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Acquired chemoresistance is a major limiting factor in the clinical treatment of glioblastoma
(GBM). However, the mechanism by which GBM acquires therapeutic resistance remains
unclear. Here, we aimed to investigate whether METTL3-mediated N6-methyladenosine
(m6A) modification contributes to the temozolomide (TMZ) resistance in GBM. We
demonstrated that METTL3 METTL3-mediated m6A modification were significantly
elevated in TMZ-resistant GBM cells. Functionally, METTL3 overexpression impaired
the TMZ-sensitivity of GBM cells. In contrast, METTL3 silencing or DAA-mediated total
methylation inhibition improved the sensitivity of TMZ-resistant GBM cells to TMZ in vitro
and in vivo. Furthermore, we found that two critical DNA repair genes (MGMT and APNG)
were m6A-modified by METTL3, whereas inhibited by METTL3 silencing or DAA-mediated
total methylation inhibition, which is crucial for METTL3-improved TMZ resistance in GBM
cells. Collectively, METTL3 acts as a critical promoter of TMZ resistance in glioma and
extends the current understanding of m6A related signaling, thereby providing new
insights into the field of glioma treatment.

Keywords: glioblastoma, temozolomide, resistance, N6-methyladenosine (m 6 A), METTL3
INTRODUCTION

Owing to the introduction of temozolomide (TMZ), an alkylation agent, and the use of radiotherapy
in combination with TMZ adjuvant therapy, the median survival of patients with glioblastoma
multiforme (GBM) was increased from 12.1 months to 14.6 months (1–5). However, the overall
clinical efficacy of this regimen remains disappointing, mainly because of inherent or induced
resistance to TMZ treatment (6–11). Mostly, TMZ-resistant cell lines highly expressed O6-
methylguanine-DNA methyltransferase (MGMT) and alkylpurine–DNA–N-glycosylase (ANPG)
(12, 13). TMZ methylated 12 kinds of DNA bases at different sites, of which, O6-meG was
considered the most toxic lesion (14). MGMT repairs O6-meG through a suicidal response, thereby
becoming resistant to TMZ. On the other hand, ANPG repairs the cytotoxic lesions N3-
methyladenine and N7-methylguanine and contributes to TMZ resistance (12). Therefore, the
clinical treatment of this deadly tumor urgently requires a more comprehensive understanding of its
progression, mechanisms of resistance, and new therapeutic targets.
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In the eukaryotic cells, N6-methyladenosine (m6A) is the
predominant modification of mRNA and long non-coding RNAs
(15). m6A is a dynamic and reversible RNA modification in
mammalian cells that occurs after transcription by the
m6A methyltransferase complex, which contains the enzyme
subunit methyltransferase-like 3 protein (METTL3) and its co-
cofactors methyltransferase-like 14 protein (METTL14) and WT1-
associated protein (WTAP) (16).With the deepening understanding
of RNAmethylation, a number of regulatory factors involved in the
regulation of mammalian m6A have been identified (17).

Them6Amodificationof themethyltransferase-imprintedRNA
prioritizes the recognition and delivery of the reader protein and is
cleared by RNA demethylase (18). Therefore, three types of
regulators dynamically controlling m6A are defined as writers,
readers, and erasers (19). Under the control of these three
regulatory factors, m6A methylation epigenetic regulation of a
large number of gene expression plays multiple roles in the
regulation of biological processes (20). The acquisition of m6A
reduces the stabilityof transcriptionandmediates the attenuationof
target mRNA, suggesting that m6A modification is a negative
regulator of mRNA translation. Instead, m6A deficiency increases
the abundance and longevity of transcripts, as well as the overall
expression of the protein. m6A can also change the structure of
RNA, promote the binding of protein regulators, affect mRNA
maturation, and regulate gene expression.

It has been reported that m6A modification plays a variety of
regulatory roles in tumor initiation, progression, and radiation
resistance (21, 22). In addition, a growing body of evidences
suggests that genetic alterations and dysregulation of m6A RNA
methylation regulators are closely associated with the malignant
progression of a variety of cancers (23). In recent years, increasing
evidences have shown that METTL3 plays an important role in
cancer as an m6A methyltransferase, both as an oncogene and as a
tumor suppressor gene. Inmost cases,METTL3has been reported as
an oncogene that promotes the occurrence and progression of a
variety of cancers, including hematopoietic malignancies and solid
tumors, by depositingm6Amodifications on key transcripts (24, 25).

