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Abstract
We are currently experiencing the realities of the most severe pandemic within living memory, with major impacts on the 
health and economic well-being of our planet. The scientific community has demonstrated an unprecedented mobilization 
capability, with the rapid development of vaccines and drugs targeting the protection of human life and palliative measures 
for infected individuals. However, are we adequately prepared for ongoing defense against COVID-19 and its variants in the 
post-pandemic world? Moreover, are we equipped to provide a satisfactory quality of life for individuals who are recovering 
from COVID-19 disease? What are the possibilities for the acceleration of the recovery process? Here, we give special con-
sideration to the potential and already-demonstrated role of probiotics and traditional medical approaches to the management 
of current and potential future encounters with our major virus adversaries.
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Introduction—Re‑evaluation of Already 
Existing Antimicrobials

The antimicrobial specificity and efficacy of antagonistic 
proteins produced naturally by microorganisms and various 
other life forms continue and indeed now grows as a major 
research focus within the disciplines of microbiology and 
virology. The empirical application of proteinaceous materi-
als as an infection treatment or preventative has been a cor-
nerstone support for the growth of human populations, and 
a wide variety of either raw or fermented plant and natural 
product extracts have comprised a critical component of the  
arsenal of traditional medicine. An old Bulgarian proverb 

postulates that for every pain there is a medicinal plant rem- 
edy [1] and these days we can add that the remedy may 
also be a product derived from naturally occurring microbial 
processes. Interestingly, it seems that there has always been 
a strong belief that naturally occurring remedies are already 
available to help counter every pain, every disease, that it 
only requires our human ingenuity to discover and apply 
the appropriate active agents either in the form of simple 
extracts or in more purified formats.

The aim of this opinion article is to focus attention upon 
some of the currently available information concerning the 
interaction of proteinaceous microbial products against 
viruses and in particular to consider the potential implica-
tions of such interactions in this post-COVID-19 world that 
we now live in (Fig. 1). We still do not know what might 
comprise the most effective pathways to achieve the elimina-
tion or at least the suppression of COVID-19 infections. In 
this article, we have tried to focus upon the currently known 
facts and credible speculations relating to the interaction 
between naturally occurring antibacterial and/or antiviral 
compounds and different types of viruses, and in particu-
lar, we have focused on the potential application of these 
agents to the management of COVID-19. Our underlying 
theme is that traditional medicine can provide a valuable 
natural addendum to modern Western medicine. Hippocrates  
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proposed the medical professional codex, one of the foun-
dation pillars of which has generally been taken to be “first 
do no harm”. With this in mind, it seems both justifiable 
and appropriate that traditional medicinal products should 
be given consideration for incorporation within the arsenal 
of approaches to apply synergistically with contemporary 
medical practices.

Now, in mid-2021, we are still confronted by a devas-
tating global pandemic. On the one hand, COVID-19 has 
clearly illustrated the inherent fragility of human civilization 
as well as challenging the strength of human moral values. 
On the other hand, the urgent mobilization of a global scien-
tific community response has resulted in the sometimes per-
haps never seen before planned and development of potential 
vaccines targeting the control of COVID-19. Another, less 
frequently considered question relates to the management of 
adverse post-COVID-19 health consequences in individu-
als who have already experienced the infection. We support 
the thesis that some traditional medicine approaches includ-
ing the sustained use of preparations containing naturally 
produced proteinase inhibitors or antimicrobial agents may 
have a role to play in patient recovery. Moreover, what ben-
eficial role(s) might probiotics have in the recuperation of 
patients? The fact that vaccines have been developed and 
vaccination programs initiated does not of course in itself 
signal the termination of the current COVID-19 threat. Nei-
ther should this infer that new approaches are not needed. 
Indeed, it is now strikingly evident that a robust scientific 
capability to activate the rapid development of effective and 

optimized preparations having efficacy against both exist-
ing and novel viral infections and their complications will 
need to be retained as a priority focus for humanity for the 
foreseeable future.

