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Abstract: L-arginine and its derivatives, asymmetric and symmetric dimethylarginine (ADMA and
SDMA) and L-homoarginine, have emerged as cardiovascular biomarkers linked to cardiovascular
outcomes and various metabolic and functional pathways such as NO-mediated endothelial function.
Cellular uptake and efflux of L-arginine and its derivatives are facilitated by transport proteins. In this
respect the cationic amino acid transporters CAT1 and CAT2 (SLC7A1 and SLC7A2) and the system
y+L amino acid transporters (SLC7A6 and SLC7A7) have been most extensively investigated, so far,
but the number of transporters shown to mediate the transport of L-arginine and its derivatives
is constantly increasing. In the present review we assess the growing body of evidence regarding
the function, expression, and clinical relevance of these transporters and their possible relation to
cardiovascular diseases.
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1. Introduction

Cardiovascular diseases (CVD) remain the primary cause of mortality worldwide [1]. According
to the World Health Organization (WHO), cardiovascular diseases are estimated to cause 17.9 million
premature deaths worldwide annually. Inflammation, oxidative stress, and endothelial dysfunction
which are strongly associated with various classical and non-classical CVD risk factors, are on the front
line in the onset and progression of atherosclerosis and CVD in general.

Numerous independent risk markers for adverse cardiovascular outcomes have been identified
so far. Nonetheless, only a few of them are considered established risk factors possibly suitable
for therapeutic interventions. L-arginine-nitric oxide (NO) signaling plays a critical role in vascular
function [2], a low plasma concentration of L-arginine results in impaired L-arginine-NO signaling
and may promote endothelial dysfunction [3,4]. Therefore, L-arginine supplementation has been
investigated as a possible therapeutic approach [5,6]. However, while preclinical and short-term
interventions have shown promising results [7–9], the success remains somewhat limited in terms of
long-term outcome and survival benefit so far [10]. Changes in the L-arginine plasma concentration
have been associated with effects on nitric oxide synthase (NOS) activity that would not be expected
based on the known affinity of endothelial NOS (eNOS/NOS3) for L-arginine. This has also been
referred to as an “L-arginine paradox” [11], hinting at possible effects of inhibitors, such as asymmetric
dimethylarginine (ADMA), or some form of compartmentalization [12–14].
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Moreover, while L-arginine and its endogenous homologue L-homoarginine, which is also
a substrate of nitric oxide synthase (NOS), have been investigated as a protective risk marker,
the methylated L-arginine derivatives asymmetric and symmetric dimethylarginine (ADMA and
symmetric dimethylarginine (SDMA)) have been studied as risk markers, which may impair L-arginine
dependent pathways (for reviews see [15,16]). These markers show several interrelations of
their biochemical pathways, but partly rather divergent (patho-)physiological associations with
clinical outcomes.

In addition to the well-established role of L-arginine as a substrate for NO-mediated signaling [2],
experimental and epidemiological data summarized in the following section indicate strong associations
of its derivatives ADMA, SDMA, and L-homoarginine with cardiovascular function and cardiovascular
outcomes. An understanding of the regulation of their plasma concentrations and homeostasis is
essential to understand the interrelation and pathophysiological properties of these markers.

Vallance et al. demonstrated that accumulation of ADMA in renal failure or infusion of ADMA in
healthy volunteers may impair NO-synthesis and endothelial function in renal failure [17]. Subsequently,
ADMA was also found to be associated with hypertension [18,19]. Even though elevated plasma
ADMA levels were reported in patients with chronic kidney diseases (CKD) [17], the role of impaired
renal function in ADMA metabolism remains partly elusive [20,21]. Given the possible adverse effects
of ADMA on endothelial (i.e., vascular) function and survival [22–24], an efficient ADMA clearance
may represent a relevant mechanism to counteract its harmful effects.

ADMA is eliminated through intracellular enzymatic degradation mainly by dimethylarginine
dimethylaminohydrolase 1 (DDAH1) [23,25], alanine-glyoxylate aminotransferase 2 (AGXT2) [26],
and possibly some other mechanisms such as acetylation [27] and by renal excretion [28]; hence cellular
uptake is essential for its degradation. Moreover, the important role of the liver in the elimination of
ADMA may not only be attributable to the metabolism of ADMA, but also to transport protein-mediated
excretion into the bile [29]. Despite its structural similarity to ADMA, SDMA appears not to directly
interfere with NO-synthesis and endothelial function at physiological concentrations. Still, SDMA
is independently associated with total mortality and adverse cardiovascular outcomes (discussed
elsewhere in more detail [30]), leaving possible causal mechanisms to be elucidated. The independent
association of L-homoarginine and renal function was found to be inverse to that of ADMA and
SDMA [31–35]. L-homoarginine was also described to be a weak substrate of NOS and inhibitor of
arginases. However, while biologically possible, these putative pathomechanisms may not completely
explain the observations.

Moreover, as also detailed further below and evident from the data presented in Table 1, L-arginine
and its derivatives ADMA, SDMA and L-homoarginine appear to be differentially handled in renal
tubular cells, despite having relatively similar chemical properties, leading to marked increases
and decreases, respectively, in their urinary concentration. Taken together, these findings suggest
that distinct transport mechanisms for L-arginine and its related metabolites constitute a necessary
prerequisite for compartmentalization and the differential handling and “uses” of these compounds by
organs and tissues.

It is the focus of this review to provide insights into the transport of L-arginine and its derivatives.
The following sections aim to provide an update on the transport protein-mediated cellular uptake and
release of L-arginine and its derivatives, providing key characteristics of the major transport proteins
involved, and, where available evidence linking these transport proteins to human disease with a
special focus on CVD.

2. Transporter Families Shown to Transport L-Arginine and/or Its Derivatives

As cationic amino acids, L-arginine and its derivatives do not readily diffuse across cell membranes
but rather require some protein-mediated transport mechanism. In humans, at least 18 transporters are
considered to mediate the exchange of L-arginine and its derivatives across the cell membrane or between
the cytoplasm and cellular organelles such as the mitochondria or lysosomes. These transporters mostly
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belong to the solute carrier (SLC) superfamily. These include SLC3, SLC6, SLC7, SLCO/SLC21, SLC22,
SLC25, SLC38, SLC47 (Figure 1 and Table 2). In addition, members of the adenosine triphosphate
(ATP)-binding cassette (ABC) superfamily may also contribute to the cellular exchange of L-arginine
and its derivatives (Figure 1 and Table 2). For practical reasons the order of presentation of the
respective transporters will follow the transporter nomenclature rather than their biological function.

Figure 1. Schematic diagram of known L-arginine and its derivatives transporters.

2.1. The Solute Carrier (SLC) Superfamily

The SLC transporters (~400 genes) in mammalian cells consist of 65 distinct families, grouped
based on their amino acid sequence (primary structure) and their transport function (a systematic
record is provided by http://slc.bioparadigms.org/).

2.1.1. SLC6 Family

The SLC6 family is the family of the sodium- and chloride-dependent neurotransmitter transporters.
To date about 20 different SLC6 genes have been identified in the human genome [36] that can be
further classified into several branches (gamma amino butyric acid transporter branch, the monoamine
transporter branch and the amino acid transporter branches 1 and 2) based upon their substrate
specificity and sequence similarity [36]. The SLC6 family transport proteins accept a wide range
of substrates including neurotransmitters, proteinogenic amino acids, betaine, taurine and creatine.

http://slc.bioparadigms.org/
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Within this family, the neurotransmitter transporters were initially identified, and thus, it is recognized
as the family of neurotransmitter sodium symporters (NSS) or the Na+/Cl−-dependent transporter
family [37].

SLC6A14 (ATB0,+)

ATB0,+ (Amino acid Transporter responsible for the activity of system B0,+), encoded by the
gene SLC6A14 (Table 2), was functionally identified by Kekuda et al., and cloned from human
choriocarcinoma and colon carcinoma [38]. Sloan et al. showed that the expression of SLC6A14 mRNA
was significantly higher in human lung and trachea than in other organs [39]. In addition, this sodium-
and chloride-dependent neutral and basic amino acid transporter is expressed in pancreas, pituitary,
skeletal muscle, placenta, human colon carcinoma cell lines [40,41], and intestine, colon, and kidney
proximal tubules [39], where it is located in the luminal membrane [42].

This transporter recognizes neutral and cationic amino acids, excluding aspartate and
glutamate [43]. It has some unique characteristics, which differ from other amino acid transporters.
The transport activity is dependent on Na+/Cl−, highly concentrative, electrogenic [39], and influenced
by the membrane potential [44,45]. So far, ATB0,+ is the only member of this family that has been
identified to transport L-arginine. Studies in human bronchial epithelial cells reported KM values
of 80 µM for ATB0,+-mediated L-arginine uptake, which most likely is in the range of physiological
relevance. The KM value for L-arginine uptake by human ATB0,+ when expressed in Xenopus oocytes
was reported to be 104 µM [39]. Issues with regard to the interpretation of KM values obtained in
different experimental settings will be addressed in the conclusion.

The SLC6A14 gene has been linked to several diseases (e.g., obesity, ulcerative colitis, colon
cancer, breast cancer, and cervical cancer) [46–50]. A meta-analysis of large genome-wide association
studies (GWAS) identified the SLC6A14 gene as a potential secondary modifier of cystic fibrosis (CF)
comorbidities [51]. A recent study demonstrated that ATB0,+ plays a crucial role in L-arginine transport
across the airway epithelial membrane [52]. In this ex vivo study, it was shown that inhibition of the
ATB0,+ function in primary human respiratory cell cultures together with the SLc6a14 gene knockout
in mice resulted in increased L-arginine concentration in the airway surface liquid.

Interestingly, ATB0,+ expresses functional characteristics that may promote tumor growth: (1) Its
ability to transport a large array of amino acids involved in various metabolic pathways vital for tumor
growth. (2) Its capacity to facilitate amino acid uptake in a highly concentrative manner. Indeed,
overexpression of SLC6A14 has been reported in various cancers (e.g., colon cancer, breast cancer,
pancreatic cancer, and cervical cancer) [47,48,50,53]. SLc6a14-knockout mice have been generated
which do not express any visible physical or metabolic phenotype. However, development and
growth of breast cancer were notably suppressed in a murine mammary tumor virus-polyoma middle
tumor-antigen (MTV-PyMT) model deficient in SLc6a14 as compared to MTV-PyMT mice expressing
SLc6a14 [54], indicating the potential tumor-promoting activity of ATB0,+ in the mammary gland.
However, until now, no studies have been undertaken to investigate whether L-arginine derivatives
(e.g., ADMA, SDMA, and L-homoarginine) are also recognized by this transporter. So far, there is no
evidence for its involvement in NO-signaling or CVD.

