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ABSTRACT

Adult-onset immunodeficiency (AOID) is associated with the presence of anti-IFN-γ 
autoantibodies (auAbs). In disseminated nontuberculous mycobacterial (dNTM) infection 
with AOID, neutralization of IFN-γ by auAb may play a role in disease susceptibility, 
but other molecular mechanisms are likely to contribute. In this study, dNTM patients, 
including inactive, active but non-progressive and active, progressive cases were enrolled to 
measure plasma anti-IFN-γ auAb by ELISA and underwent whole-blood RNA sequencing. 
Healthy control individuals were also enrolled. Plasma IL-8 was then quantified to confirm 
transcriptomic analysis. Results revealed that anti-IFN-γ auAb titers were significantly 
increased in patients with active stage of disease. Gene expression could separate patients 
with active infection from individuals with no signs of infection (inactive patients and 
healthy controls). In active cases, there was over-expression of inflammatory pathways and 
under-expression of type-2 immunity pathways. Interestingly, increased levels of plasma IL-8 
(p=0.0167) not only confirmed gene expression results but also correlated with the presence 
of neutrophilic dermatitis (p=0.0244). In conclusion, our findings highlight the value of 
anti-IFN-γ auAb titers for predicting disease reactivity and first propose IL-8 as a promising 
mediator to be further explored, given its correlation with skin reactive disease, a hallmark of 
active dNTM infection.
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INTRODUCTION

Nontuberculous mycobacteria (NTM) can cause opportunistic infections (1). NTM pulmonary 
disease, the most common condition, is primarily seen in patients with underlying lung 
diseases (2). However, in immunocompromised hosts, for example in patients with AIDS 
caused by HIV, extrapulmonary as well as disseminated nontuberculous mycobacterial 
(dNTM) infection are often seen (3). Among dNTM patients with undetectable HIV, a feature 
of the disease is the presence of blood circulating autoantibodies (auAb) against IFN-γ, which 
is strongly associated with adult-onset immunodeficiency (AOID) (4,5).

Circulating anti-IFN-γ auAb can neutralize many of the functions of IFN-γ resulting in 
increased susceptibility to infections with intracellular pathogens, particularly NTM (6-8), but 
the function of these Abs in the pathogenesis of dNTM infection is unknown. While ELISA 
can be used to measure circulating levels of the Abs, assays such as STAT1 phosphorylation 
are required to determine their functional properties (9,10). We previously reported that 
measurement of circulating anti-IFN-γ auAb inhibitory titer is useful for diagnosis of dNTM 
and also could be used as a monitoring tool for disease activity (10,11).

Most patients have long-term NTM infections, and some are unresponsive to antimicrobial 
treatment and experience progressive clinical outcomes (12). The dNTM infections in those 
with AOID often require hospitalization and death rates are high even after receiving anti-
mycobacterial chemotherapy or immunotherapy (12,13). It is therefore difficult to predict 
disease progression after therapy, so understanding host responses at different stages of the 
disease is important to understand mechanisms and to improve disease outcomes.

This study aimed to determine if levels of circulating anti-IFN-γ auAb, and transcriptome 
profiles, in dNTM patients could help stratify patients with different clinical characteristics. 
Differences in anti-IFN-γ auAb titers before and after receiving treatment were compared in 
dNTM patients with different outcomes. RNA sequencing (RNA-seq) of whole-blood samples 
of representative healthy individuals and each cohort of dNTM patients was conducted to 
explore gene expression patterns. Blood transcriptomic analysis has been proven to provide 
remarkable insights across many infectious, non-infectious and inflammatory diseases 
(14-17), as well as offering reliable performance in discriminating patients with different 
disease stages (18,19). In this study, our bioinformatic analyses successfully revealed 
pathways associated with immunopathogenesis of dNTM infection and these findings were 
subsequently confirmed by a measurement of the most relevant mediator in plasma. Our 
findings highlight the value of anti-IFN-γ auAb titers for monitoring and predicting disease 
reactivity. Importantly, we propose IL-8 as a key mediator possibly contributing to reactive skin 
disorders, such as Sweet syndrome (1,20), a hallmark of active dNTM infection with AOID.