Proteinase Inhibitors, a Possible Antiviral 
Drugs

In the past few decades, researchers have made considerable 
progress in their endeavors to define and to understand the 
physiological processes involved in virus replication and this 
knowledge has subsequently been used as the basis for the 
development of various antiviral pharmaceutical products. 
Although in principle the scientific basis for this approach is 
very simple, in reality, success has been difficult to achieve. 
Viruses hijack the biosynthetic machinery of their host cells 
in order to replicate. These processes typically include spe-
cific proteases, enzymes having a critical role in their repli-
cation cycle. Notably, however, there are already naturally 
occurring mechanisms in place for the specific regulation of 
protease activities, and so, the application of these protease 
inhibitor molecules represents a promising approach for the 
control of virus replication. The critical issue in this clas-
sical “magic bullet” approach to pathogen control is first 
to determine which protease(s) are to be targeted and then 
which inhibitor/s are most capable of interfering with virus 
replication, while at the same time exhibiting little or no tox-
icity for the host. These general principles have already been 

Fig. 1  Some current available 
approaches for combat COVID-
19 and other viruses
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explored in the development of pharmaceutical preparations 
for the control of a wide variety of viruses including her-
pes simplex virus [2–7], rhinovirus [8, 9], Zika virus [10], 
picornavirus [5], poliovirus [11], human immunodeficiency 
virus [5, 12–14], hepatitis virus [5, 7], Ebola virus [15, 16], 
norovirus [7], dengue virus [17], and SARS and MERS cor-
onaviruses [15, 16, 18–20] with variable levels of success.

Current anti-influenza drugs typically either target spe-
cific virus components such as the M2 proton channel block-
ers or function as inhibitors of either the neuraminidase or 
polymerase activities of the virus. Additionally, however, 
polyphenolic extracts from Geranium sanguineum have been 
shown to interfere with influenza virus protein expression, 
prompting suggestions that plant extracts such as this may 
provide a novel source of antiviral agents [21]. Are antivi-
ral drugs able to control virus replication in virus-infected 
cells? This previously stated question explores the possibil-
ity of developing drugs that can overcome viral resistance 
and thereby would be suitable for different influenza viruses 
independently of their specific serotype [21]. It has already 
been postulated that the virulence of most influenza viruses 
is related to the ability of their HA precursor HA0 to be 
cleaved post-translationally into subunits HA1 and HA2 by 
trypsin-like proteases of the host [21]. The cleavage of HA 
is possibly the most critical step of the entire infectivity pro-
cess since it can allow for the fusion of the viral and host 
cell membranes, prior to the release of the viral nucleocapsid 
into the host cytoplasm. Moreover, considering the impor-
tance of proteolytic processing for the successful reproduc-
tion of the virus, another potential target for effective control 
of influenza virus infection is blockage of the proteolytic 
cleavage of the virus proteins [21]. Success with this would 
lead to interference with subsequent rounds of virus replica-
tion and limitation of virus spread into the respiratory tract. 
This hypothesis has already been evaluated in chick embryos 
and in mice in experiments where exogenous inhibitors of 
serine proteases, including ε-aminocaproic acid (ACA) [22], 
aprotonin [23], and ambroxol [24], have achieved a reduc-
tion of HA cleavage and virus activation [21] for influenza 
viruses with monobasic HA. The Genus Streptomyces has 
been found to be a rich source of protease inhibitors having 
antiviral activity. Included among the documented Strepto-
myces antiviral protease inhibitors are MI 0114 [22] and SS 
225b [25]. The replication of HIV-1 [26] and cytomegalovi-
rus [27] has also been shown to be inhibited by Streptomyces 
proteinase inhibitors.

In other studies, the virus-inhibitory effect of metabolites 
from Streptomyces chromofuscus 34–1 was reported to be 
highly specific, strain related, and dose dependent [21, 28, 
29]. The effectiveness of virus inhibition was demonstrated 
both in cell cultures and in experimental influenza virus 
infections in mice. The authors suggested that an inhibi-
tory agent produced by Streptomyces chromofuscus 34–1 

influenced virus protein proteolysis and hence indirectly 
affected the activation of the virus particles by increasing 
protease inhibitor activity [21, 28, 29].

