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Expression of NF2 Modulates the Progression of BRAFV600E 
Mutated Thyroid Cancer Cells
Mi-Hyeon You, Min Ji Jeon, Tae Yong Kim, Won Bae Kim, Young Kee Shong, Won Gu Kim

Division of Endocrinology and Metabolism, Department of Internal Medicine, Asan Medical Center, University of Ulsan 
College of Medicine, Seoul, Korea

Background: We previously reported the frequent neurofibromatosis 2 (NF2) gene mutations in anaplastic thyroid cancers in asso-
ciation with the BRAFV600E mutation. We aimed to investigate the role of NF2 in thyroid cancer with BRAF mutation. 
Methods: To identify the function of NF2 in thyroid cancers, we investigated the changes in cell proliferation, colon formation, mi-
gration and invasion of thyroid cancer cells (8505C, BHT101, and KTC-1) with BRAFV600E mutation after overexpression and 
knock-down of NF2. We also examined how cell proliferation changed when NF2 was mutagenized. Human NF2 expression in pap-
illary thyroid carcinoma (PTC) was analyzed using the The Cancer Genome Atlas (TCGA) data.
Results: First, NF2 was overexpressed in 8505C and KTC-1 cells. Compared to control, NF2 overexpressed group of both thyroid 
cancer cells showed significant inhibition in cell proliferation and colony formation. These results were also confirmed by cell mi-
gration and invasion assay. After knock-down of NF2 in 8505C cells, there were no significant changes in cell proliferation and col-
ony formation, compared with the control group. However, after mutagenized S288* and Q470* sites of NF2 gene, the cell prolifer-
ation increased compared to NF2 overexpression group. In the analysis of TCGA data, the mRNA expression of NF2 was signifi-
cantly decreased in PTCs with lateral cervical lymph node (LN) metastasis compared with PTCs without LN metastasis. 
Conclusion: Our study suggests that NF2 might play a role as a tumor suppressor in thyroid cancer with BRAF mutation. More stud-
ies are needed to elucidate the mechanism how NF2 acts in thyroid cancer with BRAF mutation. 
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INTRODUCTION

Thyroid cancer is known to have a good prognosis, but the re-
currence rate after surgery and standard treatment is about 10% 
to 20% [1,2]. In patients with an intractable or metastatic thy-
roid cancer, the prognosis was poor and 1-year survival rate of 
anaplastic thyroid cancer (ATC) is reported to be less than 10% 
[2,3]. To find effective management of these cancers, researches 
to elucidate the mechanism of thyroid cancer progression is 

needed [4].
BRAFV600E mutation is the most common mutation in thyroid 

cancers which continuously activate mitogen-activated protein 
kinases/extracellular signal-regulated kinases (MAPK/ERK) sig-
naling pathway. In our previous study, we performed next-gener-
ation sequencing of ATC samples and BRAF mutation was also 
the most frequently observed genetic changes in ATC [5]. Among 
newly observed mutations, neurofibromatosis 2 (NF2) mutation 
was common and reported in 28% of in our ATC samples. 
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NF2 is a gene encoding a protein called Merlin. Its role as a 
tumor suppressor gene is recently known [6-10]. In studies up 
to now, Merlin has been shown to inhibit tumor suppression by 
inhibiting the signaling of receptors and the Rho GTPase family 
present in the cancer cell membrane [10-12]. One previous 
study also announced that NF2 and RAS mutations synergize to 
promote thyroid cancer growth [12]. In that study, NF2 deletion 
induces hippo pathway inactivation and MAPK signal intensifi-
cation in vitro and in vivo, thereby activating the RAS signal 
and promoting tumorigenesis [12]. However, little is known 
about the role of NF2 in BRAFV600E mutated thyroid cancer 
[12,13].

Therefore, we aimed to identify the role of NF2 in thyroid 
cancer in association with BRAFV600E mutation in this study. 