2.1.2. SLC7 Family

The SLC7 family (cationic amino acid transporter/glycoprotein-associated family) consists of
two subgroups of transport proteins, cationic amino acid transporters (CATs) and heterodimeric
(glycoprotein-associated) amino acid transporters (HATs) [55]. CATs are relatively selective for
L-arginine and related compounds, including L-lysine and L-ornithine, whereas HATs have a
broad(er) spectrum of substrates also including leucine, glutamine, tryptophan [56]. From the
SLC7 family, CATs have been most extensively studied as a transport system for L-arginine and its
derivatives. Five members of the CAT family have been cloned, so far. The transport is sodium-
and pH-independent [57]. Several CATs have been shown to be sensitive to trans-stimulation [58].
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CATs facilitate substrate accumulation against a concentration gradient because of a sensitivity to the
membrane potential [59].

SLC7A1 (CAT1)

Of the five CATs proteins, CAT1, a high-affinity electrogenic transporter, was the first to be
described at a molecular level. It was initially cloned by Albritton et al. in search of the host cell
protein accountable for infection by the murine ecotropic leukaemia virus (MuLV [60]). The SLC7A1
gene encoding human CAT1, was mapped to chromosome 13q12-q14. Excluding the adult’s liver and
lacrimal gland [61,62], relevant CAT1 expression can be observed in almost every cell or tissue, albeit at
different expression levels (Table 3). CAT1 expression was shown to be modulated by several factors
which include insulin, angiotensin II, hormones, nutrients, inflammatory cytokines, and amino acid
starvation [63].

By expression in Xenopus oocytes, it was shown that CAT1 facilitates the transport of cationic
amino acids (CAAs) [64]. CAT1 transport activities depend on three different factors: concentration
gradient, chemical gradient, and membrane potential [65]. CATs are sensitive to trans-stimulation,
with CAT1 being the most pronounced [55,66,67]. This feature enables CATs to transport L-arginine
and its derivatives both into and out of cells (Figure 2), leading to an exchange of cationic amino acids
across the two sides of the membrane which depends on the presence of substrate on either side of
the membrane (for review see [66]). Trans-stimulation increases the complexity of in vivo transport
kinetics as the intra- and extracellular concentrations of the exchange partners and their respective
transport mechanisms have to be considered as well as factors affecting the dynamic equilibrium of
L-arginine and its derivatives across cellular membranes. The transport process is also electrogenic,
involving the net movement of a positive charge. Based on data from in vitro studies it has been
suggested that CAT1 is one major determinant of the plasma levels of L-arginine and its derivatives.
CAT1 has been reported to be predominantly expressed in endothelial cells and is assumed to be
responsible for 70–95% of L-arginine uptake [68].

CAT1 has a distinct feature that may enable this protein to play a significant role in endothelial
function: it colocalizes with eNOS in endothelial cell caveolae. This colocalization may enable a direct
local transfer of extracellular L-arginine by CAT1 to membrane-bound eNOS, thus making CAT1 a
potentially selective supplier of L-arginine for eNOS [69]. CAT1 has mainly been studied as a L-arginine
transporter, with early inhibition data indicating a likely role in the transport of ADMA and SDMA as
well [70]. As a high-affinity transporter, CAT1 transports L-arginine with apparent KM values in the
range of 100 to 519 µM, depending on the model used [71,72]. In a human embryonic kidney (HEK)
cell model the apparent KM values for CAT1-mediated L-arginine influx was reported to be 519 µM
and 183 and 175 µM for ADMA and L-homoarginine, respectively [71,73]. When interpreting the
KM values for the different substrates, their plasma or tissue concentrations have to be considered as
well. Because in relation to typical plasma concentrations of 100 µM and 0.5 µM for L-arginine and
ADMA, respectively, more L-arginine than ADMA may be transported by this transporter, in absolute
as well as in relative terms, despite the transporter’s lower KM for ADMA as compared to L-arginine.
No direct studies have been reported for SDMA, so far, but inhibition of L-arginine transport by
SDMA has competitive characteristics, indicating SDMA is a substrate as well [70,71]. The uptake
of L-arginine was inhibited by ADMA and SDMA with half maximal inhibitory concentration (IC50)
values of 758 and 789 µM, respectively [71]. L-homoarginine inhibited L-arginine transport with an
IC50 of 1320 µM [73]. These IC50 values suggest that L-arginine transport is unlikely to be affected in a
clinically important manner by physiological concentrations of ADMA, SDMA, and L-homoarginine.
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Table 1. Physiological characteristics of L-arginine and its derivatives.

L-Arginine Asymmetric Dimethylarginine
(ADMA)

Symmetric Dimethylarginine
(SDMA) L-Homoarginine

Plasma concentration
Reference values in healthy
populations (2.5th–97.5th

centile)

41–114 µM [74]; 72.4–113.7 µM
[75,76] 0.41–0.96 µM [77] 0.27–0.67 µM [77] 1.6–2.6 µM [77];

1.4–2.5 µM [78–81]

Source/synthesis

Diet (85–90%; ca. 5 g/day) [82]
and 10–15% endogenous
synthesis in the kidney
(16 µM/kg/hr) [83,84]

Endogenous hydrolysis of
proteins containing

asymmetrically methylated
L-arginine residues [85];

possible contribution of diet [86]

Endogenous hydrolysis of
proteins containing

symmetrically methylated
L-arginine residues [85];

possible contribution of diet [86]

Endogenous synthesis by
glycine amidino transferase

(AGAT) [87];
possible contribution of diet [88]

Metabolism

Major enzymes: L-arginine:
glycine amidino transferase

(AGAT), NO synthases (NOS; 3
isozymes), arginases (2

isozymes), and L-arginine
decarboxylase [89]

Dimethylarginine
dimethylaminohydrolase 1

(DDAH1) accounts for > 80% of
the metabolic elimination [25];

Dimethylarginine
dimethylaminohydrolase 1
(DDAH2) [90]; AGXT2 [26]

Primarily by renal
excretion [91]; AGXT2 [92,93]

Metabolized by
alanine—glyoxylate
aminotransferase 2

(AGXT2) [94]; arginase and
NO-Synthases [95] (relative
contribution are uncertain)

Renal clearance ~0.14 mL/min [96–100] ~69 mL/min [101] ~71 mL/min [101] ~0.7 mL/min [78–81,102]
Association of plasma

concentration and renal
clearance

Positive correlation with
estimated glomerular filtration

rate (eGFR) [74]

Weak inverse correlation with
eGFR [103]

Strong inverse correlation with
eGFR, like creatinine [103]

Positive correlation with
eGFR [104]

Association with mortality and
cardiovascular disease

In most studies no independent
biomarker for cardiovascular
events or total mortality [105];
In short term supplementation

studies associated with
functional improvements of
endothelial function [106]

Elevated plasma concentration
independently predicts total

and cardiovascular
mortality [30]

Elevated plasma concentration
independently predicts total

and cardiovascular
mortality [30]

Low plasma concentration
independently predicts total

and cardiovascular
mortality [33,107,108]
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Table 2. Nomenclature of transporters of L-arginine and its derivatives.

Gene Human/Rodent. Protein Alternative Protein
Name, (Assoc. with) Transport Type

SLC3A1/SLc3a1 rBAT NBAT Chaperone (not transporting)

SLC3A2/SLc3a2 4F2hc CD98hc, FRP Chaperone (not transporting)

SLC6A14/SLc6a14 ATB0,+ β-alanine carrier F

SLC7A1/SLc7a1 CAT1 System y+, ATRC1 F (non-obligatory E)

SLC7A2/Slc7a2 CAT2A & CAT2B System y+, ATRC2 F (non-obligatory E)

SLC7A3/SLc7a3 CAT3 System y+, ATRC3 F (non-obligatory E)

SLC7A6/SLc7a6 y+LAT2 System y+L
[4F2hc]

E (intracellular cationic
amino acids/Na+-independent

against
extracellular large neutral

amino acids/Na+-dependent)

SLC7A7 y+LAT1 System y+L
[4F2hc]

E (intracellular cationic
amino acids/Na+-independent

against
extracellular large neutral

amino acids/Na+-dependent)

SLC7A9/SLc7a9 b0,+AT System b0,+

[rBAT]

E (preferentially extracellular
cationic

amino acid and cystine against
intracellular neutral amino acid)

SLCO4C1/Slco4c1 OATP4C1 SLC21A2, OATP4C1,
OATPX, OATP-H F

SLC22A2/SLc22a2 OCT2 None F

SLC25A2/SLc25a2 ORNT2 ORCT2
F (non-obligatory E:

homoexchange, heteroexchange,
unidirectional)

SLC25A15/SLc25a15 ORNT1 ORC1
F (non-obligatory E:

homoexchange, heteroexchange,
unidirectional)

SLC25A29 ORNT3 ORC3
F (non-obligatory E:

homoexchange, heteroexchange,
unidirectional)

SLC38A4/SLc38a4 SNAT4 ATA3 F

SLC38A7 SNAT7 None F

SLC38A8 SNAT8 None F

SLC47A1 MATE1 None E

ABCB1 P-gp None F

Detailed information about the SLC genes can be found at http://www.bioparadigms.org. Aggregated from
references [56,108–110]. rBAT, related to b0,+ amino acid transport; NBAT, neutral and basic amino acid transport;
4F2hc, 4F2 cell-surface antigen heavy chain; ATB0,+, Amino acid transporter responsible for the activity of
system B0,+; CAT1, cationic amino acid transporter 1; CAT2A/B, cationic amino acid transporter 2A/B; CAT3,
cationic amino acid transporter 3; y+LAT1/2, system y+ large amino acid transporter 1/2, b0,+AT, b0,+ amino acid
transport; OATP4C1/OATPX/OATP-H, organic anion transport polypeptide 4C1; OCT2, organic cation transporter 2;
ORNT1/2/3, ornithine transporter 1/2/3; ORC1/2/3, ornithine transporter 1/2/3; SNAT4/7/8, sodium-coupled neutral
amino acid transporters 4/7/8; MATE1, multidrug and toxin extrusion protein 1; P-gp; permeability-glycoprotein;
CD98hc, cluster of differentiation 98 heavy chain; FRP, fusion regulatory protein; ATRC1/2/3, human cationic amino
acid transporter 1/2/3; ATA3, amino acid transporter A3. E, exchanger (antiporter); F, facilitator (uniporter).

The lack of CAT1 in homozygous knockout SLc7a1 mice was found to be lethal [109]. Loss of
function of L-arginine transport of up to 70% by small interfering RNA (siRNA)-mediated knockdown
of SLc7a1 resulted in delayed conceptus growth and abnormal function compared to the wild type [110].
These data suggest that at least in mice CAT1 is crucial during early development.

http://www.bioparadigms.org


J. Clin. Med. 2020, 9, 3975 8 of 41

A study by Kakoki et al. linked rat CAT1 to hypertension [111]. They observed that infusion
with an antisense oligonucleotide against CAT1 lead to a reduction of CAT1 expression in the renal
medulla that was associated with decreased NO levels and development of hypertension in rats. In line
with this Yang et al. observed an association of a single nucleotide polymorphism (SNP) ss52051869
(g.29514470G > A) in the 3′UTR of human SLC7A1 with predisposition to essential hypertension in the
Australian population [112]. Using SLc7a1 transgenic mice the authors showed that overexpression
SLc7a1 results in significantly higher NO production and greater sensitivity of endothelial cells to
acetylcholine compared with the wild-type mice. Later on, the same authors found that the altered
SLC7A1 expression was possibly mediated by disruption of miR-122 (micro RNA 122) binding [113].
Following this, a Finnish cohort study [114] reported another SNP in the SLC7A1 gene (rs41318021;
g.29514470G > A). Herein, it was reported that after a 15-year follow-up study, the CT or TT variants of
the SNP were associated with a moderately higher predisposition to elevated diastolic blood pressure
than the CC genotype.