Bacteriocins, Potential Antimicrobials 
with Antiviral Effect

Certain antimicrobial peptides produced by LAB have also 
been shown to be potential candidates for the control of 
some viruses. The Lactococcus lactis bacteriocin nisin is 
the most extensively studied and commercially utilized of all 
the bacteriocins. Its application to biopreservation has been 
approved both by EFSA and the FDA [30]. On the other 
hand, the medical application of bacteriocins is still largely 
either speculative or in the very early stages of implementa-
tion. Various strategies have been proposed for enhancing 
the bioactivity and in situ targeting efficacy of bacteriocins 
[31, 32]. One approach has been to generate modifications in 
the amino acid sequences of the bacteriocins by either intro-
ducing specific mutations within the bacteriocin structural 
gene or by post-translationally modifying the bacteriocin 
peptide sequences [33, 34]. As an example, the N-terminal 
modification of bacteriocins with specific polar polymers 
has been shown to increase their resistance to proteolytic 
enzymes in the gastrointestinal tract environment [32]. Tra-
ditionally, the study of bacteriocins has focused on their 
inhibitory activity against closely related competitor bacte-
ria. More recently, however, research interest is increasingly 
being focused upon more unorthodox inhibitory activities of 
some bacteriocins as the search widens to identify potential 
agents to control relatively “exotic” pathogens of humans 
and other animals, including viruses. The mechanisms of 
the reported antiviral activities of bacteriocins are still being 
clarified [35–38]. Bacteriocins from certain strains of Lacto-
bacillus spp., Lactococcus spp., Enterococcus spp., Bacillus 
spp., Staphylococcus spp., Erwinia spp., and Actinomadura 
spp. have already been shown to exhibit activity against vari-
ous viruses including poliovirus, herpesvirus (HSV-1 and 
HSV-2), measles virus, Newcastle disease virus, coliphage 
HAS, and HIV-1 [35–39]. Experience gained from the 
attempted bacteriocin-mediated control of poliovirus may 
also have an application to the development of strategies for 
the management of SARS-CoV-2 [40]. Wachsman et al. [35] 
have proposed mechanisms underlying the interaction of an 
enterocin produced by E. mundtii CRL35 and herpesvirus in 
terms of the blocking of replication of the viral gamma pro-
tein (glycoprotein D) during the process of virus invasion.

In other studies, Serkedjieva et al. [41] reported that a 
Lactobacillus delbrueckii bacteriocin had virus-inhibitory 
activity. Previously, Dundarov and Andonov [42] had dem-
onstrated a strong anti-herpesvirus effect of the ionophore 
antibiotic pandavir (nigericin). Pandavir inhibited virus 
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reproduction, even at 0.01–0.02 ng/mL, by specific inhi-
bition of virus DNA synthesis. The ionophore antibiotics 
monensin and A-23187 have also been shown to inhibit 
some RNA viruses by blocking the viral glycoproteins on 
the surface of infected cells [43].

Certain bacteriocins produced by LAB isolated from 
traditional fermented food products have demonstrated 
moderate antiviral activity against various viruses includ-
ing herpesvirus [35–38]. A variety of beneficial properties 
have been attributed to these traditional fermented products, 
including enhancement of the responsiveness of the immune 
system [36]. Not all of the putative beneficial properties of 
fermented food products are of course likely to be attribut-
able only to the presence of bacteriocins. In addition to their 
content of bacteriocin-producing microorganisms, these 
products will also contain a variety of bioactive metabo-
lites, including vitamins, polypeptides, polysaccharides, 
short-chain fatty acids, inhibitors, and/or activators, called 
by some authors “postbiotics.” A combination of all factors 
will contribute to the beneficial efficacy of each product, and 
undoubtedly, the specific combinations of these factors could 
display some substantial variability from batch to batch of 
the product.

Pieces of evidence from different reports show that 
bacteriocins can be considered an effective alternative in 
viral control [35–41]. Similar to the proteinase inhibitors, 
bacteriocins are not killing the virus themselves, but inter-
fere with viral replications via inhibiting some enzymes, 
critical for the virus life cycle [35]. Most probably, some 
different mechanisms can be involved in this interaction 
between virus and bacteriocin, and this can be relevant top-
ics for intensive research. On the other side, vaccines are 
considered the gold standard in the prevention of diseases, 
including COVID-19, and currently, vaccination programs 
in several countries show their benefits. However, already 
new variants of the COVID-19 were challenging the health 
systems, and maybe combinations of different approaches 
in the prevention and treatment will be the correct alterna-
tive in the combat against these new variants of COVID-19.