MATERIALS AND METHODS

Sample enrollment and definitions
Patients with a history of dNTM infection were recruited in this study from May 2022 to 
February 2023 at Srinagarind Hospital, Khon Kaen University, Thailand. Ethics approval 
for the research protocol was reviewed by the Institutional Review Board of Khon Kaen 
University (HE651152) in compliance with the Declaration of Helsinki. Written informed 
consent was obtained from all participants prior to collection of peripheral whole blood into 
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6-ml-heparinized tubes. Each heparinized whole-blood sample was centrifuged at 3,500 rpm 
for 10 min to separate plasma from blood cells. The collected plasma samples were stored at 
−80°C until the measurements of anti-IFN-γ auAb and IL-8 were performed. Plasma-depleted 
whole-blood samples were immediately used for total RNA isolation.

The dNTM infection was defined by either NTM blood culture positive or the presence of 
NTM infection in more than one organ, with reactive skin disorders such as Sweet syndrome, 
pustular psoriasis, generalized pustulosis, or erythema nodosum. Cases with concurrent 
or subsequent opportunistic infections were included. Cases with NTM infection confined 
solely to the lung, HIV positive and nosocomial infections were excluded (1,10,21). The 
dNTM patients were divided among several subgroups. Patients with “Inactive Infection” 
were those who had no signs of infection and had discontinued anti-mycobacterial 
treatment during the previous 30 days from the day of sample collection, but still required 
intermittent monitoring. The “Active Infection” cohort included patients who required oral 
and/or intravenous anti-microbial drugs to control progression of their disease during the 
previous 30 days from the day of sample collection (10). The “Active Infection” group was 
then classified into 2 categories; “Non-progressive,” who had stable disease symptoms and 
continued receiving anti-microbial treatment without requiring hospitalization during the 
previous 12 months, or “Progressive,” if they experienced worsening clinical outcomes after 
treatment and required hospitalization during past 12 months (13,22).

Surplus plasma samples of dNTM patients taken at the day of initial diagnosis from routine 
service at Srinagarind Hospital, Khon Kaen University, Thailand, were paired with their own 
subsequent samples collected at the current enrollment to examine the dynamic changes of 
anti-IFN-γ auAb titers over the following years. The time elapsed since the initial diagnosis 
varied among samples, but all were within the 5-year period. Healthy individuals with no 
detectable indicators of infection were enrolled as a control cohort in accordance with 
guidelines for the management of blood and blood components of the Blood Transfusion 
Center, Srinagarind Hospital.

Measurement of anti-IFN-γ auAb from human plasma samples
Heparinized plasma samples were thawed from −80°C and ELISA used to quantify anti-
human-IFN-γ Ab level as inhibitory titer units. The detailed technique protocols have been 
published previously (10,11,13,21). Briefly, recombinant human IFN-γ (BD Biosciences, 
Franklin Lakes, NJ, USA) at a final concentration of 300 pg/ml was incubated with serially 
diluted heparinized plasma for 1 h at 37°C to allow plasma anti-IFN-γ Ab binding with the 
recombinant IFN-γ. The level of free IFN-γ in the incubation mixture was then determined 
by a human IFN-γ ELISA kit (BD OptEIA; BD Biosciences), following the manufacturer’s 
instructions. The reported inhibitory titer of the anti-human-IFN-γ auAb was the lowest 
dilution of plasma where IFN-γ resulted in >50% binding (the plasma dilution which an IFN-γ 
level below 150 pg/ml was first observed).

Quantification of plasma IL-8
Thawed heparinized plasma samples were subjected to measure concentrations of IL-8 
using an IL-8 Human ELISA Kit (BD OptEIA; BD Biosciences), following the manufacturer’s 
instructions.
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Total RNA purification from human whole-blood samples
Plasma-depleted whole-blood samples were subjected to total RNA isolation using the QIAamp 
RNA Blood Mini Kit (Qiagen, Valencia, CA, USA), following the manufacturer’s protocol. 
Purified RNA samples were kept frozen at −80°C before undergoing transcriptomic profiling at 
the Omics Science and Bioinformatics Center, Chulalongkorn University, Thailand.

Total RNA concentration was measured using DeNovix fluorimeter (DeNovix, Wilmington, 
DE, USA). Sample purity was checked using Nanodrop (Thermo Fisher Scientific, Waltham, 
MA, USA) and integrity of the total RNA was assessed using an Agilent 2100 Bioanalyzer 
(Agilent Technologies, Inc., Santa Clara, CA, USA).