However, in two independent clinical studies assessing whole blood transcriptome-wide gene
expression, SLC7A1 expression was found to be elevated in patients with atrial fibrillation [115,116].
In contrast to the SNP studies, associating SNPs related to impaired expression with hypertension,
the elevation of expression in atrial fibrillation could also reflect a response to atrial fibrillation, rather
than being its cause. Furthermore, several studies showed that SLC7A1 expression can be modulated
by amino acid supplementation, drugs or hormones, possibly mediating (adverse) drug effects.

Among others, cyclosporine A (CsA) was found to inhibit the cellular uptake of L-arginine
by modulating CAT1 protein levels in human umbilical vein endothelial cells (HUVECs), which
may result in impaired NO production and endothelial dysfunction [117]. The authors showed that
CAT1 abundance was significantly reduced following a 48h incubation with CsA. These findings
may explain some of the adverse cardiovascular effects of CsA, such as hypertension. Similarly,
a study in HUVECs showed that progesterone inhibits arginine transport by modulating CAT1
expression via both protein kinase C-alpha (PKC α) and extracellular signal-regulated kinase 1/2
(ERK1/2) phosphorylation [118]. In contrast, CAT1 transport activity was found to be stimulated by
estradiol through modulation of constitutive signaling transduction pathways involving extracellular
signal-regulated kinase. These data may explain some of the observed effects of female sex hormones
on the NO-mediated endothelial function [118].

Moreover, it has been reported that continued release of thyroid hormones may modulate
mRNA expression of CAT1 through various mechanisms (e.g., integrin inhibition, genetic αv
subunit down-regulation, or by phosphatidyl-inositol-3 kinase, mitogen-activated protein kinases,
or intracellular calcium signaling inhibitors) which modulated L-arginine transport and results in
altered endothelial production of NO and vascular tone. Thus, alterations of this mechanism may
involve in some of the cardiovascular abnormalities in thyroid disorders [119]. Inflammatory mediators
(e.g., tumor necrosis factor-α) (TNF-α) have been found to play a role in CAT1-mediated influx and
efflux of L-arginine transport in endothelial cells [120].

Given the prominent role of CAT1 in cellular uptake and exchange of L-arginine and its emerging
links to vascular function and hypertension (Table 4), CAT1 deserves further investigation not only as a
target for adverse drug effects affecting CAT1-mediated uptake of L-arginine, but also as potential target
to modulate the uptake and distribution of L-arginine and its derivatives in cardiovascular disease.
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SLC7A2 (CAT2A and CAT2B)

The human cationic amino acid transporter 2 (CAT2) was initially cloned from human intestine
cDNA library [121]. The SLC7A2 gene is located on chromosome 8p22. Alternative splicing of
the SLC7A2 gene leads to the expression of CAT2A and CAT2B comprising 657 and 658 amino
acids, respectively. They vary in 19 residues in the region of transmembrane helices 8 and 9 [72].
Both transporters facilitate the cellular uptake and exchange of cationic amino acids, but differ in their
tissue distribution and transport characteristics.

In contrast to CAT1, CAT2A and CAT2B have a more restricted expression pattern [61]. CAT2A
is predominantly expressed in the liver, with additional, but much lower, expression in pancreas,
cardiomyocytes, skeletal and vascular smooth muscle, and in cardiac endothelial cells [66]. From studies
investigating cationic amino acid transport in mouse liver evidence emerged for the existence of a
low-affinity but high-capacity transporter [122]. In line with this, HEK cells overexpressing human
CAT2A show a matching low-affinity, high-capacity transport pattern (Table 3) [123].

Figure 2. Transport of L-arginine and its derivatives in different cell types. Arrow indicates the direction
of transport. ATB0,+: amino acid transporter responsible for the activity of system B0,+; CAT1: cationic
amino acid transporter 1; CAT2A and CAT2B: cationic amino acid transporters 2A and 2B; MATE1:
multidrug and toxin extrusion protein 1; OATP4C1: organic anion-transporting polypeptide 4C1; OCT2:
organic cation transporter 2; ORNT1: ornithine transporter 1; ORNT2: ornithine transporter 2; ORNT3:
ornithine transporter 3; P-gp: P-glycoprotein; SNAT7: sodium-coupled neutral amino acid transporter
4; SNAT7: sodium-coupled neutral amino acid transporter 7; SNAT8: sodium-coupled neutral amino
acid transporter 8; y+LAT1: system y+L amino acid transporter 1; 4F2hc: 4F2 cell surface antigen heavy
chain; y+LAT2: system y+L amino acid transporter 2.
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Table 3. An overview of tissue distribution of L-arginine and its derivatives transporters on selected
organs and tissues (based on mRNA and protein expression).

Organ/Tissue Transporter

Kidney

Tubular cells (luminal side) b0,+AT-rBAT, MATE1, and P-gp

Tubular cells (blood side) CAT1, OCT2, OATP4C1, and
y+LAT1-4F2hc

Unspecified CAT1

Intestines ATB0,+, OCT2, CAT1, and P-gp

Liver CAT2A, SNAT4, P-gp, and MATE1

Blood vessel Endothelial cells CAT1, CAT2B, y+LAT1, and y+LAT2

Heart CAT1

Brain CAT1, CAT3, y+LAT1-4F2hc, ATB0,+,
OCT2, SNAT7, and SNAT8

Others

Monocytes y+LAT1-4F2hc

Lymphocytes CAT2B

Erythrocytes y+LAT1-4F2hc, y+LAT2-4F2hc,

Placenta y+LAT1-4F2hc, y+LAT2-4F2hc, CAT1,
CAT2B, CAT3, OCT2, and SNAT4

Platelets y+LAT1-4F2hc

Macrophages CAT2B

Skin CAT1

Intracellular
Lysosomes SNAT7, and SNAT8

Mitochondria ORNT1, ORNT2, and ORNT3

For detailed information about the SLC genes, please visit: https://www.ncbi.nlm.nih.gov/gene. Aggregated from
references [56,124–126].

The transport mechanisms of these CAT transporters have been studied in various
experimental models.

The affinity of human CAT2A for L-arginine and ADMA is relatively low, with KM values of
approximately 3000 µM and 4000 µM, respectively (Table 5) [72,123]. CAT2A transport is not saturated
by L-homoarginine, whilst no direct data are available for the transport of SDMA by this transporter [73].
Of note, significant CAT2A-mediated uptake of both ADMA and L-arginine was detected only at high
ADMA and L-arginine concentrations and not at physiological levels [123].

The cationic amino acid transporter 2 (CAT2B) is expressed as an inducible protein with a still low
(KM value of 952 µM) but slightly higher affinity for L-arginine than the one of CAT2A [123], despite
its close similarity. A previous study from our laboratory using human embryonic kidney (HEK) cells
overexpressing CAT2B demonstrated that CAT2B transported L-arginine and ADMA with KM values of
952 and ≈4021 µM, respectively, and VMax values of 15,300 and ≈14,300 nmol ×mg protein−1

×min−1,
respectively [123]. Similar to CAT2A, the CAT2B-mediated transport of SDMA has not been
investigated yet.

The liver plays an important role, not only in L-arginine uptake and metabolism by arginases, but
also in the absorption and metabolism of ADMA and SDMA from the circulation [29,127–130]. Altered,
i.e., mostly elevated, plasma concentrations of L-arginine [131] and its methylated derivatives [132–134]
have been reported in liver diseases, i.e., impaired liver function. So far, there is no direct evidence
if high L-arginine or ADMA concentrations may affect CAT2A expression. Nevertheless, it can be
assumed that in all of these cases, the ability of CAT2A to facilitate quantitative uptake of L-arginine
and ADMA at high concentrations may play a role. As CAT2 mRNA is abundantly expressed in

https://www.ncbi.nlm.nih.gov/gene
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the liver, the low affinity but high capacity of CAT2A for L-arginine and related substrates [123]
enables this organ to remove excess (post prandial) cationic amino acids from the blood without
significantly competing with the uptake of theses substrates by transport systems of other tissues at
lower concentrations [122].

While CAT1 is ubiquitously expressed [68], its extracellular L-arginine uptake is decreasing once
intracellular cationic amino acids are depleted [67] (Table 4). Therefore, cells with higher arginine
consumption (e.g., macrophages) [135] may induce CAT2B expression to provide immediate transport
of L-arginine to meet functional needs. In line with this, a number of studies reported that CAT2B
function is a potential target to modulate immunity [135–138]. Several mediators and drugs may
stimulate the expression of CAT2B leading to increased cellular L-arginine uptake. Among others,
rapamycin stimulates CAT2B mRNA and protein expression in HUVECs resulting in increased
L-arginine transport [139]. Several inflammatory cytokines (e.g., interleukin 4 and interleukin 10,
interferon gamma (IFN-γ) and tumor necrosis factor alpha (TNF-α) have been reported to stimulate
expression and L-arginine transport in macrophages [140]. Moreover, TNF-α and supernatants of both
Pseudomonas aeruginosa and Staphylococcus aureus also stimulate mRNA and protein expression of CAT2B
and L-arginine influx in human corneal epithelial cells [141], suggesting that under inflammatory
conditions, cells with inducible CAT2B may increase L-arginine availability particularly for iNOS.

Table 4. Transporters of L-arginine and its derivatives involved in the pathophysiology of the
cardiovascular system.

Transporter (Gene/Protein) Function Relevance to Pathophysiology of
Cardiovascular System

SLC7A1/CAT1
Selective supplier of L-arginine to

endothelial NOS; involved in
interorgan transport of ADMA

NO-mediated endothelial
function [12]; reduced activity
increases risk for endothelial

dysfunction and
hypertension [111,112]

SLC7A2/CAT2

CAT2A Hepatic uptake of ADMA
and SDMA from the circulation.
CAT2B uptake of L-arginine by

Immune cells.

