume (evaluated using Mitogreen) and 
oxidative stress (evaluated using DHR). 
E, Effect of LAA on glycolytic activity 
(determined by ECAR measurement). F, 
Effect of LAA on cell energy phenotype 
profile. Error bars, standard error from 
3 trials. The statistical significance was 
calculated by Student t test. C, control; 
DHR, dihydrorhodamine 123; ECAR, 
extracellular acidification rate; LAA, lauric 
acid; OCR, oxygen consumption rate; 
TMRE, tetramethyl rhodamine
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3.2 | Effects of LAA and glucose on energy 
metabolism in H9c2 cardiomyoblasts in in vitro 
cachexia model

We used an in vitro cachexia model wherein 20% of ascites of a 
mouse cachexia model16 was added to H9c2 cardiomyoblasts, and 
the effect of LAA (40 μg/mL) and glucose (450 mg/dL) was exam-
ined (Figure 2A). As a control, a culture medium containing 20% of 
the culture supernatant of H9c2 cardiomyoblasts was used. Table 1 
shows the composition of the culture solution used for the treat-
ment, however no significant difference was observed among the 
treatment media with regards to sugar, pyruvic acid, and l-glutamine. 
TNFα and HMGB1 were detected in the ascites-supplemented cul-
ture medium. Ascites treatment markedly suppressed the prolifera-
tion of H9c2 cardiomyoblasts, whereas LAA + glucose completely 
rescued the proliferation.

The effects of LAA  +  glucose in the in vitro cachexia model 
of H9c2 cardiomyoblasts were examined from the viewpoint of 
mitochondrial energy metabolism by flux analysis (Figure  2B,C). 
Compared with the control, ascites treatment led to decreased basal 
respiration, maximum respiration, spare respiration, and ATP pro-
duction. In contrast, treatment with LAA  +  glucose could recover 
the basal respiration and maximum respiration to levels above those 
of the control, while the spare respiration and ATP production levels 

were recovered to similar levels as in the control. However, the pro-
ton leak increased significantly upon LAA + glucose treatment.

The ECAR upon ascites treatment showed no significant change 
from the control, however a marked increase in both baseline and 
stressed phases was observed upon treatment with LAA + glucose 
(Figure 2D). When the cell energy phenotype profile was obtained 

F I G U R E  2   Effect of LAA and glucose 
on energy metabolism in cachectic 
ascites-treated H9c2 cardiomyoblasts. A, 
Cell proliferation in ascites-treated H9c2 
cells. B, Flux analysis of ascites-treated 
H9c2 cells. C, Effect of LAA + Glc on 
mitochondrial respiration, ATP production, 
and proton leak. D, Effect of LAA + Glc on 
glycolytic activity (determined by ECAR 
measurement). E, Effect of LAA + Glc on 
cell energy phenotype profile. Error bars, 
standard error from 3 trials. The statistical 
significance was calculated by Student 
t test. C, control; ECAR, extracellular 
acidification rate; Glc, glucose; LAA, lauric 
acid; OCR, oxygen consumption rate

TA B L E  1   Components of medium for treatment

Component

Mediuma 

D-MEMa  Ascites addedb  CM addedc 

Glucose (mg/dL) 450 ± 2 361 ± 8 378 ± 6

Pyruvate (mg/dL) 11 ± 0.1 9 ± 1 9 ± 1

Glutamine (mg/dL) 58 ± 0.2 49 ± 4 50 ± 3

Lactate (pmol) 0 6.1 ± 1.2 1.2 ± 0.2

HMGB1 (μg/mL) NDd  12 ± 0.8 ND

TNFα (pg/mL) ND 9 ± 0.1 ND

aRegular medium: D-MEM (WAKO, Osaka, Japan) supplemented with 
10% fetal bovine serum. 
bRegular medium with added 30% (v/v) mouse ascites of the cachexia 
model. 
cRegular medium with added 30% (v/v) culture medium obtained from 
culturing H9c2 for 48 h. 
dND, not detected. 
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(Figure 2E), no significant change was observed in the ascites treat-
ment; however, upon treatment with LAA + glucose, both oxidative 
phosphorylation and glycolysis were promoted, resulting in in-
creased energetic phenotype.