METHODS

Cell lines and reagents
8505C, BHT101, and KTC-1 thyroid cancer cells were used in 
the experiments. All these cells have BRAFV600E mutation. KTC-
1 cells were papillary origin and BHT101 and 8505C cells were 
anaplastic origin. All cells were maintained in Dulbecco’s modi-
fied Eagle’s medium high-glucose supplemented with 10% fetal 
bovine serum (FBS), 100 U/mL penicillin, and 100 µg/mL 
streptomycin (all from Gibco, Roskilde, Denmark). All cell 
lines were authenticated by short tandem repeat profiling.

Cell proliferation assay
The effects of NF2 overexpression on 8505C and KTC-1 cell 
proliferation were evaluated by MTT assay (Cell Bio labs, San 
Diego, CA, USA). The normal non-transfected (wild-type [WT] 
group), cytomegalovirus immediate early promoter (pCMV6)-
empty-myc DDK tagged plasmid transfected (control group), 
and pCMV6-NF2-myc DDK-GAT TAC AAG GAT GAC GAC 
GAT AAG (DYKDDDDK) tagged plasmid transfected cells 
(1×103 cells/mL) were cultured into 24 well plates for different 
durations (1, 2, 3, 4, and 5 days after stable transfection) and 
then MTT assay was performed. Briefly, MTT reagent was add-
ed to each well and incubated at 37ºC for 4 hours. The reaction 
was stopped by the addition of 100 µL Detergent Solution fol-
lowed by incubated at room temperature for 2 hours to over-
night protected from light. Absorbance values were then mea-
sured at 540 nm.

Colony formation assay 
Parental or NF2 overexpressing cells (5,000 cells/well) were 

plated into the 6-well plate and cultured for 5 to 8 days. Cells on 
the plates were then fixed and stained with 0.1% crystal violet 
in 20% methanol. The number of colonies was counted.

Wound healing assay 
Cells were seeded in 6-well plates and scraped with a pipette tip 
for 24 hours. After scraping, the cells were washed with phos-
phate buffered saline, photographed and placed in a medium 
containing 1% FBS to prevent cleavage. After 24 hours, a 
matched wound was filmed. The wound area was calculated by 
Image J (https://imagej.net).

Transwell invasion assay 
Matrigel invasion chamber was used to investigate cell penetra-
tion ability. 105 cells (8505C and KTC-1) were placed in the 
coated upper chamber in serum-free medium. Complete medi-
um containing 10% FBS was added to the lower chamber. After 
24 hours, the cells remaining in the upper membrane were re-
moved with a cotton pad, while cells invading through the 
membrane were stained and counted with 20% methanol and 
0.1% crystal violet.

Western blot analysis 
Western blot (WB) analysis was performed as described previ-
ously [14]. Cellular lysates were prepared using ice-cold lysis 
buffer (10 mM Tris-HCl [pH 7.4], 0.8 M NaCl, 1 mM ethylene 
glycol tetraacetic acid [EGTA], 10% sucrose, 1 mM 1,4-dithio-
threitol [pH 7.4]) supplemented with a protease inhibitor cock-
tail and phosphatase inhibitor. Protein samples (30 μg of lysates) 
were separated by sodium-dodecyl sulfate-polyacrylamide gel 
electrophoresis on 10% to 12% (w/v) gradient NuPAGE gels 
(Thermo Fisher Scientific, Waltham, MA, USA) and transferred 
to nitrocellulose membranes (Amersham Bioscience, Piscat-
away, NJ, USA). The membrane was then blocked with 5% 
nonfat dry milk in Tris-buffered saline with 0.1% Tween 20 
(TBS-T), and the NF2/Merlin (Abcam, Cambridge, UK); phos-
phorylated ERK (pERK; Thr202/Tyr204), ERK, actin (Cell 
Signaling Technology, Danvers, MA, USA). Primary antibodies 
were detected using a horseradish peroxidase (HRP)-conjugated 
secondary antibody and a Western Lightning EzWestlumi plus 
(ATTO, Tokyo, Japan) or SupersignalTM West Femto Maximum 
Sensitivity Substrate (Thermo Fisher Scientific) chemilumines-
cence system.