Downregulation of CAT2
expression by miRNA associated

with increased risk for myocardial
infarction [142]

SLC7A-SLC3A2/y+LAT2-4F2hc High affinity uptake of L-arginine
Loss or a very low activity leads to

increase predisposition for
CVD [106]

SLC7A7-SLC3A2/y+LAT1-4F2hc Mediating cellular ADMA efflux Decreased expression associated
with endothelial dysfunction [143]

SLC7A9-SLC3A1/b0,+AT-rBAT
Renal tubular reabsorption of

L-arginine back into the circulation

Involved in L-arginine
homeostasis; loss of function or

reduced activity leads to increase
risk of hypertension [144,145]

SLCO4C1/OATP4C1 Possibly related to renal tubular
efflux of ADMA into the urine

Altered expression associated with
increased risk of

hypertension [146]

SLC22A2/OCT2 Mode of action still unknown Impaired expression associated
with essential hypertension [147]

In addition, CAT2 is also responsible for the transport of L-arginine in myeloid-derived suppressor
cells (MDSC) and is an important modulator of the MDSC suppressive function of T cell response [the
original publication does not distinguish CAT2A and CAT2B]. In mouse models of prostate-specific
inflammation and cancer, CAT2 deficient-MDSC demonstrated significantly reduced capacity for
modulating T cell responses due to diminished L-arginine supply for NO production [148]. In these
models, it was shown that lack of CAT2 leads to enhanced antitumor activity. Furthermore, lack of
CAT2 in murine models showed protective effects against hyperoxia-induced acute lung injury [149].
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Considering the cardiopulmonary pathophysiological impacts of hyperoxia [150], lack of CAT2 may
play a vital role in such conditions.

In a recent cardiovascular health study, SLC7A2 mRNA expression was found to be downregulated
by the micro RNA hsa-miR-545 in myocardial infarction [142]. Moreover, in a GWAS study in Japanese
population, a SNP (rs56335308; g.7561951: G > A) in the SLC7A2 gene was found to be associated
with plasma L-arginine concentrations [151]. However, it is still unclear whether these genetic
variants directly modify the risk of CVD. In 2019, a first clinical case of mutations in the SLC7A2
gene was reported [152]. Genetic analysis identified two loss-of-function mutations in the SLC7A2
gene, which includes maternal allele deletion at c.874delA (p.Ile292Leufs*2) and one large genomic
rearrangement encompassing exons 3 and 4 in the paternal allele. However, no data is available
whether this loss of function is affecting either CAT2A or CAT2B or both proteins. The pathobiochemical
phenotype was characterized by an increasing concentration of cationic amino acids in plasma and
urine. However, it is yet unknown if this patient will develop cardiovascular diseases in a long-term
follow-up, though the findings of this study suggest a possible reduction in iNOS activity.

SLC7A3 (CAT3)

The human cationic amino acid transporter 3 (CAT3), encoded by the SLC7A3 gene, was initially
cloned from human peripheral tissues [153]. This gene is located on X-chromosome (Xq13.1) encoding
a 619-amino acid protein [153]. In rodents, CAT3 is considered as a brain-specific transporter. However,
in humans the highest expression of mRNA has been reported in the thymus, followed by expression in
the brain, uterus, mammary gland, testis, stomach, and ovary [153]. Moreover, CAT3 is highly expressed
during fetal development, and predicted to be involved in embryogenesis and fetal development [154].

CAT3 can be kinetically distinguished from other members of the CAT family by a different
affinity to L-lysine [154]. CAT3 mediates the sodium-independent transport of cationic amino acids
with KM values for L-arginine ranging from 40 to 120 µM (mouse CAT3) and 450 µM (human
CAT3) [154,155]. It yet remains to be elucidated whether this transporter also transports ADMA,
SDMA, and L-homoarginine.

SLC7A3 appears to be highly sensitive to genetic variations in humans, as documented by the
low frequency of detrimental variants in available databases [156]. However, a rare genetic variant
of the SLC7A3 has been described in male individuals, and it has been suggested that in association
with other genetic factors SLC7A3 variants possibly contribute to the etiology of autism spectrum
disorder (ASD) in male subjects [156]. These associations apart possible vascular effects have not been
described yet.

SLC7A6 (y+LAT2) and SLC7A7 (y+LAT1)

The SLC7A6 (located on chromosome 16q22.1–16q22.2) and SLC7A7 genes (located on chromosome
14q11.2) are members of the SLC7 family. SLC7A6 (encoding for the y+LAT2 protein) and SLC7A7
(encoding for the y+LAT1 protein) are similar in substrate selectivity and function. Both function as
heterodimers, requiring the interaction between a “transporter” subunit and a chaperone subunit.
The chaperone is responsible for the trafficking of the transporter to the plasma membrane [56].
The SLC3A2 gene encoding the chaperone 4F2hc, consists of 529 amino acids and is also member of the
SLC family and acts as chaperone for both of y+LAT2 and y+LAT1.

The y+L transporters are high-affinity transport systems for both cationic and neutral amino acids,
with a unique feature of differential Na+-dependence: the influx of neutral amino acids is coupled
to Na+ influx, whereas the efflux of cationic amino acids is independent to Na+ [157]. Both y+LAT1
and y+LAT2 are expressed in the intestine and in the kidney, where they localize to the basolateral
membrane of absorptive epithelial cells (for a review see [158]). Several other tissues (e.g., brain, testis,
parotid, heart, lung, and liver), were also reported to express these transporters [159–162]. Moreover,
SLC7A7 expression is also found in leucocytes, placenta, and lung [55].



J. Clin. Med. 2020, 9, 3975 13 of 41

These heterodimeric SLC transporters play a critical role in the release of absorbed cationic amino
acids from the intestinal lumen and from kidney epithelial cells into the blood. They act as an exchanger
by exporting cationic amino acids (e.g., L-arginine and its derivatives, L-ornithine, and L-lysine) into
the blood in exchange for large neutral amino acids (e.g., glutamine, leucine) [55]. It has been shown
that the system y+L facilitates L-arginine transport in human umbilical vein endothelial cells (HUVECs)
with a KM value of 42 µM [120]. However, these transport studies did not clearly distinguish between
y+LAT1 and y+LAT2. Similar affinities were observed for L-arginine transport by human y+LAT1
(in monocyte-derived macrophages) and human y+LAT2 (in fibroblast) with KM values of 182 and
145 µM, respectively (Table 2). To present, the transport of other L-arginine derivatives by both of
y+LAT1 and y+LAT2 have not been studied.

Closs et al. [143] provided the first clinical evidence linking impaired expression of y+LAT1 to
coronary and endothelial dysfunction resulting from an impaired cellular ADMA efflux and therefore
intracellular ADMA accumulation (Figure 3 and Table 4). Oral L-arginine supplementation improved
coronary and peripheral endothelial function and increased plasma ADMA concentrations. The latter
was attributed to increased release of the elevated intracellular ADMA levels by alternative exchange
transport systems (such as CATs) driven by the cationic amino acid L-arginine. These results suggest
that under physiological conditions, y+LAT1 activity is fundamental in reducing excessive intracellular
ADMA levels for the maintenance of endothelial function. Moreover, these data indicate that at least
some forms of vascular disease involving endothelial dysfunction may be amendable to therapeutic
interventions directed at defective cellular transport.

Figure 3. A schematic diagram of the possible interrelation of the transport of L-arginine and its
derivatives and nitric oxide (NO) signaling in the vasculature.

It has been shown that inflammation is associated with an increased L-arginine transport mediated
by y+LAT1. A number of proinflammatory cytokines, notably IFN-γ, have been described to exerts
significant effects on the expression of y+LAT1 [163] but not y+LAT2, indicating that SLC7A7 is
sensitive to IFN-γ. Furthermore, recent in vitro studies using astrocytes and rat brain endothelial cells
demonstrated that y+LAT2 may have protective effects against hyperammonemic conditions in the
brain [164]. In this study, ammonia-mediated up-regulation of y+LAT2 diminished NO synthesis by
increasing intracellular ADMA and SDMA depletion without any significant changes in L-arginine
concentrations. These in vitro findings suggest that y+LAT2 may play a role in the pathogenesis of
hyperammonemic encephalopathies.

Several studies indicate that genetic variations in the SLC7A7 gene may result in a genetic
predisposition for CVD [106,165]. In 2001, Kamada et al. demonstrated the effect of an L-arginine
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deficiency due to lysinuric protein intolerance (LPI) on vascular endothelial function in humans. In the
reported case, the authors identified two mutations (5.3-kbp Alu–mediated deletion and IVS3+1 G→A)
in the SLC7A7 gene, which lead to a possible loss or a very low y+LAT1 activity [106]. Further analysis
of these mutations revealed an insufficiency of brachial arterial dilatation after L-arginine infusion,
low plasma L-arginine concentrations and impaired NO generation in endothelial cells. The authors
also showed that following L-arginine supplementation, both NO generation and vascular endothelial
function in the patient were normalized. Moreover, Kayanoki et al. report a marked endothelial
dysfunction related to L-arginine deficiency in a patient later diagnosed with LPI [165]. In support of
this, several studies reported that cardiovascular events are more prevalent in LPI patients [106,166,167],
indicating that the SLC7A7 gene is likely to be relevant in the pathogenesis of CVD.

SLC7A9-SLC3A1 (b0,+AT-rBAT)

The heterodimeric b0,+AT-rBAT transporter encoded by the SLC7A9 and SLC3A1 genes, is also
known as “cystine transporter”, based on its association with cystinuria detailed further below [168].
This protein was named based on its transport process; b0,+AT (“b” for broad; lowercase letter represent
sodium independent active transport, and the superscript “0 and +” designating the net charge on
the neutral and cationic amino acid substrates, respectively. Whereas, “r” in rBAT is referred to
“related to BAT (BAT = b0,+ amino acid transport)”. The primary transport activity is mediated by
b0,+AT, while rBAT shows no transport activity and acts as a chaperone for directing b0,+AT to the
correct plasma membrane. The rBAT (SLc3a1 gene) was first isolated by expression cloning in Xenopus
oocytes using both rat and rabbit kidney cDNAs [169–171]. The human SLC3A1 gene was mapped
to chromosome 2p21 [172]. The SLC7A9 gene is located on chromosome 19, region q13.11 [173].
The b0,+AT-rBAT is a high affinity transporter for cationic amino acids and has a low affinity for neutral
amino acids with different mode of Na+ dependency: the uptake of cationic amino acids is independent
to Na+, whereas the efflux of neutral amino acids is Na+-dependent [174]. In humans, b0,+AT-rBAT
proteins are predominantly expressed in the luminal membrane of kidney tubular cells of the kidney
and enterocytes [175].

This protein complex facilitates the electrogenic transport of extracellular cystine and cationic
amino acids for intracellular neutral amino acids [176]. On the intracellular site, the affinity for neutral
amino acids is in the millimolar range [177]. In contrast, on the extracellular site, b0,+AT-rBAT has
a high affinity for cationic amino acids and cystine (micromolar range) [177], which suggests a key
role of this transporter in the renal reabsorption of cystine and cationic amino acids from the urine
(Figure 2). It has been reported that the half-saturation constant for human L-arginine measured in
different expression system was within the range of 100 µM to 180 µM [178–180] (Table 5). Whether
b0,+AT-rBAT also transports ADMA, SDMA, and L-homoarginine remains to be elucidated.

