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Introduction
An adverse response in periprosthetic bone 
and soft tissues to implant-derived material 
components of wear debris is widely recog-
nised as a significant cause of aseptic implant 
failure. The material components that induce 
an adverse response include particulate wear 
and corrosion debris, organometallic com-
plexes, metal salts/oxides and free metal 
ions. Certain physical and chemical charac-
teristics of the material components influ-
ence the pathobiology of the host response 
in soft tissue and bone, and in this way favour 
the development of particular complications 
that lead to implant failure, such as peripros-
thetic osteolysis, which leads to aseptic 
loosening, and soft-tissue necrosis and inflam-
mation, which can result in pseudotumour 
formation.

Insertion of an implant component into 
bone results in necrosis of bone surrounding 
the implant – this occurs due to trauma 
resulting from preparation of the implant 
bed, but also in cemented implants from 
local generation of heat that occurs when the 

polymethylmethacrylate cement polymer-
ises in situ.1-3 Following necrosis, there is for-
mation of reparative fibrous and granulation 
tissue around the implant. A dense fibrous 
tissue pseudomembrane ultimately forms 
around the implant. This membrane is itself 
surrounded by reparative woven and 
lamellar bone that is remodelled along the 
lines of stress to which the bone is subjected. 
Autopsy studies have shown that well-fixed 
stable implants usually have little intervening 
fibrous tissue between the implant and sur-
rounding cortical or cancellous bone, 
whereas loose implants are covered by a thick 
fibrous pseudomembrane which contains 
numerous implant-derived wear particles to 
which there is a foreign body macrophage 
and giant cell response to wear particles with 
a variable lymphocyte reaction.1,3,4 Reparative 
fibrous tissue may or may not be covered by 
a synovial lining and/or fibrinous material, 
and may contain bone fragments or haemo-
siderin. A similar cell and tissue response to 
implant-derived wear particles occurs in 
bone where there is often also evidence of 
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increased bone remodelling with osteoblastic and osteo-
clastic activity.

It is important to recognise that, in terms of general 
pathology, the host response to wear particle deposition 
in periprosthetic tissues is fundamentally similar, what-
ever the nature of the implant-derived foreign material. 
Thus, in soft tissue and bone, regardless of whether the 
material is derived from a metal-on-polyethylene (MoP) 
or metal-on-metal (MoM) prosthesis, there will be evi-
dence to a greater or lesser extent of cell and tissue injury 
and a reparative response in which there is an innate and 
adaptive immune response to the material components 
of implant wear.

Innate immune response to implant-derived 
wear
The host response to deposition of implant-derived wear 
particles in periprosthetic tissues is initially an innate non-
specific foreign body response. This is mediated princi-
pally by macrophages which are specialised phagocytic 
cells that form part of the first-line defence against poten-
tial pathogens.5,6 Macrophages do not require previous 
exposure to a given pathogen in order to initiate a 
response and are specialised to sequester, remove and 
process foreign body material.7 If the implant-derived for-
eign body wear particles are too large to be phagocy-
tosed by a single cell, macrophages can fuse with each 
other to form macrophage polykaryons or multinucle-
ated foreign body giant cells (FBGCs) which surround or 
sequester the large particles. Discrete foreign body gran-
ulomas containing macrophages (+/- FBGCs) can be seen 
histologically in response to polymeric and metallic wear 
debris in periprosthetic tissues.

Phagocytosis of biomaterial wear particles depends 
on several factors including particle load, size, shape and 
chemical composition.8,9 The particle load (dose) in 
periprosthetic tissues is dependent on the average parti-
cle size and amount or volume of implant-derived wear 
debris. An increase in the particle load has significant 
effects on cells that are involved in the innate and adap-
tive immune response to foreign material with conse-
quent changes in bone and soft tissue. Higher amounts 
of particulate debris are produced when there is compo-
nent malposition, impingement, third-body wear or sig-
nificant component loosening.10-12 MoP articulations 
generally produce greater volumetric wear than MoM 
implants, but MoM implants generate a much larger 
number of particles, the metal particles being an order of 
magnitude smaller in size and, therefore, much more 
numerous.10-14 Ultra-high molecular weight polyethyl-
ene (UHMWP) particles can vary in size from very large 
(hundreds of microns) to very small (submicron) with a 
mean size of 660 nm. Analysis of particles generated 
from MoM articulations has shown that most cobalt-
chrome (Co-Cr) particles are nanometre in size (mean 30 
nm to 57 nm).