However, the clinicopathological effects of METTL3-mediated
RNA m6A modification and the related mechanisms of TMZ
resistance in glioma have not been elucidated. In this study, we
demonstrated that METTL3 acts as a critical promoter of TMZ
resistance in glioma.Basedon thesefindings,weprovidenew insights
into the METTL3-mediated modification of m6A. We also explored
the molecular mechanisms underlying TMZ resistance of glioma by
identifyingdownstreamtarget genes and signals.Therefore, ourwork
extends the current understanding of m6A-related signaling and
provides new insights into the field of glioma research.
MATERIALS AND METHOD

Cell Lines and Cell Culture
Human glioblastoma-derived U87-MG and U251 cell lines were
obtained from the American Type Culture Collection (ATCC,
Manassas, VA, USA). All cell lines were cultured in DMEM
(Gibco, Grand Island, NY, USA) supplemented with 10% FBS
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(Gibco) and 1% PS (Invitrogen, Carlsbad, CA, USA), and
maintained at 37°C and 5% CO2 in a humidified atmosphere.
TMZ-resistant cell lines were generated by exposure of U87-MG
and U251 cells with 200 mM TMZ for over 6 months. The
derived resistant cell lines were designated as U87-MG-TMZ
resistant and U251-TMZ resistant, respectively. The cell survival
ratio and half maximal inhibitory concentration (IC50) of TMZ
for U87-MG and U251 was evaluated using the CCK-8 assay
(Supplementary Figure 1).

Real-Time Quantitative PCR (qRT-PCR)
RNA extraction and real-time fluorescent quantitative PCR (qRT-
PCR) were performed as previously described. The relative gene
expression of mRNA was calculated by 2-DDCT method. GAPDH
was used as an endogenous control to normalize the data.

Plasmid Transfection
Stable overexpression of METTL3 was achieved by constructing
a lentiviral vector (Biospec Technology, Shanghai). In addition,
we synthesized shRNA-targeting genes. Transfection of the
expression plasmid in glioma cells was performed using
Lipofectamine 3000 kit (Invitrogen, Carlsbad, CA, USA)
according to the manufacturer’s instructions.

Western Blot
The cells were directly lysed in 1× SDS-PAGE loading buffer. Protein
bands were detected sequentially with primary and HRP-bound
secondary antibodies, visualized using a Chemiluminescence
Detection Kit (Servicebio, Wuhan, China), and detected with an
imaging system (Bio-Rad, USA). Antibodies against METTL3
(AB195352, 1:2000) were obtained from Abcam. GAPDH (60004,
1:5000) antibodies were purchased from Proteintech.

Total RNA m6A Quantification
The total level of m6A in the treated glioma cells was determined
using the EpiQuik™ m6A RNA Methylation Quantitative Kit
(Epigentek, USA). Briefly, 200 ng of RNA was added to each well,
followed by a mixture of capture and detection antibodies. After
several weeks of incubation, the m6A content was quantified at
450 nm and calculated according to the standard curve.

Dot Blot
The mRNA samples were dissolved in a 3-fold volume of RNA
incubation buffer, denatured at 65°C for 5 min, and loaded onto
an Amersham Hybond-N+membrane (GE Healthcare, USA)
mounted on a Bio-Dot device (Bio-Rad, USA). After blocking
the membrane with 5% skimmed milk, the specific m6A antibody
(1:1000, Abcam) was incubated overnight at 4°C. Mouse
immunoglobulin G (IgG) was incubated with HRP-conjugated
immunoglobulin G (IgG) for 1 h, and imaging was performed
using an imaging system (Bio-Rad, USA).

Methylated RNA Immunoprecipitation
(Me-RIP)
Total RNA or poly(A)+mRNA was isolated using the above
methods. The purified mRNAs and magnetic bead-antibody
July 2021 | Volume 11 | Article 702983
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complexes were then added to IP buffers and incubated
overnight at 4°C, followed by elution with eluent and
purification. MGMT and ANPG in RNA were extracted using
RT-qPCR.