Inactivating mutations in the human SLC7A9 and SLC3A1 genes result in the partial failure
of cationic amino acid reabsorption, clinically impressing as cystinuria. Cystinuric patients excrete
increased amount of cystine and cationic amino acids with their urine [181]. Urinary excretion of
L-arginine and L-homoarginine is increased by factors of one hundred-fold and ten-fold, respectively
in patients with cystinuria while the plasma concentrations of L-arginine and L-homoarginine
are significantly reduced compared to healthy subjects [100]. The heteromeric protein transporter
b0,+AT-rBAT was found to be encoded by rather frequently mutated genes.

So far, approximately 160 mutations have been identified in the SLC3A1 gene and 116 mutations
have been identified in the SLC7A9 gene [182]. Most mutations identified in cystinuria are missense
mutations leading to the change of a single amino acid in the protein. The effect of these mutations
can range from having no effect on protein function to loss of function [183]. It is estimated that
approximately 99% of cationic amino acids are reabsorbed at the apical membrane of proximal kidney
tubules [96,97], indicating that b0,+AT-rBAT mediated transport may have a considerable leverage on
the homeostasis of cationic amino acids.
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Table 5. Characteristics of plasma membrane transporters that accept L-arginine and its derivatives as substrates.

Gene Protein
Pathophysiological and

Clinical Associations
Prototypic Substrate(s) Prototypic Inhibitor(s)

Species (Expression
System)

Evidence for Transport
(Direct = D or Indirect = I)

L-Arginine L-Homoarginine ADMA SDMA

SLC6A14;
SLc6a14 ATB0,+

Susceptibility to secondary
diseases in cystic fibrosis

[184,185]

Cationic amino acids
and neutral amino

acids, excluding
aspartate and
glutamate [43]

Alpha-methyl-
DL-tryptophan

(α-MT) [50]

Human (human
bronchial epithelial

cells) [186]
(I) KM: 80 ± 8.9 µM - - -

Human (Xenopus
oocytes) [39] (D) KM: 104 ± 35 µM - - -

Rat (human
pneumocytes) [43]

(D) KM: 500 ± 110 µM;
VMax: 33.3 ± 2.1 nmol ×
mg protein−1

×min−1
- - -

Rabbit (human cornea)
[187]

(D) KM: 306 ± 72 µM;
VMax: 0.12 ± 0.01 nmol
×mg protein−1

×

min−1

- - -

SLC7A1;
SLc7a1

CAT1

Knockout mice: lethal [109];
knockdown mice: impaired

fetal growth [110]; liver cancer
[188]; colorectal cancer [189],

breast cancer [190];
hypertension [112,113]

Cationic amino acids
(L-arginine,
L-ornithine,

L-lysine,
L-homoarginine,
ADMA, SDMA)

N-Ethylmaleimide
(NEM) [191]

Human
(Xenopus oocytes) [72]

(D) KM: 110–160 µM;
VMax: 1.6–1.8 nmol

L-Arg/oocyte/h
- - -

Human
(human embryonic

kidney/HEK cells) [71]

(D) KM: 519 ± 36 µM;
VMax: 11 ± 0.2 nmol ×
mg protein−1

×min−1;
IC50: 227 µM

(inhibitor ADMA)

-

(D) KM: 183 ± 21 µM;
VMax: 26.9 ± 0.8 nmol ×
mg protein−1

×min−1;
IC50: 758 µM

(inhibitor
L-arginine)

(I) IC50: 789 µM
(inhibitor

L-arginine);
273 µM (inhibitor

ADMA)

Human
(HEK cells) [73]

(D) IC50: 1320 µM
(inhibitor

L-homoarginine)

(D) KM: 175 ± 7 µM;
VMax: 12 ± 0.1 nmol ×
mg protein−1

×min−1;
IC50: 1320 µM

(inhibitor
L-arginine)

(D) IC50: 642 µM
(inhibitor

L-homoarginine)
-

Human (human
fibroblast) [192] (I) KM: 30–200 µM

Human (human
fibroblast) [193] - (I) KM: 40 µM - -

Human (human
hepatocytes) [57] - (I) KM: 300 µM - -

Mouse (Xenopus
oocytes) [64]

(D) KM: 70 µM;
VMax: 190 nmol
L-Arg/oocyte/h

- - -

Mouse (Xenopus
oocytes) [194]

(D) KM: 77 µM;
VMax: 0.98 nmol
L-Arg/oocyte/h

- - -
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Table 5. Cont.

Gene Protein
Pathophysiological and

Clinical Associations
Prototypic Substrate(s) Prototypic Inhibitor(s)

Species (Expression
System)

Evidence for Transport
(Direct = D or Indirect = I)

L-Arginine L-Homoarginine ADMA SDMA

Mouse (Xenopus
oocytes) [72]

(D) KM: 140–250 µM;
VMax: 1.1–1.6 nmol

L-Arg/oocyte/h
- - -

Mouse (human
embryonic fibroblast)

[154]

(D) KM: 107.1 ± 4.1 µM;
VMax: 0.42 ± 0.01 nmol
×mg protein−1

×

min−1

- - -

SLC7A2A;
SLc7a2A

CAT2A L-argininemia [152]

Cationic amino acids
(L-arginine,
L-ornithine,

L-lysine,
L-homoarginine,
ADMA, SDMA)

NEM [191,195]

Human (Xenopus
oocytes) [72]

(D) KM: 3360–3,900 µM;
VMax: 2.2–8.4 nmol

L-Arg/oocyte/h
- - -

Human (HEK cells)
[123]

(D) KM: 3510 ± 419 µM;
VMax: 19.5 ± 0.7 nmol ×
mg protein−1

×min−1
-

(D)
KM: ~ 3033 ± 675 µM;

VMax: ~ 11.8 ± 1.2 nmol
×mg protein−1

×

min−1

-

Human (HEK cells) [73]
(D) IC50: 3265 µM

(inhibitor
L-homoarginine)

(D)
Saturation not reached

(D) IC50: 9244 µM
(inhibitor

L-homoarginine)
-

Mouse (xenopus
oocytes) [72]

(D) KM: 2100–5,200 µM;
VMax: 3.9–7.1 nmol

L-Arg/oocyte/h
- - -

SLC7A2B;
SLc7a2B

CAT2B L-argininemia [152]

Cationic amino acids
(L-arginine,
L-ornithine,

L-lysine,
L-homoarginine,
ADMA, SDMA)

NEM [191]

Human
(Xenopus oocytes) [72]

(D) KM: 320–730 µM;
VMax: 1.2–4.0 nmol

L-Arg/oocyte/h
- - -

Human (Xenopus
oocytes) [70] - (D) Transported

Human (HEK cells)
[123]

(D) KM: 952 ± 92 µM;
VMax: 15.3 ± 0.4 nmol ×
mg protein−1

×min−1
-

(D)
KM: ~ 4021 ± 532 µM;

VMax: 14.3 ± 1.0 nmol ×
mg protein−1

×min−1

-

Human (HEK cells) [73] -
(D) KM: 523 ± 35 µM;
VMax: 11 ± 0.2 nmol ×
mg protein−1

×min−1
- -

Mouse (Xenopus
oocytes) [72]

(D) KM: 250–380 µM;
VMax: 1.1–3.4 nmol

L-Arg/oocyte/h
- - -

Mouse (Xenopus
oocytes) [196] (D) KM: 187 ± 28 µM - - -

SLC7A3;
SLc7a3

CAT3
Autism spectrum disorder

[156]; papillary thyroid
carcinoma [197]

Cationic amino acids
(L-arginine, L-ornithine,

L-lysine)
NEM [191]

Human (Xenopus
oocytes) [153]

(D)
KM: 450 ± 130 µM;

VMax: 1.4 ± 0.3 nmol
L-Arg/oocyte/h

- - -

Mouse (Xenopus
oocytes) [155]

(D) KM: 40–60 µM;
VMax: 16 to 60 nmol

L-Arg/oocyte/h
- - -

Rat (COS7) [198] (D) KM: 103 ± 12 µM - - -
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Table 5. Cont.

Gene Protein
Pathophysiological and

Clinical Associations
Prototypic Substrate(s) Prototypic Inhibitor(s)

Species (Expression
System)

Evidence for Transport
(Direct = D or Indirect = I)

L-Arginine L-Homoarginine ADMA SDMA

SLC7A9/
SLC3A1;
SLc7a9/
SLc3a1

b0,+AT/rBAT

Cystinuria [199]; breast cancer
[200]

Increased prevalence of
hypertension [144,145]

Cystine, Cationic
amino acids

(L-arginine, L-ornithine,
L-lysine), large neutral
amino acids (leucine,

glutamine)

Heavy metal (lead and
mercury) [201]

Human (COS-1 cells)
[175] (I) Transported - - -

Human (COS-7 cells)
[179]

(D) KM: 108 µM;
VMax: 0.65 nmol ×mg

protein−1
×min−1

- - -

Human (MDCK cells)
[180] (D) KM: 179 µM - - -

Human (cystinuric
patients) [100] (I) Argininuria (I) Homoarginiuria - -

Human (Xenopus
oocytes) [179]

(D) Influx (KM: 85 ± 7
µM; VMax: 211 ± 11

nmol
L-Arg/oocyte/h);

efflux (KM: 65 ± 5 µM;
VMax: 6.1 ± 0.2 nmol

L-Arg/oocyte/h)

- - -

Mouse (Xenopus
oocytes)[202] (D) KM: 72 ± 35 µM - - -

Mouse (COS-7) [203]
(D) KM: 203 µM;

VMax: 2570 nmol ×mg
protein−1

×min−1
- - -

Rabbit (Xenopus
oocytes) [204]

(D) KM: 105 µM;
VMax: 29 nmol
L-Arg/oocyte/h

- - -

SLC7A6/
SLC3A2

y+LAT2-
4F2hc

Lysinuric protein intolerance
[205]

Neutral amino acids
(L-glutamine,

L-leucine, L-glycine)
and cationic amino
acids (L-arginine,

L-ornithine,
L-lysine)

-
Human (human
fibroblast) [205]

(D) KM: 145 ± 28 µM;
VMax: 1479 ± 0.09 µmol
×mg protein−1

×

min−1

- - -

Human (Xenopus
oocytes) [159] (D) KM: 0.12–0.14 µM - - -

SLC7A7/
SLC3A2;
SLc7a7/
SLc3a2

y+LAT1-
4F2hc

Lysinuric protein intolerance
[206]; intrauterine growth

retardation [207]; endothelial
dysfunction [106]

Neutral amino acids
(L-leucine, L-valine)
and cationic amino
acids (L-arginine,

L-lysine,
L-ornithine)

-

Human 4F2hc and
mouse y+LAT1
(oocytes) [162]

(I) Transported - - -

Human (MDM) [205]

(D) KM: 182 ± 35 µM;
VMax: 3822 ± 0.24 µmol
×mg protein−1

×

min−1

- - -
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Table 5. Cont.