Plant Extracts with Antiviral Application

Preliminary studies of various plant extracts have also 
yielded promising preliminary evidence of antiviral activi-
ties [44, 45]. Traditional medicine can undoubtedly be an 
important source both of beneficial information and of bio-
active antiviral preparations, however, and to date, only a  
relatively small number of the traditional medicine leads 
have been systematically explored [45]. Undoubtedly, the 
main focus of antiviral research in the last few decades has 
been on synthetic chemistry as a way of identifying and 
evaluating putative novel antiviral compounds. Increasingly, 

however, public health concerns prompted by the relative 
absence of potent new antiviral agents have led to the re-
evaluation of traditional medical practices and existing 
phyto-pharmaceutical knowledge as a possible pathway 
for identifying novel antiviral molecules or mechanisms of  
action [44, 45]. Thabti et al. [45] suggested that plants like  
mulberry (Morus spp.), jackfruit (Artocarpus heterophyllus), 
coffee, and others may be sources of new antiviral biothera-
peutics. Extracts of the Morus species (mulberry: Morus alba 
var. alba, Morus alba var. rosa, and Morus rubra) have been 
proposed as candidates for the control of emerging SARS-
CoV viruses (pandemic coronaviruses) and the Picornaviri- 
dae viruses (human poliovirus, human parechovirus, and 
human echovirus) [45]. In other studies, prenylated flavo-
noids (leachinone G and mulberroside C) from Morus alba 
var. alba were found to be inhibitory to HSV-1 [46] and ethyl 
acetate fractions showed strong activity against the hepati-
tis C virus [47]. Antiviral phenolics (especially cafeic and 
chlorogenic acid) and flavonol glycosides have been detected 
in mulberry leaves [48]. Cafeic acid was described as poten-
tially inhibitory to the proliferation of HSV-2 and adenovi-
rus type 3 (ADV-3) [49] and chlorogenic acid exhibited the 
strongest anti-ADV-11 activity. Chlorogenic acid and cafeic 
acid have been proposed as strong potential inhibitors of 
hepatitis B virus multiplication, reducing the number of viral 
particles in serum by blocking DNA synthesis [50]. More 
recently, Thabti et al. [45] have proposed that Morus extracts 
(especially the kuwanon G component) could possibly func-
tion as an inhibitor of SARS-CoV-2.

Some flavonoids of plant origin, such as rutin, querce-
tin (an aglycone of rutin), myricetin (3,3,4,5,5,7-hexahy-
droxyflavone), quercetagetin (3,3,4,5,6,7-hexahydroxy-
flavone), baicalein (5,6,7-trihydroxyflavone), apigenin 
(4,5,7-trihydroxyflavone), 7-galloyl catechin, kaempferol 
3-O-β-(6″-O-galloyl)-glucopyranoside, quercetin 3-O-β-(6″-
O-galloyl)-glucopyranoside, curcumin, kaempferolor-tri- 
terpenoidso-leanolic acid, gallic acid, and ursolic acid have been 
widely explored as potential antiviral compounds (reviewed by 
Ben-Shabat et al. [44] and El-Toumy et al. [51]).

A polyphenolic complex from the Bulgarian medicinal 
plant Geranium sanguineum L has been evaluated for its 
activity against different strains of human, avian, and equine 
influenza viruses [52]. The results were indicative of a strain-
specific antiviral inhibitory effect, related to the expression 
of influenza virus proteins on infected cell surfaces. When 
administered intra-nasally as an aerosol, a plant extract of 
Geranium sanguineum reduced mortality in a mice model, 
with an index of protection of 64.47% [52]. The authors sug-
gested that the virus-inhibitory effect was attributable to the 
presence of large amounts of polyphenolic substances in the 
extracts including gallotannins, catechins, kaempferol, myri-
cetin, monne, quercetin, ramnasin, retusin, and the polyphe-
nolic acids (caffeic, ellagic, and chinic) [52, 53].
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Are Probiotics an Alternative in Antiviral 
Actions?

It is now evident that some probiotics can contribute to the 
prevention and even to the treatment of virus infections. The 
proposed mechanisms of these antiviral activities are often 
indirect and in many instances appear to hinge upon stimula-
tion of the host’s immune system. Indeed, the application of 
a variety of immunity-stimulating natural products, some-
times including probiotics, is no longer a novelty within the 
therapeutic arsenal for the prevention and treatment of res-
piratory viral infections [36, 54].