RNA-Seq library construction and sequencing
Five representative healthy individuals and five patients from each dNTM cohort were 
randomly selected for RNA-seq analysis. Approximately 500 ng total RNA from each sample 
was used to create individually indexed strand-specific RNA-Seq libraries by using QIAseq 
Stranded mRNA Library kits (Qiagen). The reactions were subjected to fragmentation and 
cDNA synthesis and then QIAseq Beads (Qiagen) were used to separate the cDNAs from the 
reaction mixtures. Indexing adapters were ligated to the cDNAs, and all cDNA libraries were 
subsequently inspected for quality by Agilent 2100 Bioanalyzer (Agilent Technologies, Inc.) 
and quantified using a DeNovix fluorimeter (DeNovix). The indexed sequencing libraries 
were pooled in equimolar quantities and subjected to cluster generation, followed by paired-
end 150-nucleotide read sequencing on an Illumina HiSeq sequencer (Illumina Inc., San 
Diego, CA, USA).

Bioinformatic analysis
Raw-read data files were subjected to quality assessment using FASTQC software. Adapter 
and poor-quality reads were removed using Fastp and Trimmomatic version 0.38 (23). 
For quality control of raw data, base calling was performed using Illumina RTA software 
(Illumina Inc.). Demultiplexing was performed by Illumina bcl2fastq 2.17 software based on 
index information including the number of reads at 5.0 Gb (range, 2.6–7.7) and quality score 
(Q30) at 84.5% (ranged, 76.8%–89.8%).

After the quality assessment, the fastq files were used as input for mapping using HISAT2 
version 2.2.1 (24) which used Homo sapiens GRCh38 (accession No. GCA_000001405.28) as 
reference (25). To obtain raw gene-count data, featureCounts (26) and htseq version 2.0.2 
(27) were used. R studio package DESeq2 was used for the transcript counts (28). Package 
ComplexHeatmap for heatmap visualization (29) and package EnhancedVolcano for volcano-
plots by statistical determination of p-value <0.01 and fold change cut-off at 1.5 (available 
from: https://github.com/kevinblighe/EnhancedVolcano) were subsequently used. A flow 
chart of this methodology is shown in Supplementary Fig. 1.

To further identify the enrichment of Gene Ontology (GO) terms and Reactome pathways, 
enrichment analysis and visualization were performed using ClusterProfiler (30). The GO 
terms and Reactome pathways were obtained from org.Hs.eg.db package for human genome-
wide annotation (available from: https://bioconductor.org/packages/org.Hs.eg.db/) and 
ReactomePA (31), respectively.
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Estimation of cell-type fractions using CIBERSORTx
To estimate cell-type fractions in bulk whole-blood RNA-seq data, we employed a 
computational deconvolution approach using CIBERSORTx. Raw gene count data were 
transformed to counts per million (CPM) using edgeR (32). The CPM-normalized data 
were filtered to exclude non-expressed genes and those lacking gene symbols. The filtered 
dataset was then analyzed using the web-based CIBERSORTx tool (33), with batch correction 
enabled. We utilized the LM22 signature matrix, which comprises 547 marker genes for 22 
distinct human hematopoietic cell phenotypes, to determine the proportion of each cell type 
in individual transcriptome samples (34).

Data analysis
Statistical tests and visualization were performed using GraphPad Prism version 9.5.1 
(GraphPad Software, San Diego, CA, USA) and R studio version 4.3.0. Data were assessed for 
their normal distribution using the D’Agostino & Pearson test. Comparisons of non-normally 
distributed data were performed using Kruskal-Wallis tests. Comparisons of paired samples 
were performed using one-tailed paired t-tests. χ2 test was applied to assess the significant 
differences of categorial data.

RESULTS

Significantly higher anti-IFN-γ auAb inhibitory titers in active dNTM infection 
compared to those with inactive infection
Fifty-eight participants including 11 healthy controls and 47 dNTM-infected patients with 
AOID were recruited in this study. Based on their clinical histories, there were 17 “Inactive 
Infection”; 15 “Non-progressive Active” and 15 “Progressive Active” cases among the 
dNTM-infected patients. General characteristics of our participants are shown in Table 1. 
There were no significant differences in terms of the age range, proportion of females/males 
or occurrence of underlying conditions. Anti-IFN-γ auAb was undetectable in all healthy 
controls, as expected. Anti-IFN-γ auAb was detected in 14/17 (82.4%) of inactive dNTM cases 
and in all active dNTM cases (Table 1).