Wear particles that are shed from the implant compo-
nents are immediately coated with host proteins derived 
from blood and interstitial fluid.7,15,16 Macrophages and 
other inflammatory cells react to foreign body wear parti-
cles through this protein layer which includes fibronec-
tin, vitronectin, albumin, fibrinogen, globulins and other 
cell-derived proteins. These protein-associated particles 
tend to clump and are often presented to macrophages 
as a large complex. As part of the innate immune 
response, macrophages bind integrin receptors, Fc recep-
tors, complement receptors and scavenger receptors. In 
addition, macrophages express a wide range of pattern-
recognition receptors (PRRs) which monitor and react 
with pathogen-associated molecular patterns (PAMPs) 
and/or danger-associated molecular patterns (DAMPs); 
the latter are endogenous molecules normally found 
inside host cells and released when there is cell damage 
(e.g. due to cell toxicity). These endogenous signals 
(alarmins) are normally hidden from recognition by 
innate immune cells but, when there is cell injury, are 
released into the extracellular space and activate other 
immune cells. DAMPs include nuclear proteins, purine 
metabolites, uric acid and mitochondrial components. 
Detection of DAMPs by PRRs, such as toll-like receptors 
(TLRs) and inflammosomes, triggers inflammation, which 
is important for the clearance of dead cells and regenera-
tion of damaged tissue.15,16 In the inflamed prosthetic tis-
sues, reactive oxygen species, matrix metalloproteinases 
and other substances associated with the production of 
endogenous DAMP molecules adhere to the biomaterial 
surface and exacerbate the inflammatory response. 
Although macrophages are able to phagocytose wear 
particles without any opsonising proteins, particles with 
attached proteins, such as DAMPs, stimulate a more 
effective inflammatory foreign body response to wear 
debris.7,15,16

TLRs and other PRRs on the macrophage cell surface 
also recognise molecular structures on microbes, such as 
lipopolysaccharide (LPS), beta-glycan and flagellin, which 
adhere to the implant surface as a subclinical bacterial bio-
film.17-19 It has been shown that TLR4-deficient mice 
exhibit decreased particle-associated osteolysis and that 
an increase in TLR4 is present in the tissues around loose 
implants. TLR4 acts via myeloid differentiation primary 
response 88 (MyD88), resulting in the production of pro-
inflammatory factors. Disruption of MyD88 signalling 
diminishes particle-induced production of tumour necro-
sis Factor α (TNFα) and other pro-inflammatory 
cytokines.17,19 Foreign body macrophages also express 
the macrophage receptor with collagenous structure 
(MARCO) which acts as a PRR.15,16 The expression of this 
scavenger receptor is strongly upregulated in mac-
rophages by various microbial stimuli in a TLR-dependent 
or TLR-independent manner. MARCO binds soluble LPS 
and intact bacteria; its expression is induced by implant-
derived wear debris and it may play an important role in 
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inducing the macrophage response in periprosthetic 
tissues.20,21

Macrophages also release chemokines which are small 
proteins that play a central role in inflammatory cell 
migration and activation.22 Chemokines are up-regulated 
in periprosthetic tissues when there is aseptic implant 
failure.15,16 Wear particles induce expression of several 
macrophage chemokines including MCP-1 (or CCL2), 
which attracts additional macrophages to the sites of 
inflammation; blocking the interaction of MCP-1 with its 
receptor CCR2 results in inhibition of macrophage migra-
tion and a decrease in particle-induced osteolysis.23,24 
Other cytokines, such as CCL3 (MIP-1α), also play a role 
in particle-induced inflammatory cell migration.15,16