The majority of upper respiratory tract infections is of 
viral etiology and the most common etiological agents 
include the rhinoviruses, coronaviruses, adenoviruses, res-
piratory syncytial virus, influenza, and parainfluenza viruses 
[54]. The host’s immune system plays a principal role not 
only in preventing the onset of these upper respiratory tract 
infections, but also in shortening the recovery period [54, 
55]. Priming of the efficacy of the natural immune system 
is typically achieved via the use of an appropriate diet, 
supplemented by food additives and probiotics. Supple-
mentation with vitamins C and/or D has been specifically 
recommended to enhance protection against the pandemic 
coronaviruses [56, 57], and historically, the directed intake 
of various vitamins, minerals, and antioxidants, as well 
as the liberal consumption of fiber, fruits, and vegetables, 
has been a foundation practice of traditional medicine to 
help stimulate the immune system and prevent viral infec-
tions [58]. The scientifically guided use of probiotics and 
prebiotics is another contemporary strategy, combining 
elements of traditional medicinal knowledge built up over 
many centuries with powerful novel food additives, identi-
fied and evaluated by sophisticated modern microbiology 
and biotechnology protocols. Probiotics can bring a wide 
variety of benefits to the consumer, including contributing 
to the prevention and treatment of upper respiratory tract 
infections [54]. On the other hand, probiotics and traditional 
medicine approaches do not provide a panacea and it cannot 
be claimed with an assurance that the use of probiotic micro-
organisms will automatically result in the effective treatment 
or prevention of infections. Appropriate strain selection 
and meta-analyses of their strain-specific attributes (both 
beneficial and potentially detrimental) need to carry out, in 
addition to carefully controlled evaluation of the probiotic 
interactions with the host, with a particular focus on the 
host’s immune system [54].

Various LAB have attracted attention and have been 
evaluated as potential probiotics over the past two decades, 
and on the basis of systematic clinical studies, some have 
been recommended as prophylactic and/or therapeutic agents 
for the prevention and/or control of viral infections [59]. 

Moreover, modern developments of analytical research tools 
have accelerated research and even facilitated the selection 
and development of recombinant new generation probiotic 
strains expressing specific antigens capable of inducing pro-
tective immune responses and increased resistance to infec-
tions [60]. The application of LAB probiotics as antiviral 
agents has already found application as a strategy in aqua-
culture [61] and in the poultry industry [62]. Increasingly, 
it is also being explored for use in human and veterinary 
medicine [36].

Different mechanisms of action have been proposed to 
better understand the interactions between probiotic LAB 
and viruses, but in most cases, the specific or relatively spe-
cific adsorption or trapping of the virus particles is the pre-
requisite first step. Botić et al. [63] described direct interac-
tions (trapping) between probiotics (different Lactobacillus 
spp.) and the vesicular stomatitis virus and Wang et al. [64] 
reported the ability of strains of Enterococcus faecium to 
inhibit influenza viruses via direct physical interaction. Sim-
ilarly, Al Kassaa [36] suggested that Lactobacillus gasseri 
CMUL57 can inhibit herpes simplex type 2 virus (HSV-2) 
through a trapping mechanism. Stimulation of the immune 
system of the host by LAB has been proposed for the influ-
enza virus H1N1 [65, 66] and for protective effects against 
some respiratory virus infections in mouse models and in 
humans which have also been reported [66, 67]. In other 
studies, probiotics have enhanced the effects of the influ-
enza virus vaccine [68, 69]. Lactobacillus rhamnosus GG 
reduced the incidence of respiratory virus infections [70] 
and Lactobacillus acidophilus NCFM reduced the occur-
rence of influenza-like symptoms [71]. Daily consumption 
of a probiotic dairy drink improved antibody responses to 
influenza virus after vaccination in elderly individuals [68] 
and oral administration of Lactobacillus casei Shirota to 
neonatal and infant mice showed that a boost of the imma-
ture immune system can play a positive role in the protection 
against influenza virus infection [72].

In addition to their influence on virus infections, probiot-
ics can also be applied to the prevention and even treatment 
of other diseases, including allergic diseases and inflam-
matory episodes in the respiratory tract, including asthma. 
Asthma is characterized by airway inflammation and hyper-
responsiveness of the host [73]. The efficacy of some probi-
otics in suppressing both allergic and autoimmune responses 
in the airways of the host has been illustrated in murine 
models of acute airway inflammation [74–78].