Cell Viability Assay
Cell viability was measured after treatment with different
concentrations of TMZ (Selleck Chemicals, Houston, TX,
USA). After 4 h of normal culture, 10 µL CCK-8 reagent
(Dojindo) was added and absorbance at 450 nm was detected
using an ultra-multifunctional microplate analyzer (Tecan,
Durham, NC, USA). Using GraphPad Prism 9.0 (GraphPad
Software, San Diego, CA, USA), the “log (inhibitor) vs
normalized slope of response variable” method was used to
calculate the 50% inhibition concentration (IC50) of TMZ.

Colony Formation Experiments
Glioma cells were seeded in a 6-well culture plate containing 500
cells per well for 14 d. The colonies were washed with PBS and
fixed with 4% paraformaldehyde. Photographs were taken using
a microscope (Olympus, Ishikawa, Japan).

Subcutaneous Glioma Xenograft Model
All experiments involving mice were conducted in accordance
with the ethical standards of the animal care and use committee
of the third hospital affiliated to Soochow University and the
NIH guidelines for the care and use of laboratory animals. To
establish the xenograft model of glioma in mice, 1×107 human
U87-MG-TMZ cells (sh-Con, sh-METTL3, or normal U87-MG-
TMZ) were subcutaneously inoculated into the right posterior
limb of BALB/c nude mice (6-week-old, female) in 80 mL PBS.
Tumor volume was measured with calipers every 5 d. After
approximately 30 d, all mice were euthanized, and the tumor
masses were removed, weighed, and embedded for further
pathological study.

Statistical Analyses
SPSS 21.0 statistical software (IBM Corp. Armonk, NY) was used
for statistical analyses, and statistical significance was set at
P<0.05. Data are expressed as mean ± standard deviation.
Multiple sets of data were evaluated using one-way analysis of
variance (ANOVA), and multiple comparisons were performed
using Tukey’s post-hoc test. Time-based multiple comparisons
were tested by repeated analysis of variance and the Bonferroni
post facto test.
RESULTS

METTL3 Mediated m6A Is Elevated in the
TMZ-Resistant GBM Cells
Previously, elevated METTL3 levels have been associated with
malignant characteristics of cancer cells (21), but its role in TMZ
resistance in GBM has not been fully understood. Here, upon
comparing the METTL3 levels between the TMZ-sensitive cells
and the resistant cells, we found that the mRNA level of METTL3
Frontiers in Oncology | www.frontiersin.org 3
was significantly higher (about 4.78-fold in U87-MG-TMZ and
4.48-fold in U251-TMZ) in the TMZ-resistant group than in the
sensitive group (Figure 1A), which was further confirmed by
western blot analysis (Figure 1B). We then examined m6A
levels in the total RNAs from TMZ-sensitive cells and resistant
cells using the colorimetric m6A quantification strategy,
revealing significantly increased m6A levels in TMZ-resistant
cells (Figure 1C) compared with TMZ-sensitive cells
(approximately 4.16-fold in U87-MG-TMZ and 5.92-fold in
U251-TMZ), confirmed by dot blot analysis (Figure 1D).
These results suggest that METTL3 mediated m6A may
contribute to TMZ-resistant GBM cells.

METTL3 Contributes to the TMZ
Resistance in GBM Cells
To further study the functional role of METTL3 in the regulation
of TMZ resistance, we establ ished METTL3-stable
overexpression and knockdown U87-MG-TMZ and U251-
TMZ cell lines. The efficiency of overexpression and
knockdown on the mRNA and protein levels of METTL3 was
verified by qRT-PCR (Figure 2A) and western blot (Figure 2B),
respectively. Consistently, the m6A levels were significantly
increased in METTL3 overexpressed U87-MG-TMZ and
U251-TMZ cells, whereas decreased in METTL3 knockdown
U87-MG-TMZ and U251-TMZ cells (Figure 2C). Compared
with parental control, METTL3 knockdown GBM cells had a
significantly lower ability to form colonies (Figure 2D), while
TMZ-Resistant cells overexpressing METTL3 had no effect
(Figure 2D). More importantly, METTL3 level was positively
correlated with TMZ sensitivity. When METTL3 was knocked
down, the IC50 value decreased from approximately 268.9 mM to
95.6 mM in U87-MG-TMZ cells and 296.0 mM to 110.6 mM in
U251-TMZ, whereas the IC50 value remained unchanged in
METTL3 overexpressing cells (Figure 2E). These results
suggest that METTL3 silencing caused TMZ-resistant cells
more sensitive to TMZ.