3.3 | Effects of LAA and glucose on mitochondria in 
H9c2 cardiomyoblasts in in vitro cachexia model

Next, the effects of LAA  +  glucose on mitochondrial membrane 
potential, mitochondrial volume, and oxidative stress in H9c2 
cardiomyoblasts treated with cachectic ascites were examined 
(Figure 3A,B). Ascites treatment decreased the membrane potential 
and mitochondrial volume of H9c2 cardiomyoblasts and increased 
the oxidative stress. In contrast, treatment with LAA  +  glucose 

improved the membrane potential, mitochondrial volume, and oxi-
dative stress, along with restoration of the membrane potential and 
mitochondrial volume to levels found in the control.

3.4 | Effects of LAA and glucose administration on 
myocardial atrophy in murine cachexia model

Next, we examined the effect of combined use of LAA and glucose 
on myocardial atrophy using the cachexia model,16 prepared by in-
oculating mouse CT26 colon cancer cells into the peritoneal cavity 
of syngeneic BALB/c mice (Figures 4 and 5). In the cross-section of 
the heart, dilation of the left ventricular lumen was observed in the 
cachexia group, and the dilation was reduced in the LAA + glucose 
combination group (Figure 4A). In the histology of the left ventricle, 

F I G U R E  3   Effect of LAA and glucose 
on mitochondria in cachectic ascites-
treated H9c2 cardiomyoblasts. A, B, 
Effect of LAA + Glc on mitochondrial 
membrane voltage (evaluated using 
TMRE), mitochondrial volume (evaluated 
using Mitogreen) and oxidative stress 
(evaluated using DHR). Scale bar, 50 μm. 
Error bars, standard error from 3 trials. C, 
control; cachexia, ascites-treated; DHR, 
dihydrorhodamine 123; Glc, glucose; LAA, 
lauric acid; MCFA, TMRE, tetramethyl 
rhodamine
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the density of the nuclei in the cachexia group was increased and 
the cardiomyocytes were atrophied. In contrast, the nuclear density 
decreased in the LAA + glucose group (Figure 4B).

The tumor weight was markedly reduced by the administration 
of LAA, but was similar to the cachexia group in the LAA + glucose 
combination group. In contrast, glucose alone enhanced tumor 
weight (Figure  5A). Cardiac weight was decreased in the cachexia 
group and not improved in the LAA alone group. In contrast, in the 
combination group, the cardiac weight was improved to the level of 
the control group (Figure 5B). Furthermore, as shown in Figure 5C-
E, in the cachexia group, the myocardial area was decreased and 
the intraventricular luminal area was increased. As a result, the lu-
men-ventricular area ratio (V/M ratio) increased. No significant im-
provement was observed in these changes in the LAA alone group. 
In contrast, the cardiac alterations in cachexia in the LAA + glucose 
group were improved to the same levels as those in the control 
group. Furthermore, the area of cardiomyocytes was decreased in 
cachexia, and incomplete improvement was observed in the LAA 
alone group. In contrast, the LAA + glucose group showed similar 
levels as those in the control group (Figure  5F). As glucose alone, 
morphological alterations due to cachexia were improved at the sim-
ilar levels as those in the combination group (Figure 5B-F). To assess 
the energy metabolism and oxidative stress in myocardium, ATP and 
4-HNE levels were examined (Figure 5G). In cachexia, the ATP level 
was decreased and that of 4-HNE was increased. However, these 
alterations were recovered in the LAA + glucose group; LAA alone 
group showed partial recovery of the ATP and 4-HNE levels. In glu-
cose group, ATP level was rescued in the similar level as that in the 
LAA  +  glucose group. However, 4-HNE was still higher than that 
in the LAA + glucose group. Finally, the SDS-soluble MYL1 protein 
level, which is considered to be an index of muscle cell maturity,20,21 
was examined (Figure 5H). Levels of SDS-MYL1 were decreased in 
the cachexia group, and no improvement was observed in the LAA 
alone group. In contrast, the LAA + glucose group showed similar 
levels as in the control group. In glucose alone group, SDS-MYL1 was 

increased in comparison with that in the cachexia group, however it 
was still lower than that in the LAA + glucose group.

4  | DISCUSSION

In the present study, we clarified the alterations in energy metabo-
lism in cancer-derived myocardial disorder by treating cardiomyo-
blasts with ascites from cachexic mice in which weight loss, skeletal 
muscle atrophy, ascites, and movement disorder were observed.16 
As a result, it was elucidated that oxidative phosphorylation was 
reduced with mitochondrial damage, and oxidative stress was gen-
erated. These in vitro findings were also confirmed in the mouse 
cachexia model, evident from a decrease in ATP and an increase in 
4-HNE levels in the myocardium.