Deeper analysis of our data showed significantly elevated levels of plasma anti-IFN-γ auAb in 
the plasma of patients with active dNTM infection, compared to those with inactive infection 
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Table 1. General characteristics of all participants in this study
Parameters Healthy controls 

(n=11)
dNTM patients (n=50) p-value

Inactive Infection  
(n=17)

Non-progressive Active  
(n=15)

Progressive Active  
(n=15)

Age (years) 51.8±2.5 64.3±3.8 56.9±1.9 54.1±5.1 n.s.*
Number of females 8 (72.7) 10 (58.8) 7 (46.7) 10 (66.7) n.s.†

Underlying conditions
Diabetes mellitus 1 (9.1) 1 (5.9) 2 (13.3) 1 (6.7) n.s.†

Hypertension 2 (18.2) 1 (5.9) - - n.s.†

Chronic kidney disease - 2 (11.8) 3 (20.0) 3 (20.0) n.s.†

Dyslipidemia - 2 (11.8) 3 (20.0) 2 (13.3) n.s.†

Asthma - - 1 (6.7) - n.s.†

Hypothyroidism - 1 (5.9) - - n.s.†

Positive inhibitory anti-IFN-γ auAb titre, n (%) - 14 (82.4) 15 (100.0) 15 (100.0) <0.0001‡

Values are presented as average ± SE or number (%).
n.s., non-statistically significant.
*Statistical differences were tested with one-way ANOVA; †Statistical differences between dNTM patients and healthy controls were tested with χ2.



(Fig. 1A). Moreover, the titers in patients with progressive clinical outcomes tended to be 
higher than in those with non-progressive infection, (p=0.05; Fig. 1A). We then analyzed 
changes in auAb titers from the initial diagnosis (baseline) to the day of enrollment in this 
study (endline) (Fig. 1B). In inactive dNTM patients, mean titers of baseline samples fell 
into the range of 1,000–10,000 but had significantly decreased to 100–1,000 by the time of 
enrollment in the present study (p=0.0312). All inactive dNTM-infected cases exhibited either 
stable or declining trajectories. Therefore, from the initial day of diagnosis, patients with 
an inactive state tended to exhibit lower auAb titers overtime. In active dNTM group, mean 
auAb titers at baseline in both non-progressive and progressive cases (exceeding 10,000) 
were remarkably higher than those observed in inactive dNTM infection (below 10,000). 
Dynamically, progressive active patients exhibited the increased auAb titers (p=0.0156) 
and displayed either stable or increasing trajectories in all cases. In non-progressive active 
patients, while overall trend showed a decrease in titers over subsequent years (p=0.0244), 
some individuals presented increasing levels. This variability complicates the accurate 
stratification of the auAb trajectories among active infection subgroups (Non-progressive 
Active vs. Progressive Active). However, despite the varying trajectories observed in non-
progressive cases, auAb titers in all active dNTM cases remain significantly higher than those 
with inactive dNTM infections throughout the course of disease.
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Figure 1. Comparison of plasma anti-IFN-γ auAb inhibitory titers among participants in this study. (A) Anti-IFN-γ auAb inhibitory titers at the current enrollment 
(endline) of healthy individuals, inactive, non-progressive active, and progressive active dNTM infections. Dot plots with horizontal lines of geometric means and 
95% confidence intervals were shown. Statistical differences were tested using Kruskal-Wallis with Dunn’s multiple-comparison tests. (B) Dynamics of anti-IFN-γ 
auAb inhibitory titers from the day of initial diagnosis (baseline) to the day of enrollment in the present study (endline). Dashed lines represent results from the 
paired sample measurements which were statistically tested using Wilcoxon matched pairs signed rank test. Significant differences were determined as p<0.05.



Different patterns of whole-blood transcriptome profiles of active dNTM 
infection compared to those with no sign of infection
To investigate the differences in gene expression by circulating leukocytes among patients 
with different clinical conditions and healthy controls, samples from 5 representative cases 
of each group were subjected to transcriptome profiling. The characteristics of the selected 
samples are shown in Supplementary Table 1. The Inactive Infection group comprised 3 
cases with negative auAb titers and 2 cases with titers at 100. The Non-progressive Active 
group was comprised of 4 cases with titers at 10,000 and another case with a titer of 100,000. 
Finally, the Progressive Active group was comprised of 2 cases with titers at 10,000 and 3 
cases with titers at 100,000, 200,000, and 400,000. The bioinformatics pipeline following 
RNA sequencing is shown in Supplementary Fig. 1. Principle component analysis (PCA) 
of all detectable genes showed clustering of healthy control and inactive dNTM patients, 
while patients with active infection appeared to form a separate cluster (Fig. 2A). Therefore, 
we decided to group healthy control and inactive dNTM patients together as “No signs 
of Infection” versus “Active Infection” (progressive and non-progressive dNTM) for some 
bioinformatics analyses.