METTL3 Contributes to the TMZ
Resistance via m6A Modification
To further study the functional role of METTL3-mediated m6A
modification in the regulation of TMZ resistance, we inhibited
methylationwith amethylation inhibitor, 3-deazaadenosine (DAA,
100 µM). Consistent with our hypothesis, treating U87-MG/U251-
TMZ cells with DAA led to a remarkable reduction in total m6A
level (Figure 3A), which was verified by dot blot (Figure 3B).
Moreover, compared with the parental control, DAA-treatedGBM
cells had a significantly lower ability to form colonies (Figure 3C).
Furthermore, the IC50 value decreased from approximately
275.4 mM to 98.6 mM in U87-MG-TMZ cells and 288.2 mM to
108.3 mM in U251-TMZ (Figure 3D). The major repair enzymes,
O6-methylguanine–DNA methyltransferase (MGMT) and
alkylpurine–DNA–N-glycosylase (APNG), repairs the most
cytotoxic lesions generated by TMZ. To analyze the underlying
mechanism of METTL3-mediated m6A modification in the
regulation of TMZ resistance, we screened a series of TMZ-
resistant genes (ANPG, CBX5, MGMT, MSH2, MSH6, MLH1,
July 2021 | Volume 11 | Article 702983
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MPG, XRCC3, and XPC), revealing that METTL3 overexpression
significantly increased the MGMT and ANPG expression in GBM
cells (Figure 4A).

Furthermore, the m6A methylation level (Figure 4B) of
MGMT and ANPG were significantly increased in TMZ-
resistant GBM cells. Notably, the m6A methylation level
(Figure 4C) of MGMT and ANPG was significantly increased
by METTL3 overexpression, which decreased by METTL3
knockdown or DAA treatment (Figure 4D). Collectively, these
results demonstrate that METTL3 contributes to TMZ resistance
via m6A modification.

METTL3-Mediated m6A Modification
Contributes to the TMZ Resistance In Vivo
To investigate whether METTL3-mediated m6A modification was
TMZ-resistant in vivo, we subcutaneously injected shMETTL3 or
shNC-expressing U87-MG-TMZ cells into BALB/c NOD mice.
After confirmation of GBM implantation, mice were treated with
TMZ (66 mg/kg/d, 5 d per week, for 3 cycles). The tumor volume
Frontiers in Oncology | www.frontiersin.org 4
(Figures 5A, B) and weight (Figure 5C) of mice injected with
shMETTL3 were significantly lower than those of xenografts
expressing shNC. In contrast, mice treated with DAA (50 mg/kg/d,
5 d per week, for 3 cycles) and TMZ also resulted in a smaller
tumor volume (Figures 5A, B) and weight (Figure 5C) than the
blank group. IHC staining was performed to verify the expression
of cleaved caspase-3. TMZ-treated xenografts with shMETTL3
expressing or DAA treatment had significantly increased level of
cleaved caspase-3 compared with shNC or blank xenografts
(Figure 5D). Taken together, these results demonstrate that
METTL3-mediated m6A modification contributes to TMZ
resistance in vivo.
DISCUSSION

GBM is one of the most aggressive types of cancer, for which no
effective way of treatment is available (1). Despite advances in the
development of chemotherapeutic agents, including targeted
A C