Macrophages have a dynamic phenotype that changes 
with local microenvironment signals that broadly direct 
macrophages into two relatively distinct (but inter-
changeable) phenotypes.5,6,15,16 M1 or classically acti-
vated pro-inflammatory macrophages are induced by 
interferron ɣ, either alone or with LPS or TNFα. M2 alter-
natively activated macrophages are induced by exposure 
to a variety of signals including the cytokines interleukin 
4 (IL-4), IL-13 and IL-10, immune complexes and certain 
hormones. M1 macrophages predominate where there is 
aseptic implant failure with osteolysis.15,16 The M1 phe-
notype is characterised by high capacity to present anti-
gen and to produce certain pro-inflammatory chemokines 
(e.g. CCL2-4, CXCL8-12) and cytokines (e.g. TNFα, IL- 1, 
IL-6, IL-12, IL-23). Alternatively activated M2 mac-
rophages are induced following exposure to IL-4, IL-13, 
IL-10 or glucocorticoids. M2 polarisation is characterised 
by suppression of pro-inflammatory cytokines, intracel-
lular killing and antigen presentation. Macrophages in 
osteoarthritic joints are predominantly M2 in type and a 
potential strategy to treat aseptic loosening is to promote 
polarisation of macrophages to the M2 phenotype.25-27

A significant adverse effect of deposition of biomaterial 
wear particles in periprosthetic tissues is osteolysis (bone 
resorption). This leads to aseptic loosening of implant 
components, a common cause of aseptic failure. 
Osteolysis has been reported in relation to all types of 
implant-derived wear particles. Macrophages remain via-
ble following phagocytosis of UHMWP wear particles and 
are capable of further differentiation into osteoclasts, spe-
cialised cells of the mononuclear phagocyte system 
responsible for bone resorption.28,29 Macrophages that 
have phagocytosed wear particles are activated M1 mac-
rophages which release numerous cytokines that pro-
mote osteoclastic bone resorption.30-32 Macrophage 
colony stimulating factor (M-CSF) and Receptor Activator 
for NF Kappa B ligand (RANKL) are required for osteoclast 
formation.33 M-CSF is produced by activated mac-
rophages and stromal cells and RANKL is expressed by 
osteoblasts and fibroblast-like stromal cells in peripros-
thetic soft tissues.34-36 RANKL is also expressed by bone 
marrow stromal cells and other cells including  

T lymphocytes. TNFα induces the expression of RANKL. 
Macrophages exposed to wear particles increase the 
expression of TNFα, predominantly via the NF-Kappa B 
pathway.15,16 Other cytokines that promote osteolysis 
include IL-1 and IL-6. The RANKL-RANK interaction acti-
vates the NF-Kappa B transcription factor that regulates 
numerous pro-inflammatory pathways.15,16,32 The expres-
sion of RANK, the receptor for RANKL, is upregulated in 
tissues around failed total joint arthroplasties and RANK 
signalling is essential for particle-induced osteoclast for-
mation in mice. However, its disruption in knockout mice 
does not seem to alter particle-induced inflammation, 
and it is possible that other inflammatory cytokines and 
growth factors may play a role in inducing RANKL-
independent pathways of osteoclast formation.33,36

A potential consequence of phagocytosis of implant-
derived wear debris is cell toxicity. This is dependent to a 
large extent on the nature (particle size, shape and chem-
ical composition) of the material components of phago-
cytosed wear debris particles. Apoptosis of macrophages 
is induced by polymer and metal particles in a size and 
concentration-dependent manner.9,13,28,29 Macrophages, 
however, are able to tolerate UHMWP and ceramic wear 
particles better than metal wear particles, with signifi-
cantly less apoptosis and necrosis observed in cell cul-
tures;9,29,37-40 this tolerance is further demonstrated by 
the fact that macrophages which have phagocytosed 
UHMWP particles are capable of increased osteoclast dif-
ferentiation compared with those which have phagocy-
tosed Co-Cr particles.28 Histologically, the response to 
UHMWP wear particles is dominated by a foreign body 
macrophage response in which many of these cells 
remain viable after particle phagocytosis.1,4,9 Co-Cr parti-
cles are also phagocytosed by macrophages as part of the 
innate immune response. Phagocytosed metal particles 
are transported to lysosomes where, in the acid microen-
vironment of these organelles, they are subject to corro-
sion, resulting in the release of chromium and cobalt ions 
and consequent apoptosis and cell death.8,9,11,41-43 This 
process is likely to contribute significantly to the exten-
sive necrosis seen in MoM peri-implant tissues. The phys-
icochemical features of nano-sized metal wear particles, 
which are of small size and have a large specific surface 
area that predicts greater biological activity (including 
cytotoxicity) compared with larger UHMWP particles, is 
likely to be significant in this regard. MoM implant-
derived nanoparticles are highly reactive and high con-
centrations of chromium and cobalt ions are toxic to 
macrophages, fibroblasts and lymphocytes.8,9,13,41,43-47 
Metal particles (and metal ion species) released from the 
implant are at the highest concentration in the superficial 
zone of the peri-implant tissue membrane, and it is in this 
area that necrotic and apoptotic macrophages are most 
commonly seen histologically in MoM peri-implant tis-
sues.48-52 It has been shown that the presence of Co-Cr 
particles in the joint is associated with synovial tissue 
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necrosis and surface ulceration, and that this occurs even 
in the absence of a loose prosthesis.53