Gene Protein
Pathophysiological and

Clinical Associations
Prototypic Substrate(s) Prototypic Inhibitor(s) Species (Expression

System)

Evidence for Transport
(Direct = D or Indirect = I)

L-Arginine L-Homoarginine ADMA SDMA

SLC214C1 OATP4C1

Obesity [208]; endometrial
cancer [209]; digoxin
disposition in cardiac

insufficiency [210]

Amphipathic organic
compounds,

bromsulphthalein
(BSP), bile salts,

bilirubin, estrogen
conjugates, thyroid
hormones, neutral

steroid, digoxin,
methotrexate

Nicardipine,
spironolactone,

fluvastatin, crizotinib,
levofloxacin,

clarithromycin,
ritonavir, saquinavir,

quinidine, and
verapamil [211]

Human (HEK cells)
[212] - (D)

KM: 49.9 µM
(D)

KM: 232.1 µM -

Human (madin-darby
canine kidney/MDCK

cells) [213]
(D) KM: 48.1 ± 5.7 µM (D) KM: 49.9 ± 9.6 µM (D) KM: 232.1 ± 78.9

µM -

SLC22A2 OCT2
Potential drug-drug

interactions (metformin and
cimetidine) [214]

1- methyl-4-
phenylpyridinium

(MPP+), 4–4-
dimethylaminostyryl-
N-methylpyridinium

(ASP+), histamine,
tyramine, metformin

[215]

Amitriptyline, doxepin,
lansoprazole,
pantoprazole,

trimipramine [216,217]

Human (HEK cells)
[123]

(D)
KM: > 10,000 µM;

VMax: > 50 nmol ×mg
protein−1

×min−1

-
(D) KM: 967 ± 143 µM;
VMax: 6.3 ± 0.3 nmol ×
mg protein−1

×min−1
-

SLC25A2 ORC2/
ORNT2

Early epileptic encephalopathy
[218]; colorectal cancer [219] Ornithine [220] Spermine and

spermidine [220]

Human (human
proteoliposomes) [220]

Human (human
liposomes) [221]

(D) KM: 710 ± 90 µM;
VMax: 1.2 ± 0.2 µmol ×
mg protein−1

×min−1
(D) Transported

(D) KM: 370 ± 40 µM;
VMax: 0.31 ± 0.05 nmol
×mg protein−1

×

min−1

-

SLC25A15 ORC1/
ORNT1

Hyperornithinemia
hyperammonemia-

homocitrullinuria (HHH)
syndrome [222]

L-ornithine,
L-arginine, carnitine,
and citrulline [220]

Citrulline, lysine,
spermine, and

spermidine [220]

Human (human
proteoliposomes) [220]

(D) KM: 1580 ± 180 µM;
VMax: 3 ± 0.4 µmol ×
mg protein−1

×min−1
(D) Transported - -

SLC25A29 ORC3/
ORNT3

Hyperornithinemia
hyperammonemia-homocitrullinuria

(HHH) syndrome [223]

L-ornithine,
L-arginine, carnitine,
and citrulline [224]

Pyridoxal 5’-phosphate,
tannic acid, HgCl2,

mersalyl, and
p-hydroxy

mercuribenzoate, NEM,
and α-cyano-

4-hydroxycinnamate
[225]

Human (human
proteoliposomes) [225]

(D) KM: 420 ± 40 µM;
VMax: 0.237 ± 0.048
µmol ×mg protein−1

×

min−1

(D) Transported;
Ki: 450 ± 70 µM

(inhibitor
L-arginine)

- -

SLC38A4 NAT3/ATA3 Placental hypoplasia [226]

Neutral amino acids
(L-glutamine,

L-leucine, L-glycine)
[227]

Alpha-(methylamino)
isobutyric acid (MeAIB)

[228]

Human (HRPE cells)
[229]

(D) KM: 300 ± 40 µM;
L-arginine inhibited
glycine uptake 31%

- - -
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Table 5. Cont.

Gene Protein
Pathophysiological and

Clinical Associations
Prototypic Substrate(s) Prototypic Inhibitor(s)

Species (Expression
System)

Evidence for Transport
(Direct = D or Indirect = I)

L-Arginine L-Homoarginine ADMA SDMA

SLC38A7 SNAT7 -

Neutral amino acids
(L-glutamine,

L-leucine, L-glycine)
[227]

(MeAIB) [228] Human (Xenopus
oocytes) [230]

(I) Transported (uptake
4-fold) - - -

SLC38A8 SNAT8 Foveal hypoplasia [231]

Neutral amino acids
(Lglutamine,

L-leucine, L-glycine)
[227]

(MeAIB) [228] Human (Xenopus
oocytes) [232]

(I) Transported (uptake
1.4-fold) - - -

SLC47A1 MATE1 Potential drug-drug
interactions (metformin) [233]

Tetraethylammonium,
metformin, salicylic
acid, quinine, tenofir,
cisplatin [217,233,234]

Cimetidine, imatinib,
clonidine, diltiazem,

imipramine, ranitidine,
chlorhexidine [233,234]

Human (HEK cells)
[123]

(D) Transported
(uptake ratio 1.3) - (D) Transported

(uptake ratio 1.1)

MDR1/
ABCB1 P-gp

Potential drug-drug
interactions (digoxin, rifampin,

quinidine, St. John’s wort,
talinolol, fexofenadine) [235]

Cholesterols, steroid
hormones, bilirubin,
and numerous drugs

(e.g., digoxin,
quinidine, ritonavir,

etoposide, and
dexamethasone)

[236,237]

Verapamil, atorvastatin,
cyclosporine,
progesterone,

quinidine, carvedilol,
bromocriptine,
erythromycin
[235,237,238]

Human (MDCK cells)
[213] -

(D) Transported
(uptake ratio 1.4 at

50 µM)

(D) Transported
(uptake ratio 1.2 at

50 µM)
-

‘–’, not available, not applicable or insufficient information. HEK: human embryonic kidney; MDCK: Madin–Darby canine kidney; HRPE: human retinal pigment epithelial; MDM:
monocytes-derived macrophages; KM: Michaelis constant; VMax: maximal velocity of the transport.
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In a retrospective cohort study, which involved 442 patients with cystinuria an increased prevalence
rate of hypertension with age was observed [144]. Another research group in a specialist cystinuria
centre reported an overall prevalence of hypertension in subjects with cystinuria of 50.8% (61 out of
120 patients were hypertensive), with prevalence in males almost two-fold that of females (62.1% vs.
37.0%) [145]. When compared with the prevalence of hypertension in the normal healthy population,
the prevalence of hypertension in cystinuric patients were 2-fold in men and 1.3-fold in women.

It was also shown that hypertension was associated with the stage of chronic kidney diseases
(CKD); among the patients with normal renal function: 34.1% (10/29) were hypertensive, 50% (34/68) in
the CKD stage 2, and 81% (17/21) of those with CKD stage 3 [145]. Taken together, these data support
a role of SLC7A9 and SLC3A1 mutations in the genesis of hypertension. However, little is known
regarding the precise underlying mechanisms. It would be of interest to evaluate plasma levels of
L-arginine and its derivatives in relation to the long-term clinical outcome in patients with cystinuria.

2.1.3. SLCO/SLC21 Family

The SLC21/SLCO family was initially named SLC21; however, the nomenclature of its members has
been subjected to changes in 2004 based on phylogenetic relationships, and the family was designated
to SLC21/SLCO, the solute carrier family of the organic anion transport polypeptides (OATPs) [239].
The SLC21/SLCO family represents a large group of proteins transporting a variety of substrates,
including anionic, neutral and cationic compounds. Eleven different OATPs have been identified in
humans of which, so far, (only) one member, the organic anion transport polypeptide 4C1 (OATP4C1),
was found to be capable of transporting L-arginine and its derivatives [212].

SLCO4C1 (OATP4C1)

The SLCO4C1 gene encoding human OATP4C1 was mapped to chromosome 5q21.2 and encodes
a protein with 724 amino acid residues. OATP4C1 is expressed in the basolateral membrane of the
kidney proximal tubules [240]. This transporter facilitates Na+-independent uptake of a large variety
of compounds and it is regarded as the first step in the vectorial transport (from blood across proximal
tubule cells into urine) of these compounds (including uremic toxins) [241].

OATP4C1 mediates the transport of structurally diverse compounds including endogenous
substances as such thyroid hormones (e.g., T3 and T4), cyclic AMP (cAMP) as well as drugs such as
cardiac glycosides (e.g., digoxin and ouabain), methotrexate, and the dipeptidyl peptidase-4 inhibitor
sitagliptin [240,242]. Although several members of the SLC21/SLCO family have been identified in
detail, the functional characteristics of OATP4C1 still warrant further research. A recent study using
stably-transfected HEK cells overexpressing human OATP4C1 showed that OATP4C1 can mediate
the uptake as well as the efflux of L-arginine (uptake KM of 48.1 µM) ADMA (uptake KM value of
232.1 µM) and homoarginine (uptake KM value of 49.9 µM) [212] (Table 5), suggesting that OATP4C1
may be involved in the excretion of uremic toxins in renal failure. Uptake of L-homoarginine could
be inhibited by ADMA and SDMA with IC50 values of 117 and 54 µM, respectively. These inhibitory
concentrations are well above the physiological range. A follow up study using double-transfected
MDCK-OATP4C1-p-gp cells simultaneously expressing basolaterally localized OATP4C1 and luminally
localized export pump P-glycoprotein demonstrated vectorial transport of L-arginine, L-homoarginine,
and ADMA suggesting, that also this ABC-transporter may be important for their renal homeostasis of
these compounds [185].

Altered OATP4C1 expression has been linked to CVD events [146,243] (Table 4) and endometrial
cancer tissues [209], and genetic variants of the SLCO4C1 gene were also found to be associated
with obesity [244]. Increased expression of human OATP4C1 in a transgenic rat kidney model leads
to an increased excretion of uremic toxins and reduced hypertension and cardiomegaly [146,243].
In addition, there is emerging evidence that genetic polymorphisms of SLCO4C1 gene in patients with
cardiac insufficiency contribute to renal clearance of digoxin. Based on a population pharmacokinetic
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model, SLCO4C1 SNPs (rs3114660 and rs3114661) were associated with a significantly altered the renal
clearance of digoxin [210].

2.1.4. SLC22 Family

There are currently six subfamilies of SLC22 transporters, which have been predominantly studied
as drug transporters, so far: (1) The organic cation transporter (OCT), (2) The organic cation/carnitine
transporter (OCTN), (3) OCT/OCTN-related, (4) Organic anion transporter (OAT), (5) The OAT-like,
and (6) The OAT-related [245]. Little is known about their role in the cellular uptake and release of
endogenously formed molecules. As detailed below, recent studies suggest a contributing role of some
of these transporters in the cellular handling of L-arginine and its derivatives [123].