B D

FIGURE 1 | METTL3-mediated m6A is elevated in the TMZ-resistant GBM cells. (A) The mRNA level of METTL3 in TMZ sensitive and resistant U87-MG/U251 cells was
analyzed by real-time PCR. (B) The protein level of METTL3 in TMZ sensitive and resistant U87-MG/U251 cells was analyzed by western blot. (C) The colorimetric m6A
quantification assay was used to examine the total m6A levels in the TMZ sensitive cells and the resistant U87-MG/U251 cells. (D) The dot blot was used to confirm the
total m6A levels in the TMZ sensitive cells and the resistant U87-MG/U251 cells. *P < 0.05, **P < 0.01, and ***P< 0.001 versus normal U87-MG/U251 cells.
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https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Shi et al. METTL3 Promotes Chemoresistance in Glioblastoma
therapies, the overall survival after diagnosis is usually less than
two years (26, 27). Recent experimental and clinical studies have
shown that epigenetic regulation of GBM also plays an important
role in promoting tumorigenesis and the development of drug
resistance (2, 28, 29). m6A RNA methylation is an important
RNAmodification that has been shown to play an important role
in the genesis and development of glioblastoma (30). In this
study, we investigated the potential role of m6A methylation
Frontiers in Oncology | www.frontiersin.org 5
modification in the regulation of TMZ resistance and the feasibility
of using the M6A inhibitor DAA as a therapeutic candidate.

In this study, we first analyzed the level of m6A RNA
methylation in TMZ-sensitive and TMZ-resistant GBM cells
and critical role of a major m6A methyltransferase METTL3 in
TMZ resistance. METTL3 is an effective therapeutic target for
various cancers, including pancreatic cancer (31), melanoma
(32), colorectal cancer (33), and lung adenocarcinoma (16).
A C

B

D

E

FIGURE 2 | METTL3 contributes to the TMZ resistance in GBM cells. (A) The efficiency of overexpression and knockdown on the mRNA levels of METTL3 were
analyzed by qRT-PCR. (B) The efficiency of overexpression and knockdown on the protein levels of METTL3 were analyzed by western blot. (C) The effect of
METTL3 overexpression and knockdown on the total m6A RNA level was analyzed by the colorimetric m6A quantification assay. (D) The effect of METTL3
overexpression and knockdown on the cell proliferation was analyzed by the colony formation assay. (E) The effect of METTL3 overexpression and knockdown on
the sensitivity to TMZ was analyzed by CCK-8 assay. *P < 0.05, **P < 0.01, and ***P < 0.001 versus indicated control U87-MG/U251 cells.
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METTL3 is overexpressed in hepatic cancer cells (HCC), and is
associated with poor prognosis (34). METTL3 is highly
expressed in ovarian cancer, significantly correlating with
ovarian cancer grade, PT status, PN/PM status, and FIGO
staging (35). These studies suggest that METTL3 is a potential
oncogene. METTL3 enhances the m6A methylation by
improving the stability of SOX2 in GBM, thereby promoting
the stemness of glioma stem cells (GSCs) (25). Controversially,
another team found that downregulation of METTL3
significantly promoted GSC self-renewal and tumorigenesis
(36). In addition, ALKBH5 reduces m6A modification in GSCs
and plays an important role in tumorigenesis in the progression
of GBM by regulating FOXM1 expression (37). These findings
highlight the importance of modifying m6A methylation in GBM
progression. However, its role in TMZ resistance in GBM
remains unclear. We found no significant difference in the
Frontiers in Oncology | www.frontiersin.org 6
METTL3 expression between normal and GBM tissues, and no
association was observed between its expression level and the
prognosis in GBM patients (GEPIA, data not shown). However,
its expression is significantly elevated in TMZ-resistant GBM
cells, compared to its parent TMZ-sensitive cells. Moreover, we
verified the critical role of METTL3-mediated m6A modification
in TMZ resistance in GBM cells. Both METTL3 silencing or total
methylation inhibition with DAA increased the sensitivity of
GBM cells to TMZ in vitro and in vivo. Meanwhile, we
discovered that METTL3 overexpression dramatically increased
the m6A methylation of MGMT and APNG, but did not affect
the level of METTL14 (Supplementary Figure 2). However,
METTL3 overexpression showed no effect on the colony
formation of TMZ-resistant GBM cells, suggesting that a
highly expressed and super-functional role of METTL3 in
TMZ-resistant GBM cells, thus further overexpression of
A B

C

D

FIGURE 3 | METTL3-mediated m6A modification contributes to the TMZ resistance. (A) The colorimetric m6A quantification assay was used to examine the total
m6A levels in the control or DAA-treated U87-MG/U251-TMZ cells. (B) The dot blot was used to confirm the total m6A levels in the control or DAA-treated U87-MG/
U251-TMZ cells. (C) The effect of DAA treatment on the cell proliferation was analyzed by the colony formation assay. (D) The effect of DAA treatment on the
sensitivity to TMZ was analyzed by CCK-8 assay. *P < 0.05 and **P < 0.01 versus blank U87-MG/U251 cells.
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METTLE3 increased the total m6A methylated mRNAs, but did
not enhance the cell proliferation ability of TMZ-resistant
GBM cells.