Mutagenesis study
The specific 863C>G,[S288*] and 1408 C>T [Q470*] mutant 
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types in the full length NF2 (NM_200268) were generated by 
QuikChange Lightning Site-Directed Mutagenesis Kit (Agilent 
Technologies, Santa Clara, CA, USA) using according to the 
manufacturer’s instruction. Polymerase chain reaction (PCR) 
primers were obtained from the Agilent Quick-change Primer 
Design program as follows: the 863C>G mutant type 5′-gatgtct
tcaagtttaactcctgaaagcttcgtgttaataagctg-3′sense and 5′-cagcttatta-
acacgaagctttcaggagttaaacttgaagacatc-3′ anti-sense primers and 
the 1408 C>T mutant type 5′-gcggagcgaagagccaagtagaagct-
cctggagatt-3′ sense and 5′-aatctccaggagcttctacttggctcttcgctcc-
gc-3′ anti-sense primers. 

The mutants were amplified by PCR with initial 2-minute in-
cubation at 95°C, followed by 18 cycles of 95°C for 20 seconds, 
60°C for 10 seconds, and 68°C for 3.5 minutes, and finally 68°C 
for 5 minutes. Then, add 2 μL of the provided Dpn I restriction 
enzyme directly to each amplification react at 37°C for 5 min-
utes. DH5a competent cells (RBC real biotech, Banqiao, Tai-
wan) were transformed with the PCR products. The cells were 
plated on Luria-Bertani (LB) agar containing kanamycin (20 
μg/mL) and kept at 37°C overnight and isolated using Plasmid 
Miniprep Kit (Bioneer, Seoul, Korea). Successful change in 
code and the NF2 insert in the plasmid were confirmed by se-
quencing and Western blotting.

Small interfering RNA transfection 
All four different NF2 small interfering RNAs (si-RNAs) (small 
interfering NF2 [siNF2]) were designed using the best-in-class 
design algorithm developed by Rosetta and were synthesized by 
Dharmacon (Lafayette, CO, USA). KTC-1 cells were transiently 
transfected with four different si-RNAs against human NF2 or 
scrambled si-RNA using lipofectamine 3000 Reagent (Invitro-
gen, Carlsbad, CA, USA) according to the manufacturer’s in-
structions. The si-RNA target sequences were as follows: human 
NF2-#1, ACGCCGAGAU-GGAGUUCAA; human NF2-#2, C-
UUACGCCGUCCAGGCCAA; human NF2-#3, AGAAGCA-
GAUUUUAGAUGA; human NF2-#4, AGGAAGCAACCCA-
AGACGU and scrambled si-RNA, human control-#1, UAGC-
GACUAAACACAUCAA; human control-#2, UAAGGCU-
AUGAAGAGAUAC; human control-#3, AUGUAUUGGCCU-
GUAUUAG; human control-#4, AUGAACGUGAAUUGCU-
CAA. A scrambled si-RNA does not match any human sequences 
in Gene Bank search. For cell proliferation assay and colony for-
mation, the number of cells per groups is 5,000. 

NF2 knockout via Crispr/Cas9
KTC-1 cells were transfected with NF2 clustered regularly in-

terspaced short palindromic repeats (Crispr)/Cas9 KO Plasmid 
(sc-400504, Santa Cruz Biotechnology, Santa Cruz, CA, USA) 
using lipofectamine 3000 following to the manufacturer’s in-
struction. Three days later after transfection, the stably green 
fluorescent protein (GFP) expressing cells were sorted by flow 
cytometry. NF2 deletion level was then confirmed by WB. For 
cell proliferation assay and colony formation, the number of 
cells per groups is 10,000.