SLC22A2 (OCT2)

The organic cation transporter 2 (OCT2) is encoded by the SLC22A2 gene located on
chromosome 6q26. The protein is composed of 555 amino acid residues. This transporter is a low-affinity,
high-capacity carrier that mediates the sodium-independent transport of cationic compounds [246].
OCT2 is strongly expressed in the proximal tubules of the kidney, located in the basolateral membrane
in cells of the S2 and S3 region. Less abundant expression of OCT2 is also observed in the brain,
the inner ear, the small intestine, and the lung [247–250].

Previously identified OCT2 substrates include tetraethylammonium (TEA),
1-methyl-4-phenylpyridinium (MPP+), the oral antidiabetic drug metformin, and cimetidine [251].
OCT2 facilitates the first step in the renal elimination of compounds and may control the intracellular
concentrations of monoamine neurotransmitters in the brain [252]. It has been reported that the human
OCT2-mediated L-arginine uptake may not be physiologically saturable (the predicted KM value is
higher than 10,000 µM).

In addition, the Michaelis constant of ADMA for human OCT2 (KM: 900 ± 100 µM) [123] greatly
exceeds physiological (about 0.4–0.9 µM) and even pathophysiological concentrations of ADMA (up to
8 µM in certain diseases) [253] in human plasma, indicating that human OCT2 could function as an
ADMA transporter without saturation. This low-affinity transport of ADMA by OCT2 may contribute
to the renal elimination of ADMA from circulation. No data regarding SDMA and L-homoarginine as
substrates are available, so far.

Numerous polymorphisms in the SLC22A2 gene have been identified [254]. However, most
of these genetic variants have only been associated with drugs disposition and efficacy. In a recent
meta-analysis using an integrated genome-transcriptome approach, SLC22A2 gene expression was
found to be significantly increased in pre-hypertensive groups [147] (Table 4). So far, the impact of
SLC22A2 SNPs on the renal clearance of uremic toxins such as ADMA has never been studied but,
deserves to be further investigated.

2.1.5. SLC25 Family

The SLC25 family is the largest SLC family in humans and composed of at least 53 family
members. The SLC25 transporters mediate the transport of diverse substrates (e.g., various metabolites,
nucleotides, and coenzymes) across the inner membrane of mitochondria. So far, approximately
one-third of the putative mitochondrial transporters are “orphans”, with no known substrates [255].
However, until now, at least three transporters SLC25A2, SLC25A15, and SLC25A29 are known to
transport L-arginine and/or its derivatives [220,221].

SLC25A2 (ORNT2), SLC25A15 (ORNT1), and SLC25A29 (ORNT3)

The SLC25A2 and SLC25A15 genes encode mitochondrial ornithine transporters 2 (ORNT2)
and ornithine transporters 1 (ORNT1), respectively. ORNT1 was the first of the two isoforms to be
identified and characterized [256], followed by the highly homologues ORNT2 [257]. Both proteins
share 88% amino acid identity. The SLC25A2 gene is located on chromosome 5q31.3 13q14.11 and the
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SLC25A15 gene on chromosome 13q14.11 The product of the SLC25A29 gene was firstly described
as carnitine/acylcarnitine transporter-like (CACL) protein by Sekoguchi et al. [258]. Later, Camacho
and Rioseco-Camacho classified this gene as ornithine transporter isoform 3 (ORNT3) because its
overexpression retrieves the defect in ornithine uptake in cultured fibroblasts from patients with the
hyperornithinemiahyperammonemia-homocitrullinuria (HHH) syndrome [223]. However, further
study presented direct evidence that ORNT3 is a mitochondrial transporter responsible for the transport
of basic amino acids in preference to L-arginine and L-lysine [227]. The SLC25A29 gene, encoding
ORNT3 is located on chromosome 14q32.2.

ORNT2 was observed at the inner mitochondrial membrane in cells of several organs such as liver,
testis, spleen, lung, pancreas, small intestine, and brain [259]. ORNT1 is expressed in mitochondria
of liver, pancreas, lung, testis, small intestine, spleen, brain, and the heart [259]. Interestingly,
SLC25A2mRNA is expressed in the human kidney whereas SLC25A15 could not be detected there [256].
ORNT3 is expressed in mitochondria located in the liver, in heart, in skeletal muscle, and in the
brain/inner mitochondrial membrane [227].

These three mitochondrial transporters have at least several transport properties in common.
They transport L-ornithine, L-lysine, L-arginine, and L-citrulline by homo or heteroexchange and
unidirectionally, and they are inhibited by the same inhibitors [125]. Regarding L-arginine and its
derivatives, human ORNT1 was reported to facilitate the transport of only L-arginine, so far (a KM

value for L-arginine is 1500 µM) [220]. In contrast to ORNT1, ORNT2 has a wider substrate specificity.
ORNT2 also facilitates the transport D-isomers of ornithine, lysine, arginine, and citrulline and as well
as histidine, L-homoarginine, and ADMA [260], which all can be metabolized in the mitochondria.
The affinity of ORNT2 for L-arginine is approximately 710 µM [220,221]. ORNT2 facilitates both,
the exchange of substrates as well as unidirectional transport. The reported initial rates of the L-arginine
homoexchange and L-arginine/ADMA exchanges were 290 and 240 pmol × mg protein−1

× min−1,
respectively; while the initial rates of the L-arginine as uniport was 50 pmol ×mg protein−1

×min−1.
Notably, the transport activities of the L-arginine/ADMA exchanges were similar to those of the arginine
homoexchanges. The ORNT2-mediated ADMA transport was within the same range as the transport
of the prototypic ORNT2 substrates known, so far, with a KM value of 370 µM; and was highly specific,
since symmetric dimethylarginine (SDMA), the structural isomer of ADMA, was not transported at
all. Moreover, ADMA inhibited ORNT2-mediated transport of L-lysine with an inhibition constant
of 380 µM, whereas SDMA, although not transported, showed some inhibition of ORNT2 transport
activity [221].

Transport of ADMA could be a byproduct of mitochondrial L-arginine uptake. However,
given that there are enzymes in the mitochondrial space which can metabolize ADMA, SDMA and
L-homoarginine, it is likely that the transport of ADMA across the mitochondrial membrane could
have different functions. The influx of ADMA into mitochondria could enable its degradation by
mitochondrial alanine-glyoxylate aminotransferase 2 (AGXT2). Conversely, in cells lacking AGXT2
expression, ORNTs could mediate the mitochondrial efflux of ADMA produced by mitochondrial
proteolysis for cytosolic degradation by DDAHs or for further efflux from the cell by transporters
in the plasma membrane to allow degradation in other tissues [221]. L-homoarginine has also been
reported to be transported by ORNT2, however, its transport kinetics remain to be defined [26,94,220].

The main function of the ornithine transporter 3 (ORNT3) is thought to facilitate the transport of
L-arginine, L-lysine, L-histidine into mitochondria for mitochondrial protein synthesis. This transporter
also recognizes L-homoarginine as a substrate [227]. The affinity of ORNT3 for L-arginine is moderate,
with a KM value of 420 µM [220,225]. Porcelli et al. demonstrated that ORNT3-reconstituted
liposomes take up external L-arginine more efficiently in the presence of internal L-arginine, L-lysine,
and L-homoarginine compared to ornithine, histidine, or carnitine, or compared to the absence of
any internal substrate [227]. This transporter mediates the transport of L-arginine in two different
ways, as exchange (homo or heteroexchange) or as uniport. The transport affinity for L-arginine as
exchange (homo/heteroexchange) or as uniport is rather similar, with KM values of 420 µM and 470 µM,
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respectively. By contrast, the average VMax of L-arginine uptake measured as homo/heteroexchange is
3.1-fold higher than that derived from uniport, i.e., 237 pmol ×mg protein−1

×min−1. This transporter
therefore can mediate either L-arginine uptake or release. It was shown that L-homoarginine can
competitively inhibit L-arginine exchange with an inhibitory constant (Ki) value of 450 µM, however
no clear data is available regarding the transport kinetics of L-homoarginine [227]. To present, no data
have been reported related to the ORNT3-mediated transport of ADMA and SDMA.

Until now, no genetic variations in the human SLC25A29 gene have been identified that link it to
any diseases. In contrast, genetic variations in the SLC25A2 and SLC25A15 genes have been shown to
be responsible for the hyperornithinemia-hyperammonemia-homocitrullinuria (HHH) syndrome [256].
However, this rare syndrome is beyond the scope of this review. In the context of CVD, no studies have
been done related to the role of mitochondrial transporters, in this respect it is of interest, that SLC25A2
likely plays an important role in regulating ADMA at the mitochondrial level. As recent studies
highlight the role of mitochondrial AGXT2 in the metabolism of ADMA and L-homoarginine [26,94],
the mitochondrial transport of these substrates certainly warrants further investigation.

2.1.6. SLC38 Family

The SLC38 (System A and System N sodium-coupled neutral amino acid transporter) family
is composed of 11 members, encoded by the genes SLC38A1-11 [125]. The members of this group
are characterized as sodium-coupled neutral amino acid transporters (SNATs) [261] with glutamine
as preferred substrate throughout the family. So far three human SNATs are known to transport
L-arginine [229,230,232]: SLC38A4 (SNAT4), SLC38A7 (SNAT7), and SLC38A8 (SNAT8).

SLC38A4 (SNAT4), SLC38A7 (SNAT7), and SLC38A8 (SNAT8)

The SLC38A4 gene, encoding for the SNAT4 protein, is located on chromosome 12q13 and the
protein consists of 547 amino acids. This transporter is related to the members of the glutamine
transporter family. SNAT4 is expressed in the liver [229] and in the placenta [262]. The SLC38A7
gene (encoding SNAT7 protein) and SLC38A8 gene (encoding SNAT8 protein) are clustered together
in the chromosomal region 16q21 and q23.3, respectively. Both, SNAT7 and SNAT8, are expressed
predominantly in the central nervous system, almost exclusively in neurons [230,232]. Both of these
transporters mediate Na+-dependent influx and efflux of small neutral amino acids [125].

In humans, the sodium-coupled neutral amino acid transporter 4 (SNAT4) facilitates the transport
of neutral amino acids and K-(methylamino) isobutyric acid (MeAIB) in a Na+-dependent manner,
and the transport of cationic amino acids in a Na+-independent manner [125]. This transporter has a
higher affinity for cationic amino acids (KM: 300 µM for L-arginine) compared to neutral amino acids
(KM: 1600 µM for L-glycine), which is similar to that of y+LATs [229]. The transport of other L-arginine
derivatives (ADMA, SDMA, and L-homoarginine) by this transporter has not been reported yet.

SNAT7 and SNAT8 are sodium coupled (system N) transporters of the SLC38 family and known
as lysosomal glutamine transporters. In a Xenopus oocyte model overexpression of SNAT7 was
associated with a significant increase of L-arginine uptake [230]. Similarly, SNAT8 also showed a
high preference for L-glutamine, L-alanine, L-histidine, L-aspartate and L-arginine [232]. Similar to
SNAT4, the transport of ADMA, SDMA, and L-homoarginine by these two transporters remain to
be investigated.