Most Co-Cr metal wear particles are round in shape, 
although a variable number are needle-like or elon-
gated.10,14 Differences in the physicochemical characteris-
tics of Co-Cr particles in terms of size and shape, as well 
as specific material composition, could explain differ-
ences in the pathological response and clinical outcome 
with regard to particular types of MoM implant.54 One 
can imagine that the cytotoxic effect of metal ions on 
macrophages is likely to lead to a vicious cycle in which 
the release of Co-Cr implant-derived metal wear particles 
from an MoM implant results in macrophage recruitment 
and particle phagocytosis, followed by macrophage 
apoptosis and cell death. This would then result in a re-
release of metal particles, leading to further macrophage 
recruitment and repetition of this process.51,55

Adaptive immune reponse to implant-derived 
wear
In addition to an innate immune response, implant-
derived wear particles also induce an adaptive immune 
response. Histologically, this is demonstrated by the pres-
ence of lymphoid cells, particularly lymphocytes, within 
periprosthetic tissues. A pronounced often heavy perivas-
cular lymphocyte (and plasma cell) reaction, termed 
aseptic lymphocyte-dominated vasculitis-associated 
lesion (ALVAL) is commonly seen in periprosthetic tissues 
in response to the deposition of Co-Cr wear particles 
derived from MoM articulations.49-51,56 This lymphoid 
response is thought to develop as a result of a specific 
adaptive, cell-mediated (type IV, delayed hypersensitiv-
ity) reaction to cell and tissue components altered by 
interaction with the material components of particulate 
metal wear debris.8 A cell-mediated immune response 
occurs when sensitised T lymphocytes recognise an anti-
gen, together with MHC class II molecules on antigen-
presenting cells (e.g. macrophages, dendritic cells). 
Stimulated T cells then proliferate and release lympokines 
which attract and activate macrophages and other lym-
phoid cells. If the reaction becomes chronic, it results in a 
heavy macrophage infiltrate and, in some cases, immune 
granuloma formation. Although T lymphocytes are found 
in MoP peri-implant tissues, a specific cell-mediated 
response to UHMWP particles does not appear to play a 
major role in MoP implant loosening.57-60 Proteins can 
bind to UHMWP,61 but histologically the lymphocyte 
response in MoP periprosthetic tissue is not usually pro-
nounced. In some cases, there may be small collections 
of lymphocytes around blood vessels, although it is pos-
sible that these are related more to metal than UHMWP 
particle deposition.62

In regard to MoM implants, Co-Cr particles produce 
high levels of metal ions which can act as haptens that 
combine with large carrier (cell- or tissue-derived) pro-
tein molecules to become immunogenic.8,48,63,64 The 

pathological features of a cell-mediated Type IV hyper-
sensitivity reaction include a heavy perivascular lympho-
cytic infiltrate, a macrophage response and immune 
granuloma formation with tissue necrosis. These patho-
logical features are characteristically seen in MoM peri-
prosthetic tissues. A similar Type IV hypersensitivity 
response is seen in contact dermatitis. Contact dermatitis 
due to metal allergy is relatively common, occurring in 
10% to 15% of the population.8,63,64 Metals known to 
induce this response include nickel, chromium and 
cobalt, all of which are found in implant components. As 
in other pathological conditions where there is a Type IV 
hypersensitivity response, the non-specific innate foreign 
body macrophage response to Co-Cr wear particles 
(leading to macrophage accumulation and cell and tissue 
necrosis) promotes and maintains the specific adaptive 
immune response.