Analysis of The Cancer Genome Atlas data 
The data were downloaded from the Genomic Data Commons 
Data Portal (https://portal.gdc.cancer.gov/). The data included 
somatic mutations, and clinical information from The Cancer 
Genome Atlas (TCGA) research. The data analysis was per-
formed using the cgdsr package using R statistical software 
(http://www.R-project.org) [15]. After excluding patients without 
adequate clinical or genetic data, or whose samples were from 
metastatic tissues, total of 384 papillary thyroid carcinoma (PTC) 
patients were included for analysis. NF2 mRNA expression lev-
els were analyzed according to the cervical lymph node (LN) 
metastasis status by the one-way analysis of variance (ANOVA) 
test with post hoc analysis. LN metastasis was determined by the 
7th tumor node metastasis (TNM) staging system [16]. 

Statistical analysis
The data are displayed as mean±standard error. Statistical sig-
nificance of three independent experiments was calculated by 
one-way ANOVA analysis. GraphPad Prism version 6.0 (Graph-
Pad Software Inc., La Jolla, CA, USA) was used for statistical 
analysis followed by Bonferroni comparison post hoc test using 
Prism. All P values were two-sided and P values <0.05 were 
considered statistically significant. 

RESULTS

Merlin protein levels in thyroid cancer cell lines
Firstly, we confirmed the protein level of Merlin in various thy-
roid cell lines (Fig. 1A). It was confirmed that the cell line with 
BRAFV600E mutation exhibits various degrees of Merlin expres-
sion. For instance, 8505C and BHT101 cells with anaplastic ori-
gin showed a lower protein expression level of Merlin than 
KTC-1 cells with papillary origin. 

NF2 overexpression suppresses cell growth in 8505C and 
KTC-1 cells
To elucidate the role of NF2 as a tumor suppressor in thyroid 
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Fig. 1. Neurofibromatosis 2 (NF2) overexpression suppresses cell growth in 8505C and KTC-1 cells. (A) Western blot analysis confirmed 
the differences in the Merlin protein expression between groups. (B) Proliferation assay to measure the cell growth rate in control and NF2 
overexpressing 8505C cells. (C) Colony formation assay of 8505C cells in Day 7. (D) Proliferation assay to measure the cell growth rate in 
control and NF2 overexpressing KTC-1 cell. (E) Colony formation assay of KTC-1 cells in Day 7. Each data point represents mean±stan-
dard error of three independent experiments. GAPDH, glyceraldehyde 3-phosphate dehydrogenase; Vec, vector. aP<0.05.
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cell line, we first examined cell proliferation and colony forma-
tion after overexpression of Myc-vector (Vec) and Myc-NF2 
(Fig. 1). Both 8505C and KTC-1 cells have the BRAFV600E mu-
tation, but have different basal protein levels of Merlin and have 
been selected for the study of NF2 function (Fig. 1A). When the 

NF2 gene was overexpressed in 8505C cells with a low basal 
protein expression of Merlin, cell proliferation was significantly 
inhibited compared to the control group (P<0.05) (Fig. 1B). 
This tendency was also shown by colony formation in these 
cells. Colony size and number were significantly decreased in 

Vec VecNF2 NF2
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NF2 over-expressed cells compared with control group at Day 7 
(P<0.05) (Fig. 1C). These results were also confirmed in KTC-
1 cells with a relatively higher basal protein expression of Mer-
lin (Fig. 1D, E). These results suggest that NF2 can inhibit the 
proliferation of thyroid cancer cells with BRAF mutation and 
support the role of NF2 as a tumor suppressor in BRAF mutated 
thyroid cancer.

 
NF2 overexpression suppresses migration and invasion of 
8505C and KTC-1 cells
We investigated cell migration and invasion in thyroid cancer 
cells after NF2 overexpression (Fig. 2). In 8505C cells, the cell 
migration ability was inhibited in the NF2 overexpressing group 
as compared with the control group (P<0.05) (Fig. 2A). This 

tendency was also observed in the KTC-1 cells (P<0.05) (Fig. 
2B). In the invasion analysis of 8505C cells, invasion ability de-
creased in the group overexpressing NF2 compared to the con-
trol group (P<0.05) (Fig. 2C). The same trend was also ob-
served in KTC-1 cells (P<0.05) (Fig. 2D). These results indi-
cate that the overexpression of the NF2 gene, regardless of the 
basal levels, resulted in the inhibition of migration and invasion 
ability of the thyroid cancer cells with BRAF mutation. This also 
suggests that NF2 acts as a tumor suppressor in thyroid cancer 
with BRAF mutation. 