While CAT2A is a low-affinity transporter with a KM value for L-arginine within the millimolar
range, SNAT4 has an about 10-times higher affinity for L-arginine (KM: 300 µM) [229]. Since SNAT4
is expressed abundantly in the liver, it is assumed that this transporter largely contributes to the
cellular uptake of L-arginine into hepatocytes under physiological conditions [229]. However, if SNAT4
contributes relevantly to the total uptake of L-arginine into the liver remains doubtful for at least one
reason: the liver expresses highly levels of arginase 1 which catalyzes the hydrolysis of L-arginine to
urea and L-ornithine [263]. Thus, the functionally significant presence of a high-affinity L-arginine
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transporter (in addition to the abundant expression of CAT2) would increase the amount of L-arginine
taken up by the liver and limit the availability of arginine for other pathways including NOS signaling.

Among the three transporters mentioned here, the consequences of gene deletion are known only
for murine SLc38a4 [226]. The paternal knockout of SLc38a4 shows an intrauterine growth retardation.
In humans a SNP of SLC38A8 (c.1234G>A[p.Gly412Arg]) was found to be associated with foveal
hypoplasia [231]. It remains to be elucidated whether these three members of SLC38 family also have a
function in the cardiovascular system related to L-arginine and its derivatives.

2.1.7. The SLC47 Family

The SLC47 family is composed of two human members MATE1 (SLC47A1) and MATE2-K
(SLC47A2). At present, L-arginine and ADMA transport has been characterized only for MATE1 126].

SLC47A1 (MATE1)

The multidrug and toxin extrusion protein 1 (MATE1) is a 570 amino acid integral membrane
protein encoded by the SLC47A1 gene located on chromosome 17p11.2. In humans, transcripts of MATE1
are ubiquitously expressed in the body, including kidney, liver, brain, colon, lung, placenta, and skeletal
muscle [264]. However, at protein level, MATE1 could be detected in kidney and liver (located in the
luminal membrane of proximal tubular cells and the canalicular membranes of hepatocytes) [265,266].
Functionally, MATE1 is an electroneutral, sodium-independent, and pH-dependent proton antiporter
for organic compounds [267].

MATE1 mediates the bidirectional transport of organic cations and depends on a proton gradient.
Thus, this protein may function as an uptake or efflux transporter depending on the orientation of the
proton gradient [268,269]. MATE1 recognizes various organic cations, some non-charged compounds,
and some zwitterions as substrates [266]. Various endogenous compounds, such as creatinine, thiamine,
guanidine, and estrone-3-sulfate, were identified as human MATE1 substrates [266].

A recent study showed that MATE1 can mediate the uptake of L-arginine and ADMA [123].
The uptake of L-arginine and ADMA is pH-dependent, with uptake of L-arginine and ADMA markedly
increased following alkalinization of the extracellular medium [123]. In this study, MATE1 facilitated
the cellular uptake of L-arginine and ADMA with a rather low activity and uptake ratios at pH 7.3 of
only 1.2 and 1.1, respectively (Table 5). It is still of interest that ADMA can be recycled to L-citrulline in
the kidney [270]. To date, the MATE1-mediated transport properties of SDMA and L-homoarginine
are unknown.

The uptake (with subsequent metabolism) or excretion of ADMA by MATE1 may be rather
unspecific, attributable to its broad substrate spectrum, it may, however, under certain circumstances
contribute to the renal elimination of ADMA. With respect to CVD its role in the renal excretion of
xenobiotics, including drugs may be of more relevance, though.

2.2. The Adenosine Triphosphate (ATP)-Binding Cassette (ABC) Superfamily

The ATP-binding cassette (ABC) superfamily consists of two types of proteins, the cytosolic
ABC-ATPases and the ABC transporters. The major part of the ABC transporters is located at the plasma
membrane and actively transports a wide array of substrates with hydrolysis of adenosine triphosphate
(ATP) as the driving force. There are currently at least 50 known human ABC transporters classified
into seven groups from ABCA to ABCG. The vast majority of these transporters are expressed as
exporters facilitating the efflux of a variety of substrates. The ABCB subfamily consists of 11 members.
Its most prominent member is likely ABCB1 it is also known as multidrug resistance protein or
permeability-glycoprotein (P-glycoprotein, P-gp). To date, only ABCB1 has been shown to mediate the
transport of L-arginine and its derivatives [213].
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ABCB1/MDR1 (P-glycoprotein)

P-glycoprotein (P-gp) is an active membrane bound efflux transport protein pump. It was first
identified in the membranes of cancer cells, where it contributed to the phenomenon of multidrug
resistance [271]. The ABCB1 gene is located on chromosome 7q21.12 and encodes 1280 amino acid
residues. Besides being prominently expressed in the apical membrane of epithelial cells in the
intestine and in the kidney proximal tubules [272], ABCB1 is also expressed in the biliary membrane of
hepatocytes and numerous other tissues (apical surface of brain capillary endothelial cells, adrenal
gland, pancreatic ductile, and placental trophoblast, and in the arterioles and capillaries of the left
ventricular myocardium) [273]. A signature role of this adenosine triphosphate (ATP)-driven transport
protein is its ability to recognize a variety of structurally diverse molecules ranging in size from 100 to
4000 daltons (Da) (molecular mass) [274].

P-gp is mostly known as an efflux pump protein for a wide range of drugs: [275,276]. The function
of P-glycoprotein (P-gp) can be categorized according to its anatomical localization (Figure 2): P-gp
limits xenobiotic (i.e., drug) absorption in intestinal tissues; P-gp protects sensitive organs and tissues
(i.e., the brain) by extruding its substrates from the cells or tissues into the circulation. Furthermore,
P-gp also facilitates clearance of drugs and metabolites into bile and urine [277]. In the kidney, P-gp is
specifically expressed at the side of the tubular apical membrane, limiting the systemic exposure to
xenobiotics by extruding the molecules from the epithelial cells to the luminal space [278].

P-gp contribution to the transport of L-arginine and SDMA has never been studied before,
yet, it was only recently that ADMA and L-homoarginine had been associated with P-gp [213].
This ATP-driven transporter paired with the SLCO4C1 transporter was reported to facilitate the efflux
of ADMA and L-homoarginine through a transcellular transport (from the basolateral to the apical
compartment) with transport ratios of 2.0- and 3.4-fold, respectively.

As with other transport proteins with broad spectrum of substrates, transport of L-homoarginine
could simply be attributed to unspecific activity. However, given its broad expression it is likely that
P-gp contributes to the transport and regulation of both L-arginine derivatives. Apart from its role
in the plasma disposition of aldosterone [279–281], no obvious associations between P-gp activity
towards biomarkers and cardiovascular disease have been reported yet.

3. Conclusions

L-arginine is the key substrate for NO-mediated signaling in the cardiovascular system and
the plasma concentrations of its derivatives L-homoarginine, ADMA and SDMA are independently
associated with cardiovascular outcomes and mortality. However, despite the substantial evidence
linking these substances more or less directly to cardiovascular physiology and outcomes their
functional interrelation remains only partially understood, leaving the question unsettled where the
“risk marker” ends and rather the “risk factor” begins. Here a better understating of the transport
mechanisms governing the cellular uptake and exchange of these substances may provide some
necessary insights, which are currently lacking.

From the evidence discussed, the identification of distinct transport proteins that facilitate the
transport of L-arginine and its derivatives will likely improve our understanding on the effects of
L-arginine and its derivatives in maintaining vascular health. The identification of the truly relevant
transport systems, with respect to cardiovascular disease is far from easy, though. Especially as
the number of transporter proteins found to transport L-arginine and its derivatives is continuously
growing, with about 18 human transporters identified so far.

In principle, lower KM values indicate higher affinities and it is tempting to directly compare KM

values reported in different publications. However, before doing so, methodological issues should be
carefully considered. Difficulties in determining the contributions of an individual transport protein
often arise from the redundancy of transport systems for amino acids and related compounds in most
tissues, with multiple alternative transport proteins for a single substrate available. For this reason,
often only “apparent” rather than absolute transport activities can be provided for living cells, because
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it is practically impossible to block endogenous transport activity except for that of interest. From a
biological perspective, these redundancies may also have advantages, as they would render the system
less sensitive to impairment of an individual transport protein. The term “apparent” also indicates the
KM and VMax values should be taken with a grain of salt, especially when comparing KM values of
different transporters which are often obtained in different experimental settings.

Given the importance of substrates like L-arginine for cellular function, these redundancies are
not surprising. However, redundant (i.e., “background “) transport by different transport systems puts
some limits the characterization of the contribution of individual transport proteins in all but the most
artificial experimental settings, which in turn come with other limitations. Furthermore, molecules
with divergent pathophysiological properties such as L-arginine and ADMA share major transport
systems, making it difficult to gauge the net in vivo impact of an individual transport system in CVD.

Despite all these limitations, the largely “apparent” transport data obtained from cell lines
overexpressing transporters of interest already allow substantial insights regarding the putative
functional role of the transporters with regard to the respective substrates and possible impact on
cardiovascular physiology. Based on the data available so far, members of the CAT and LAT family
such as CAT1 and y+LAT1/2 can be considered as major players, especially with respect to endothelial
function and cardiovascular disease. Furthermore, case report data indicate that a y+LAT1 related
transport deficiency may be corrected by L-arginine supplementation treatment [143].

Studies of human diseases, animal models, and cultured cells have demonstrated that there are at
least two different functions through which L-arginine and its derivatives transporters can be related
to CVD. Firstly, by providing adequate L-arginine for NO production. Secondly, by contributing to the
disposition and homeostasis of L-arginine and its derivatives. It will be a key issue for future research
in this area to identify the transport proteins and/or molecular mechanisms mediating differential
transport of the chemically very similar substrates (L-arginine and L-homoarginine as compared
to ADMA and SDMA). The relative changes in the concentration ratio of L-arginine and SDMA
between plasma and urine are highly suggestive of a transport system that allows the selective
depletion of L-arginine and L-homoarginine from the urine while SDMA is excreted into the urine.
These chemically similar substances may actually turn out to be useful tools for the dissection of
differential transport mechanisms. However, given the much higher plasma and tissue concentration
of L-arginine, any apparently differential transport of L-homoarginine or ADMA and SDMA may
simply reflect differences in substrate concentration than evolved differences in substrate specificity of
the respective transporter.

Finally, drugs may affect the transport of L-arginine and its derivatives, possibly contributing
to adverse as well as beneficial effects in CVD. Alternatively, selective inhibition of (re-)absorption
of ADMA and SDMA at sites like the small intestine or the kidney could enhance their elimination.
Conversely, selective inhibition of L-arginine and L-homoarginine uptake by tissues primarily involved
in their degradation and elimination could increase their availability for tissues where they support
protective functions, such as endothelial function. It remains to be shown, however, that the latter two
mechanisms could also work in humans.
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