Although the profound inflammatory and necrotic 
changes seen in MoM periprosthetic tissues are a conse-
quence of a cytotoxic and hypersensitivity response to 
metal wear, clinicopathological studies have not estab-
lished that there is a minimum threshold dose of Co-Cr 
particles that guarantees an adverse reaction in peri-
implant tissues. In a recent study, it was shown that 
necrotic and inflammatory changes are commonly found 
in the periprosthetic tissues around MoM resurfacing 
implants, especially in patients with pseudotumours.55 
Necrosis and the extent of the macrophage infiltrate, 
reflecting the innate response, correlated with the 
amount of prosthetic wear. The extent of the perivascular 
lymphocyte reaction (ALVAL), reflecting the adaptive cell-
mediated response also correlated with the amount of 
wear in most cases. However, it was noted that a small 
number of pseudotumours had relatively low wear and a 
heavy ALVAL response, and that a few had high wear with 
a minimal ALVAL response. Thus, it would appear that 
although an increase in the amount of wear from MoM 
components increases the frequency of an adverse reac-
tion to metal in periprosthetic tissues, some reactions can 
be associated with low (or expected) wear, presumably 
due to variability in the adaptive immune response. The 
findings of most studies that have attempted to correlate 
serum metal ions levels in MoM arthroplasty patients 
with clinical and radiological outcomes are generally in 
keeping with this conclusion.65-67 Although serum metal 
ion levels are commonly measured and threshold Co and 
Cr ion levels for clinical concern have been proposed, it is 
well-recognised that profound necrotic and inflamma-
tory changes in MoM periprosthetic tissues and implant 
failure can occur in patients with normal serum metal ion 
levels. It is possible that the measurement of metal ion 
levels in periprosthetic tissue correlates more strongly 
than serum metal ion levels with pathology in peripros-
thetic tissues.43,68,69 Some observers have correlated wear 
volume and ion levels with the predominance of a mac-
rophage or lymphocyte response,11 however, the extent 
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of the macrophage infiltrate can be underestimated in 
the context of necrotic and inflammatory changes in 
periprosthetic tissues, and is often appreciated only after 
immunohistochemistry.51,52

MoM arthroplasties have also been strongly associ-
ated with the formation of pseudotumours.51,70-74 A pseu-
dotumour is as a solid and/or cystic mass that 
communicates with a prosthetic hip joint. By definition, 
this mass is not due to neoplasia or infection. Essentially, 
MoM pseudotumours show features of both the innate 
and adaptive immune response to metal wear particles 
with pronounced cell and tissue necrosis, a heavy mac-
rophage response to wear particles and, in most cases, 
an ALVAL infiltrate.51,55,70-72 It should be noted that the 
term ‘pseudotumour’ has also been used to describe the 
rare development of a granulomatous soft-tissue mass 
related to deposition of excessive UHMWP wear debris 
from MoP total hip arthroplasties.73-78 These MoP-
associated pseudotumours, which have also been called 
‘aggressive granulomatous lesions’ or ‘aggressive granu-
lomatosis’, differ from the pseudotumours associated 
with MoM implants. The major pathological feature seen 
in MoP–associated aggressive granulomatosis is a very 
heavy macrophage response to the deposition of a very 
large volume of UHMWP wear particles in periprosthetic 
tissues.74-77 These MoP-associated lesions do not contain 
the significant lymphoid (ALVAL) component or the 
extensive necrosis typically seen in MoM pseudotumours. 
Carli et al79 reviewed all case reports/series of non-MoM 
associated ‘pseudotumours’ and noted that that they 
were not only few in number, but also consistently 
showed a heavy macrophage response to abundant wear 
particles histologically. Only one case with an extremely 
high amount of metal debris due to taper corrosion had a 
significant lymphocytic infiltrate. This contrasts with the 
frequent finding of a lymphocytic infiltrate in MoM pseu-
dotumours. Santavirta et al77 studied the immunopathol-
ogy of non-MoM pseudotumours and noted that the 
inflammatory infiltrate in these lesions was composed 
mainly of UHMWP wear particle-associated macrophages 
with few or no lymphocytes. This is very different from 
the situation with MoM pseudotumours, where there are 
numerous T lymphocytes.51,52 The persistence of this 
lymphoid infiltrate in periprosthetic tissues may account 
for poor outcomes following the revision of MoM 
pseudotumours.80