Downregulation of endogenous NF2 in KTC-1 cell does 
not affect cell growth
After observing that cell growth was inhibited by NF2 overex-

Fig. 2. Neurofibromatosis 2 (NF2) overexpression inhibits cancer cell migration and invasion cancer in 8505C and KTC-1 cell. (A, B) In vi-
tro wound healing assay in control and NF2 overexpressing thyroid cancer cells. Image was measured after 0, 24 hours after scratching (left) 
and quantification of wound closure was expressed in graph (right) (A) 8505C, (B) KTC-1. (C, D) In vitro transwells assay in control and 
NF2 overexpressing thyroid cancer cells. Representative images of invasive potential are shown and quantification was expressed in the bar 
graph (right) (C) 8505C, (D) KTC-1. The photographs were taken at 100×X and the bar size was 50 μm. Each data point represents mean±
standard error of three independent experiments. Vec, vector. aP<0.05.
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pression, we conducted an experiment to find out changes in 
cell growth after lowering the endogenous NF2/Merlin protein 
level. The KTC-1 is selected as the Merlin protein level was 
higher than that of other thyroid cell lines. The KTC-1 cells 
were transiently or permanently lowered in NF2 gene levels us-
ing the si-RNA and CRISPR/CAS9 methods. KTC-1 transfect-
ed with siNF2 pool was found to have marked decreased NF2 
levels between 48 and 72 hours, whereas control si-RNA pool 
did not affect NF2 levels significantly (Fig. 3A, B). Cell prolifer-
ation during 5 days was not significantly different between siNF2 
group and control group (Fig. 3A). These results were similar in 
colony formation (Fig. 3B). 

GFP CRISPR/CAS9 NF2 plasmids were used to knock down 
NF2 gene in KTC-1 cells (Supplemental Fig. S1). GFP expres-
sion was first confirmed by confocal, and then fluorescence ac-
tivated cell sorter (FACS) sorting was performed to collect cells 
expressing GFP at 100% (Fig. 3C, D). After subculture, we con-
firmed the NF2 gene level (GFP-control, GFP-NF2 CRISPR/
CAS9) with WB analysis in KTC-1 cells (Fig. 3E). Cell prolif-
eration and the colony formation were not different after NF2 
knock down, compared to the control (Fig. 3E, F). There is no 
difference of pERK level in GFP-control, and GFP-NF2 group 
(Supplemental Fig. S2).

NF2 mutagenesis enhances cell growth in 8505C and 
BHT101 cells
In our previous study, NF2 mutation, which was not previously 

found in ATC, was found in three-elevenths frequency in asso-
ciation with BRAFV600E mutation, especially non-sense mutation 
at 288 and 470 sites [16]. Therefore, the NF2 gene sequence 
was mutagenized at 288 and 470 sites [5]. The proliferation as-
say was then performed on the 8505C cell line using these con-
structs (Fig. 4). As a result, it was confirmed that NF2 group 
showed statistically significant inhibition of cell proliferation, 
compared to control from Day 2 to 5. The cell proliferation of 
288 and 470 sites mutagenized group were similar with that of 
control group and were increased compared to NF2 overex-
pressed group (post hoc analysis, Day 5, P<0.001). The same 
experiment was carried out on BHT101 cells and the same ten-
dency was obtained (post hoc analysis, Day 4, P<0.05). These 
findings confirmed our previous reports [5] and also suggested 
the role of loss-of-function mutation of NF2 in the progression 
of thyroid cancer with BRAF mutation.