We identified differentially expressed genes (DEGs) by comparing expression levels of genes 
in the “Active Infection” group to those in the “No signs of Infection” group. This identified 
168 up-regulated and 164 down-regulated genes in patients with “Active Infection” (Fig. 2B). 
The PCA of DEGs clearly placed “Active Infection” and “No signs of Infection” samples in 
different clusters (Fig. 2C). An unsupervised heatmap analysis of the DEGs shows detailed 
expression levels of genes from each individual (Fig. 2D). This shows clear separation of gene-
expression patterns in those with “Active Infection” from those with “No signs of Infection.”

Over-expression of inflammatory responses, especially production of IL-8, in 
active dNTM infection
Pathway analysis of up- and down-regulated DEGs was then performed using two analysis 
tools: GO and Reactome pathways. Of the 168 up-regulated DEGs from active dNTM cases, 
the top ten GO terms of biological processes are shown in Fig. 3A. All top ten GO terms 
have the same significant adjusted p-value of 0.038. Interestingly, 5 of these pathways are 
associated with regulation of inflammatory cytokines, including: TNF-mediated signaling 
(GO:0010803); cytokine-mediated signaling (GO:0001959); response to cytokine stimulus 
(GO:0060759); positive regulation of IL-8 production (GO:0032757); and positive regulation 
of TNF-mediated signaling pathways (GO:1903265). Gene network analysis identified several 
pattern-recognition molecules encoding genes including MRC1, NAIP, CD24, CR1, and TLR5 
(Fig. 3B). Moreover, HSPA1A and HSPA1B, members of heat shock protein (HSP) family, were 
present in all top ten GO terms.

Analysis of gene expression via the Reactome database, identified that the most significant 
and prevalent pathways among the top 10 are related to cellular responses to stress which 
include the attenuation phase (R-HSA-3371568), and HSP/heat shock factor related pathways 
(R-HAS-3371571, R-HAS-3371497, and R-HAS-3371453) (Fig. 3C). In addition, the analyses 
identified that neutrophil degranulation (R-HSA-6798695) and extracellular signaling via 
G-protein coupled receptors (GPCRs; R-HSA-418594 and R-HSA-500792) are prominent 
among over-expressed DEGs (Fig. 3C). Within these three core pathways observed in active 
dNTM patients, gene network analysis revealed that HSP-encoding genes (HSPA1A and 
HSPA1B) were associated with neutrophil degranulation, while gene sets of extracellular 
signaling via GPCRs are separate from other pathways within the top ten Reactome pathways 