In cancer-derived myocardial disorder, cardiac atrophy, myocar-
dial volume reduction, myocardial remodeling, and dysfunction are 
observed in human patients.7,22 In the present study, decreased car-
diac weight and myocardial mass, and dilated ventricular lumen were 
observed, which are considered to be alterations corresponding to 
cancer-derived myocardial disorder in humans. Myocardial fibrosis, 
which is observed in myocardial remodeling,23 was not clear in our 
model. It is considered that this is because the cachexia model used 
in this study is a relatively acute alteration that reaches the mori-
bund stage in a few weeks, such that fibrosis could not occur.

In heart failure in individuals without cancer, metabolic shift of 
mitochondrial oxidative metabolism to glycolysis and uncoupling 
between glycolysis and glucose oxidation are considered to play im-
portant roles in the development of heart failure and dysfunction.24 
In the rat heart failure model, cardiac glycolysis rates increase with 
decrease in diastolic function.25 However, no increase in acetyl co-
enzyme A (CoA) production is observed, and β-oxidation of lipids 
and ATP production also decrease.25 Thus, in heart failure myocar-
dium, energy in the remaining mitochondria is produced predomi-
nantly by fatty acid oxidation and not glucose oxidation.26 Therefore, 

F I G U R E  4   Morphological alteration 
of myocardium and effect of LAA and 
glucose in mouse cachectic model. A, 
Image of cut surface of the heart stained 
with hematoxylin and eosin. Scale 
bars, 0.3 mm. B, Photomicrogram of 
myocardium of the left ventricle stained 
with hematoxylin and eosin. Scale bars, 
50 μm. Glc, glucose; LAA, lauric acid
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inhibition of fatty acid oxidation and improvement of mitochondrial 
glucose oxidation are important for the correction of energy metab-
olism in heart failure.24

In contrast, in our cachexia model, in vitro analysis showed 
a marked decrease in oxidative phosphorylation, whereas de-
crease in glycolysis was not significant. Decrease in mitochondrial 

membrane potential and mitochondrial volume suggested that 
cancer-derived myocardial damage is mainly due to mitochondrial 
dysfunction, which is a different pathological condition from heart 
failure in non-tumor bearing bodies. The marked increase in oxida-
tive stress suggested that the production of ROS due to mitochon-
drial dysfunction was the main cause of cancer-derived myocardial 

F I G U R E  5   Alteration of myocardium 
and effect of LAA and glucose in mouse 
cachectic model. A, Weight of peritoneal 
tumor. B–H, Effect of LAA and glucose 
in cachectic mice on B, cardiac weight, 
C, myocardial area, D, ventricular area, 
E, ventricular area to myocardial ratio 
(V/M ratio), F, mean cardiomyocyte area 
(cell area), G, concentrations of ATP and 
4-HNE in myocardium, and H, protein 
level of SDS-soluble myosin light chain 
(SDS-MYL1). Error bars, standard error 
from 3 mice. Statistical significance was 
calculated by Student t test. C, no tumor 
control; Cach, cachexia mice; HNE, 
hydroxynonenal; G, glucose; SDS,-MYL1, 
L, lauric acid; sodium dodecyl sulfate-
soluble myosin light chain-1
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damage. Therefore, the promotion of fatty acid oxidation by ad-
ministration of LAA and glucose seemed to be contrary to the cor-
rection of energy metabolism in non-cancer heart failure, however 
both oxidative phosphorylation and glycolytic energy production 
pathways were activated and the energy profile was energetic in 
LAA and glucose-treated cardiomyoblasts. Treatment of LAA and 
glucose also reduced oxidative stress and reduced mitochondrial 
damage. In contrast, glucose alone increased ATP production to 
provide morphological improvement, however glucose alone still 
retained high levels of oxidative stress not to succeed myocardial 
maturation.

In the mouse model, administration of LAA alone slightly in-
creased the myocardial area, however recovery of heart weight, 
myocardial atrophy, ventricular dilation, and myocardial SDS-MYL1 
were not observed. Furthermore, in vitro experiments showed an 
improvement in the energy metabolism of cardiomyoblasts, but in 
vivo experiments did not show sufficient recovery. In skeletal muscle 
disorders in the same cachexia model, LAA alone showed ameliora-
tion of atrophy compared with myocardium.16 The possible cause is 
the glycolysis-promoting effect of LAA. In flux analysis, treatment 
with LAA alone promoted mitochondrial respiration and increased 
glycolysis. It is also known that LAA promotes hexokinase activity.27 
In contrast, under LAA and high glucose conditions, the ECAR at 
baseline was higher than that after treatment with LAA alone. From 
this, it is considered that in a high glucose environment that leads to 
an increase in glucose consumption and activation of glycolysis,28 
the glycolytic activity of LAA is more markedly expressed.