In the post-COVID-19 pandemic world, we will still be 
confronted with serious problems concerning patient recov-
ery. Although by definition these post-COVID-19 infection 
patients have been freed of the presence of the virus, there 
will however often be residual damage to their tissues, espe-
cially in the respiratory tract. Taking into consideration the 
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potential similarity of many of the post-COVID-19 infection 
problems to those currently faced by asthmatic patients, it 
seems that as an interim measure that some of the probiotics 
which have been developed in the last decade specifically to 
provide relief for asthmatic patients or for the treatment of 
upper respiratory tract infections may also have value for use 
by post-COVID-19 patients. Certainly, it seems there will 
now be progressively increasing scientific challenge to dis-
cover and commission probiotics and/or traditional medicine 
products that are capable of helping to restore normal lung 
function in individuals who have experienced lung tissue 
damage that is either directly virus mediated or that occurs 
as a pathological side effect of the host immune response to 
virus infection.

Even if the general effort of the scientific community was 
focus on developing the vaccine for the protection against 
COVID-19 based on mRNA technology or based on tra-
ditional approaches, some laboratories have explored dif-
ferent approaches—selecting from existing or generating 
modified bacterial species that can be effective in combat 
against COVID-19 and be consumed per oral. Probiotics can 
be good candidates to serve as oral vaccine delivery systems, 
including the fact that can facilitate elicitation of mucosal 
immunity without latent risks of pathogenicity. Knowledge 
build in the last decades on the deeper understanding of the 
interaction between probiotics and the mucosal immune 
system can only facilitate the development of effective oral 
vaccine vectors applying probiotic organisms [79]. Differ-
ent strategies for developing effective COVID-19 vaccines, 
including comprising existing already in health practice and 
these still in the research processes, and different approaches 
for administration and effect on the host immunes system, 
including oral vaccines, were recently reviewed by Ashraf 
et al. [80].

One of the principal pathological effects of SARS-
CoV-2 is leading to a several proinflammatory cytokine 
storm and chronic lung inflammation. The role of probiot-
ics in the modulation of the immune system is supported by 
scientific pieces of evidence, showing clear antiviral and 
general immune-strengthening health effects [81]. From 
one side, it was previously suggested that some probiotic 
strains can trap the viruses and thus can reduced (or even 
eliminate) the virus binding to the host cell receptors [63]. 
Moreover, it was suggested that some strains such as Lac-
tobacillus rhamnosus CRL1505, Lactobacillus gasseri 
SBT2055, Lactobacillus casei DK128, and some strains 
of Bifidobacterium bifidum can be considered as promis-
ing candidates for potential management of SARS-CoV-2 
infections related to induction of strong anti-inflammatory 
response, results from tests in the appropriate animal model 
[81]. As well, pieces of evidence from clinical trials evaluat-
ing the role of Lactobacillus rhamnosus GG, Lactobacillus 

casei (including Shirota strain), Lactobacillus plantarum, 
Bifidobacterium lactis Bb-12, and Bifidobacterium longum 
different strains, reported on significant reduction of the 
prevalence of upper respiratory infections and flu-related 
symptoms [81]. All these probiotic trials can be critically 
evaluated and applied in clinical and post-clinical treatments 
of COVID-19 patients. Applications of probiotic strains can 
facilitate mitigation of the extreme levels of cytokines by 
establishing a balance between cellular and humoral immune 
responses. Moreover, it was suggested that some probiotics 
can be actively involved in the neutralization of free radicals, 
as several of them have antioxidant properties [81].

The role of probiotics in managing COVID-19 and other 
viral infections is currently generating more questions than 
answers. Even if we have adapted the concept of probiotics 
as live (or even dead) microbial cells that can have their 
benefits for the host, the scientific community and health 
professionals are still asking for more and more pieces of 
evidence for the positive role of probiotics on human (and 
other animals) health. Maybe a simple reason is the fact that 
several speculative products are on the market with not really 
proven health benefits, promising “miracles” to the consum-
ers. There were always and will be always persons looking 
for their “15 min of fame.” However, solid scientific pieces 
of evidence are showing that right probiotics, delivered to 
the right person in the right doses, can have positive effects 
and even can be considered as potential candidates for the 
parallel active therapy of COVID-19 patients and post-
COVID-19 recovery [81]. As well, we need to point that 
the GIT microbiota of that patient will be highly disordered 
after extensive treatments including highly active antibiot-
ics and a specific diet during the hospital period. This is one 
more argument that appropriate re-establish GIT microbial 
balance will be some of the points in the recovery period of 
post-COVID-19 victims.
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