Transcriptomic Analysis of NTM Patients With High Anti-IFN-γ

https://doi.org/10.4110/in.2024.24.e36 7/19https://immunenetwork.org



(Fig. 3D). These results suggest that neutrophil degranulation and cellular responses to 
stress are related to each other and are distinguished from the pathways of GPCR signaling. 
Supporting with the cell-type proportion analysis of our whole blood transcriptome using 
CIBERSORT revealed a significant increase in neutrophil responses (+42.1% relative 
percentage change) (Fig. 4A) when comparing the “No sign of Infection” group to the “Active 
Infection” group (p=0.0232) (Fig. 4B).
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To confirm the observations from the whole-blood transcriptomics analysis regarding the 
overexpression of pro-inflammatory cytokines and neutrophil degranulation in patients with 
active dNTM infection, we measured IL-8 concentration in plasma from our patients and 
determined if levels were correlated with clinical conditions. Fig. 5A shows a significantly 
elevated IL-8 concentration in the plasma of the active dNTM patients compared to the 
inactive group (p=0.0167). However, we found no significant correlation between plasma 
IL-8 levels and anti-IFN-γ auAb titers (p=0.2225, R2=0.03363) (Fig. 5B). Of the active dNTM 
patients, 6 cases had a history of neutrophilic dermatosis (ND) in previous visits, but not on 
the day of enrollment in this study. Four cases presented ND on the day of enrollment and 
all four had higher plasma IL-8 concentrations than those with a history of ND (p=0.0244). 
Cases with no indication of ND demonstrated a broad range of IL-8 concentrations (Fig. 5C).
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Down-regulation of type-2 immune-response pathways in patients with 
active dNTM infections
The top 10 GO terms in biological processes of the 164 down-regulated DEGs from the 
active dNTM-infection group, are shown in Fig. 6. Five GO terms associated with immune 
responses were identified, including: response to LPS (GO:0032496); Type-2 immune 
response and its regulation (GO:0042092 and GO:0002828); and T cell cytokine production 
and its regulation (GO:0002369 and GO:0002724) (Fig. 6A). Interestingly, NLR family pyrin 
domain containing 3 (NLRP3) and arginase-1 (ARG1) were present in all GO terms related 
to immune responses, suggesting downregulation of inflammatory signaling via NLRP3 
inflammasome activation and alternatively activated macrophages, in patients with active 
dNTM infection (Fig. 6B). Other genes within the network (CCR2, IL-1B, CLC, LEF1) also 
support under-expression of macrophages and T cell-mediated responses.
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Analysis using the Reactome database show significantly down-regulated pathways for: 
rhodopsin-like receptors (R-HSA-373076); GPCR ligand binding (R-HSA-500792); and 
negative regulation of T-cell factor (TCF)-dependent signaling by Wnt ligand antagonists 
(R-HSA-3772470) (Fig. 6C). Network analysis revealed that many DEGs within pathways of 
rhodopsin-like receptors and GPCR ligand binding are shared, but different genes exist 
within negative regulation of TCF-dependent signaling by Wnt ligand antagonists (Fig. 6D). 
Among the shared genes, most are receptor-encoding genes related to allergic inflammation 
(PTGDR2, HEH4, HRH2, CXCR5, CCR7, and OXER1), which support the findings via GO terms 
of under-expression and regulation of type-2 immune responses. Supporting with the 
cell-type proportion analysis showed a significant decrease naïve B cells (−79.5% relative 
percentage change), CD4 naïve T cells (−74.4% relative percentage change), and CD4 resting 
memory T cells (−74.4% relative percentage change) (Fig. 4A) when comparing the “No signs 
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of Infection” group to the “Active Infection” group (p=0.0072, p=0.0123, and p=0.0201, 
respectively) (Fig. 4C-E).

Possible biomarkers to differentiate progressive from non-progressive forms 
of active dNTM infection
We then compared gene expression between active dNTM patients with progressive 
infections versus non-progressive infections. In the former category, we identified 43 up-
regulated and 20 down-regulated genes differentially expressed relative to the latter (Fig. 7A). 
In unsupervised heatmap analysis, sets of up-and down-regulated genes were differentially 
expressed in those with progressive disease and non-progressive disease (Fig. 7B). All 43 
up-regulated DEGs in the progressive group are listed in Supplementary Table 2 while the 20 
down-regulated DEG are listed in Supplementary Table 3.

DISCUSSION

The presence of circulating anti-IFN-γ auAb, commonly recognized as AOID, worsens disease 
outcomes for dNTM patients. Our previous study showed the ability of anti-IFN-γ auAb titers, 
measured by inhibitory ELISA, to differentiate dNTM patients with active clinical outcomes 
from inactive patients, using a titer cut-off at ≥5,000 with 92.7% sensitivity, 100% specificity, 
100% positive predictive value and 76.9% negative predictive value (10). This study confirms 
and enhances our previous report that measurement of anti-IFN-γ auAb levels is an effective 
diagnostic and monitoring tool for identifying patients with active infection, with substantial 
prognostic value. We show here that during the course of dNTM infection, there is a significant 
decrease in anti-IFN-γ auAb in cases with inactive clinical outcomes and these changes in titers 
could help clinicians to monitor and predict the clinical improvement. A titer of less than 100 
predicts the inactive stage of the disease, but larger studies and validation are required before 
this could be adopted into clinical practice. Among the active dNTM patients, anti-IFN-γ auAb 
levels at the current enrollment (endline) tend to have a potential to distinguish (p=0.05) those 
with progressive from those with non-progressive infections. In the dynamic analysis, elevated 
anti-IFN-γ auAb titers were observed in progressive cases, but non-progressive cases showed 
unpredictable variation within the titer range of 1,000–100,000. Therefore, based on these 
findings, we conclude that the trajectories of anti-IFN-γ auAb titers could not differentiate 
between active dNTM patients who progressed and those who did not. However, they could 
distinguish high auAb titers in the active stage from those in the inactive stage.