Relevance of implant–related pathology
Although there are now many reports documenting an 
adverse local tissue response to deposition of Co-Cr par-
ticles in periprosthetic tissues related to modern third-
generation MoM implants, it is worth noting that there 
were several studies that described a similar response in 
first-generation MoM implants. These studies illustrate 
the value of histopathology in the assessment of implant 
failure. It could be argued that insufficient attention was 

given to the significance of the pathological findings in 
these studies before MoM hip implants were recently re-
introduced. In 1974, Winter81 described necrosis in tis-
sues around retrieved MoM hip arthroplasties associated 
with Co-Cr particle deposition in acellular collagen and in 
phagocytic cells. In the same year, Evans et al82 reported 
necrosis of bone and capsular tissue around MoM hip 
implants and suggested that these changes occurred as a 
result of a sensitivity reaction to Co and Cr ions derived 
from metal wear particles. In 1975, Jones et al83 associ-
ated necrosis of bone and capsular tissues from retrieved 
first-generation MoM prostheses with a toxic and hyper-
sensitivity reaction to cobalt that caused an avascular 
phenomenon. In 1977, Brown et al84 examined peripros-
thetic tissues of 20 failed McKee-Farrar implants and 
found that these contained evidence of tissue necrosis in 
the soft tissue and bone, and that in some cases this 
necrosis was very extensive – all specimens showed a 
macrophage response to metallic debris and in some 
cases a lymphocytic infiltrate was noted. In 1996, Doorn 
et  al85 noted necrosis and extensive connective tissue 
degeneration (which they termed necrobiosis) in peri-
implant tissues around first- and second-generation MoM 
hip implants. They also noted a lymphocyte and plasma 
cell infiltrate in all cases. These histopathological findings 
of marked tissue necrosis and a heavy chronic inflamma-
tory cell infiltrate in periprosthetic tissues were in keeping 
with other experimental and clinical results, which indi-
cated that cytotoxicity and hypersensitivity can occur as a 
consequence of metal wear particle deposition.

In conclusion, histopathological findings in peripros-
thetic tissues reflect the pathobiology of the host innate 
and adaptive immune response to wear particle deposi-
tion. The non-specific innate foreign body response 
(leading to macrophage accumulation and tissue necro-
sis) and the adaptive immune response (characterised by 
the presence of numerous lymphocytes) are processes 
that are not mutually exclusive, but intimately related, 
leading to the maintenance of chronic inflammation in 
periprosthetic tissues. The physicochemical characteris-
tics of implant-derived wear particles including particle 
size and composition, as well as particle load, play a 
major role in determining the nature of the host response 
and the specific modes of failure associated with certain 
types of implant. Some consistency is required in the ter-
minology used by surgeons, radiologists and patholo-
gists to refer to the manifestations/complications of 
implant failure. The term ALVAL was originally used to 
describe the morphological finding of a perivascular lym-
phoid infiltrate in periprosthetic tissues.49,50 It should not 
be used as a blanket term to describe all the pathological 
changes associated with MoM implant failure. Nor should 
it be used to refer to all the clinical manifestations of the 
adverse tissue reactions associated with MoM implants. 
The term ‘pseudotumour’ should also not be used in this 
way – its use should be restricted to mass lesions 
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associated with MoM implants (and not MOP implants). 
The acronym ARMD (adverse response to metal wear 
debris) has been used to describe the spectrum of clinical 
features and pathological changes that occur in peripros-
thetic tissues as a consequence of metal wear particle 
deposition. In histological terms, ARMD does not have a 
specific morphological definition and refers to features of 
both the innate and adaptive immune response with evi-
dence of cytotoxicity, tissue necrosis, a macrophage 
response to metal particles and a heavy lymphoid infil-
trate in periprosthetic tissues.
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