Our data showed an increase in proton leak when cardiomyo-
blasts were treated with LAA alone, and a more prominent increase 
when treated with LAA and high glucose in the in vitro cachexia 
model. LAA has been reported to cause mitochondrial uncoupling 
in C2C12 myocytes.29 Inducible proton leak is caused by uncoupling 
proteins (UCPs) existing in the inner mitochondrial membrane.30 LAA 
induces UCP3 and pyruvate dehydrogenase kinase-4 expression in 
C2C12 myocytes31 and increases inducible proton leak. Conversely, 
mitochondrial uncoupling due to fatty acids was observed even in 
brown fat of UCP1 knockout mice,32 indicating the existence of UCP-
independent proton leak. The UCP-independent proton leak is largely 
dependent on the fatty acyl composition of phospholipids in the inner 
mitochondrial membrane.33 As proton permeability is enhanced by 
LCFAs due to lipid composition change in the inner mitochondrial 
membrane, it is possible that similar changes occurred after treatment 
with LAA. LAA-induced proton leak is considered to be the cause of 
weight loss due to high-dose LAA intake.20 In the myocardium, proton 
leak reduces the mitochondrial electrochemical proton gradient and 
reduces ROS production.34 In fact, our data also showed that LAA 
treatment promoted mitochondrial respiration without increasing 
oxidative stress. These findings suggested that LAA might promote 
energy production with a protective action on myocardium.

In our in vitro cachexia model, cachexic mouse ascites was used 
to treat rat cardiomyoblasts. TNFα and HMGB1, which are strongly 
associated with sarcopenia in patients with colorectal cancer,35 were 
confirmed in the ascites. Based on the difference in species, HMGB1 

was considered to be directly acting on rat cells and activation of 
NFκB, which is a signal pathway of HMGB1, was also observed (data 
not shown). As HMGB1 induces the expression of inflammatory cy-
tokines such as TNFα,36,37 it is possible that inflammatory cytokines 
were induced in cardiomyoblasts. Furthermore, HMGB1 is a DNA-
binding nuclear protein and a typical damage-associated molecular 
pattern (DAMP) molecule38 that is passively released during cell 
death.39 HMGB1 decreases myocardial contractility, induces car-
diomyocyte apoptosis, and stimulates cardiac fibroblast activity.40 
Furthermore, HMGB1 causes oxidative damage to the mitochon-
dria of vascular endothelial cells.41 HMGB1 also inhibits cardiomyo-
cyte calcium signaling and suppresses oxidative phosphorylation.42 
Inhibition of extracellular HMGB1 exhibits myocardial protection 
against various myocardial damages such as ischemia and myocar-
ditis.40 CT26 cells secrete high levels of HMGB1 and promote se-
cretion of other inflammatory cytokines such as TNFα. In addition, 
HMGB1 impairs mitochondrial energy metabolism as DAMP. It is 
considered that lauric acid + glucose normalizes the energy metab-
olism of myocardial cells by promoting oxidative phosphorylation 
from β-oxidation of fatty acids and accompanying promotion of 
mitochondrial glucose oxidation. Furthermore, it is considered that 
HMGB1 secretion from cancer cells is suppressed by the antitumor 
effect of lauric acid.

In this study, we treated rat cardiomyoblasts with ascitic fluid 
of cachexic mice, however a combination of originally syngeneic 
cardiomyocytes and ascites was preferable. From these results we 
expected to clarify the findings such as the action of cytokines, 
which can be studied only in syngeneic systems. In the future, we 
would like to produce a rat cachexia model and study it using as-
cites. Abnormalities in energy metabolism of cardiomyoblasts in 
cachexia were also revealed, but the underlying molecular mech-
anism remains unknown. Therefore, further comprehensive anal-
ysis including expression and activity of key enzymes of energy 
metabolism will be required. In this study, morphological static 
analysis in a mouse model was the main focus of the in vivo stud-
ies. It is expected that future cardiac functional analysis will clarify 
the functional effect of nutritional intervention on cancer-derived 
myocardial damage.

Cardiotoxicity due to anticancer drugs is relevant to myocardial 
damage in cancer patients.43 We examined myocardial damage due 
to cancer itself, but it will be also necessary to examine myocardial 
damage due to chemotherapy, which could further clarify, from a 
more clinical viewpoint, the significance of nutritional intervention 
using glucose and MCFAs on myocardial damage in cancer patients.
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