Our experiments employing whole-blood transcriptomics identified gene-expression 
patterns that can separate participants with active dNTM infection from those with no 
signs of infection (inactive dNTM infection and healthy individuals). DEGs demonstrated 
that i) upregulation of inflammatory cytokine-response pathways and ii) cellular pathways 
related to cell-stress conditions were associated with the active stages of dNTM infection. 
Conversely, type-2 immune responses were downregulated in these patients. These results 
suggest that inflammatory pathways are activated and that regulatory control mechanisms 
are impaired. Significantly, these predictions match the clinical observations for the role of 
an inflammatory phenotype in disease pathology.

The major clinical outcomes of dNTM infection include lymphadenopathy and reactive 
skin diseases (1,20) that are the result of overactive, persistent immune activation. Our 
data predict that IL-8 is likely to be a key player in immunopathology of this disease. IL-8 
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potently attracts and regulates neutrophils (35). A significant elevation of plasma IL-8 
in active dNTM infection compared to the inactive group confirmed our transcriptomic 
results. Interestingly, the potential of plasma IL-8 levels for discriminating patients with 
current neutrophilic dermatitis from patients with a prior history of neutrophilic dermatitis 
aligns with the disease pathogenesis caused by IL-8-mediated neutrophil activation and 
degranulation. Sweet syndrome, the most common skin disease among dNTM patients, 
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is associated with neutrophilic infiltrates in the dermis (1). Recently, marked increases of 
IFN-γ and IL-17 in tissue, despite the presence of circulating anti-IFN-γ auAb, have been 
proposed to be an inflammatory network enhancing aberrant neutrophil functions leading 
to immunopathology found in patients. (36). In the present study, we hypothesize that 
recruitment and activation of neutrophils within skin lesions are mediated by circulating 
IL-8, which is consistent with the evidence linking IL-8 as a predictor of neutrophil tissue 
infiltration in advanced cancer (37) and infectious diseases (38,39). High levels of IL-8 have 
also been observed locally in skin biopsies taken from patients with Sweet syndrome (40,41). 
Therefore, the significantly elevated levels of plasma IL-8, together with the whole-blood 
transcriptome profiles indicating a pro-inflammatory phenotype in active dNTM patients, 
could explain the pathogenesis of reactive skin diseases, especially Sweet syndrome.

Analysis of the predicted gene networks regulated in active dNTM patients, sheds new 
insights into potential pathological mechanisms. Among the over-expressed DEGs, pathways 
indicating cell stress and neutrophil degranulation (that are distinguishable from signaling 
through GPCRs) implies that neutrophil degranulation could additionally be amplified by 
cell-stress molecules, such as endogenous alarmins. HSP70 detected in the extracellular 
milieu are classified as damage-associated molecular patterns (DAMPs) (42) and HSP70 can 
induce Toll/IL-1 receptor signaling, subsequently activating innate immune cells (43). In the 
context of active dNTM infection, HSPs as DAMPs would serve as endogenous stimuli for 
immune activation. Thus, in synergy with IL-8, the cycle of neutrophil degranulation and 
inflammatory damage would be perpetuated.

GPCRs are versatile receptors that bind numerous extracellular signals to regulate a variety 
of cellular responses (44). The network of GPCR pathways with different sets of genes that 
are both over- and under-expressed DEGs could help identify the pattern of responses during 
disease progression. Our analyses of the up- and down-regulated GPCR pathways indicate 
that active dNTM infection might selectively induce neutrophil-mediated inflammation 
but suppress T cell-derived responses. IFN-γ-primed mononuclear phagocytes and Th1 
responses provide effective defense against mycobacteria (8,45). However, our data show 
downregulation of genes related to monocyte-derived macrophages, including ARG1, IL-1β, 
monocyte chemoattractant protein-1 receptor (CCR2) and NLRP3 inflammasome (NLRP3), 
which indicates suppression of effector cells against NTM. These observations highlight the 
role of anti-IFN-γ auAb in active dNTM patients in blocking IFN-γ/IL-12 regulatory pathways, 
potentially leading to increased susceptibility to infection (6-8,46).