Association of NF2 levels and the prognosis of PTC patients
We analyzed TCGA data of 523 PTC patients with available 
clinical and pathological information. The median age of pa-
tients was 47 years and 278 patients (72%) were female. Of 
them, 130 patients (34%) showed advanced disease stages 
(TNM stage III/IV by the 7th TNM staging system) and 162 pa-
tients (42%) had LN metastasis including 72 patients with later-
al cervical LN metastasis. When we compared the mRNA ex-
pression of NF2 according to the LN metastasis status, it was 
significantly associated with the LN metastasis status (P=0.030, 
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data not shown). This trend was also significant in subgroup 
analysis according to BRAF mutant status (P=0.035 in BRAF 
WT group, P=0.012 in BRAFV600E mutant group) (Fig. 5). Espe-
cially, mRNA expression of NF2 was significantly decreased in 
PTCs with lateral cervical LN metastasis (N1b by 7th TNM 
staging system), compared to PTCs without LN metastasis in 
both BRAF wild group and BRAFV600E mutant group (Fig. 5).

 
DISCUSSION 

In this in vitro analysis evaluating the role of NF2 in BRAF mu-
tated thyroid cancer cells, NF2 overexpression significantly in-
hibited cell proliferation, colony formation, migration and inva-
sion of BRAF mutated thyroid cancer cells. Even though NF2 
knock-down did not significantly affect the proliferation of thy-
roid cancer cells with BRAF mutation, mutagenesis study 
showed that loss-of-function mutation of NF2 increased prolif-
eration of thyroid cancer cell, compared to NF2 overexpression 
group. Our findings suggest that NF2 has a role as a tumor sup-
pressor in thyroid cancers with BRAF mutation. In the analysis 
of TCGA data, it was observed that the mRNA expression of 
NF2 was lower when the cervical LN metastasis progressed to 
the lateral cervical area. Our findings suggested that NF2 has a 
tumor suppressive role in thyroid cancer progression. 

We tried to find the underlying mechanism how NF2 overex-
pression inhibits the proliferation of thyroid cancer cells but, we 
could not find significant cellular signal changes after NF2 
overexpression, compared to the control. The pERK signal ab-

errantly activated by the BRAFV600E mutation was influenced by 
also NF2 overexpression [17]. Knock-down of base-line signal-
ing of NF2 by si-RNA and CRISPR/CAS9 system also had in-
significant effects on cancer cell proliferation and colony forma-
tion. Considering this result, it might be thought that NF2 had a 
little impact on the signaling pathways activated by BRAF mu-
tation. This finding is interesting because of loss of NF2 signal-
ing could promoted thyroid carcinogenesis in RAS mutated thy-
roid cancer [12]. This might be one of the evidence that onco-
genic driver mutations affects the distinct cellular responses of 
tumor suppressors.

NF2 gene is a protein belonging to the ezrin-radixin-Moesin 
family [18]. It is known as a protein that binds to the membrane 
actin cytoskeleton and is thought to be a factor controlling the 
cytoskeleton dynamics of the cell [5]. When we look at this fea-
ture, another possibility is to consider the paper that NF2 gene, 
which acted as a tumor suppressor in mesothelioma, negatively 
regulates focal adhesion kinase (FAK) rather than mechanistic 
target of rapamycin pathway [18-20]. That paper showed that 
NF2 regulates cell motility and invasion by decreasing phos-
phorylation at the Tyr397 region of FAK. So, it is believed that 
further research is needed to determine exact mechanism how 
NF2/Merlin acts as a tumor suppressor when the expression was 
significantly increased.

Collectively, our findings support that the role of NF2 in thy-
roid cancer progression in BRAF mutated thyroid cancer. In vi-
tro studies have demonstrated that NF2 plays a role as tumor 
suppressor in thyroid cancer cells with BRAFV600E mutation, 
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demonstrating that it is, at least in part, related to the progres-
sion of thyroid cancer.
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