The anti-IFN-γ auAb has been reported to be associated with opportunistic infections, 
particularly disseminated NTM (4,47). Binding of the auAb to a major epitope of IFN-γ 
(amino acids 121-131) neutralizes downstream signaling of its receptor, leading to 
impaired antimicrobial responses (4,48,49). More recently, a clinical study of systemic 
lupus erythematosus patients with anti-IFNγ auAb revealed an increased chance of severe 
infections (50). Our observations indicate that anti-IFNγ auAb were present in all active 
dNTM cases and a significant proportion of inactive dNTM cases (14/17, 82.4%). We also 
observed increased responses from neutrophils while decreased responses from naïve B cells, 
CD4 naïve T cells, and CD4 resting memory T cells. This aligns with previous research on the 
immunophenotyping of NTM-infected patients with anti-IFN-γ auAb, which demonstrated 
higher Ab-enhancing B cells, plasmablasts, and T helper 17 cells, while naive and regulatory 
T cells were decreased (51). Taken together, these findings suggest that immune responses in 
active dNTM patients are more likely to be pathogenic rather than protective against NTM.
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Observations from this study indicate that both plasma anti-IFN-γ auAb inhibitory titers and 
plasma IL-8 levels can discriminate between active dNTM patients and those with inactive 
infections. However, these 2 biomarkers are not correlated with one another (Fig. 5B). This 
suggests that determination of plasma IL-8 levels should not replace measurement of anti-
IFN-γ auAb inhibitory titers for dNTM diagnosis. Instead, measurement of plasma IL-8 levels 
could function as an additional laboratory test for the purpose of monitoring disease activity, 
although further validation is required for this practice to be adopted.

In our study, we have analyzed samples covering all disease stages (inactive patients, 
active-progressors, active non-progressors) and we also matched the cases before and 
after treatment, to record changes of anti-IFN-γ auAb inhibitory titers over the course of 
treatment. This approach has enabled us to propose that anti-IFN-γ auAb inhibitory titers 
could be used as prognostic indicators for disease reactivity and treatment outcomes, 
especially for cases of inactive infection. We observed fluctuations in anti-IFN-γ auAb 
inhibitory titers in active non-progressors and propose that these may be caused by the 
heterogeneity of treatment periods. From our transcriptomic analyses, we predict that IL-8 
could participate in the pathogenesis of reactive skin diseases observed in active dNTM 
patients. However, we are aware that our small sample size in each patient cohort for 
transcriptome profiling (n=5), together with the use of whole blood that may have varying 
numbers of white blood cells in different patients, may impact the robustness of our 
findings. For example, whole-blood analyses do not allow us to identify the source of IL-8. 
Nevertheless, our whole-blood transcriptomics data has shed important new insights into 
the pathogenesis of dNTM infection, particularly the match between the clinical correlations 
and our findings of IL-8-mediated neutrophilic dermatitis.

In conclusion, this study has revealed decreased plasma anti-IFN-γ auAb inhibitory titers 
after treatment of inactive dNTM patients. This could assist clinicians in monitoring disease 
activity and decision-making for treatment options to improve patient outcomes and 
management. We also provided new insights into disease pathogenesis: increased IL-8 is 
proposed as the key inducer of neutrophils in generating reactive skin lesions, especially 
Sweet syndrome. This novel finding of the role for IL-8 may be used to inform therapy, for 
example indicating use of neutralizing Abs, or other therapeutic interventions to alleviate 
severe inflammation and immune-mediated pathology in active dNTM patients.
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Supplementary Table 1
General characteristics of 5 representative participants in each group for transcriptomic 
analyzes
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Supplementary Table 2
List of 43 up-regulated DEGs compared between active infected patients with progressive 
disease versus non-progressive outcomes after treatment

Supplementary Table 3
List of 20 down-regulated DEGs compared between active infected patients with progressive 
disease versus non-progressive clinical outcomes after treatment

Supplementary Figure 1
Flowchart of bioinformatics pipeline for transcriptomic analyses in this study. After fastq 
files had passed the quality check and poor-quality removal process, the fastq files were used 
as input for preparation process, beginning with mapping by HISAT2 version 2.2.1. Homo 
sapiens GRCh38 (accession No. GCA_000001405.28) was used as reference. Gene count was 
performed using featureCounts and htseq version 2.0.2 prior to the analysis via R studio by 
using package DESeq2. Data was visualized as heatmap and volcano plot.
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