Considering the molecular mechanism underlying the
resistance of glioma cells to TMZ, a DNA alkylation agent, is
currently the only chemotherapeutic drug having some efficacy
against GBM, accompanied by surgery and radiation therapy (28).
Frontiers in Oncology | www.frontiersin.org 7
In in vitro and animal models, TMZ resistance can be mediated by
MGMT, a DNA repair protein that removes the methyl group
produced by TMZ from the O6 site of guanine, which represents
the most cytotoxic damage (13, 38). GBM patients with
methylated MGMT promoter had an increased overall survival
compared with radiotherapy alone, and responded better in
combination with TMZ and radiotherapy (14). However, 50%
A

C

B

D

FIGURE 4 | METTL3 contributes to the TMZ resistance via m6A modification of MGMT and ANPG mRNAs. (A) The expression mRNA level of TMZ resistant genes
(ANPG, CBX5, MGMT, MSH2, MSH6, MLH1, MPG, XRCC3, and XPC) in normal and TMZ-resistant U87-MG/U251 cells were analyzed by real-time PCR. (B) The
m6A-methylated level of MGMT and ANPG in normal and TMZ resistant U87-MG/U251 cells were analyzed by Me-RIP-real-time PCR. (C) The effect of METTL3
overexpression and knockdown on the m6A methylated level of MGMT and ANPG were analyzed by Me-RIP-real-time PCR. (D) The effect of DAA treatment on the
m6A-methylated level of MGMT and ANPG were analyzed by Me-RIP-real-time PCR. *P < 0.05 and **P < 0.01 versus indicated control U87-MG/U251 cells.
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of GBM patients with MGMT methylation promoters do not
survive for 2 years, and therefore receive only moderate benefits
from TMZ treatment, suggesting additional resistance factors.
Similarly, GBM patients with unmethylated MGMT also showed
some response to TMZ, strongly suggesting that MGMT
promoter methylation was not the only predictor of response to
TMZ (39). In this study, we demonstrated that the expression of
MGMT mRNA is also regulated by METTL3-mediated m6A
modification, which contributes to TMZ resistance. Moreover,
our investigation into other DNA repair modulating systems,
including GATA4-mediated TMZ sensitivity (40), showed
increased levels of APNG in METTL3 over-expressed GBM
cells. The m6A or total mRNA levels of MGMT and APNG
were elevated by METTL3 overexpression, whereas decreased by
METTL3-silencing or DAA treatment. In summary, we have
demonstrated that METTL3 promotes the TMZ resistance of
glioma cells by increasing MGMT and ANPG in an m6A-
dependent manner.
Frontiers in Oncology | www.frontiersin.org 8
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shMETTL3, blank, and DAA) in the absence of TMZ. (D) IHC analysis of cleaved caspase-3 in tumor xenografts originated from four groups of U87-MG-TMZ cells
(shNC, shMETTL3, blank, and DAA) in the presence of TMZ. *P < 0.05 versus indicated control U87-MG/U251 cells.
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Supplementary Figure 1 | Generation of TMZ-resistant U87-MG and U251 cell
lines. TMZ-resistant cell lines were generated by exposure of U87-MG and U251
cells to 200 mM of TMZ for over 6 months. The derived resistant cell lines were
designated as U87-MG-TMZ resistant and U251-TMZ resistant, respectively. The
cell survival ratio and half maximal inhibitory concentration (IC50) of TMZ for U87-MG
and U251 was evaluated by CCK-8 assay.

Supplementary Figure 2 | METTL3 overexpression or knockdown did not affect the
level ofMETTL14 in theTMZ-resistanceGBMcells. (A)ThemRNA level ofMETTL14 in the
METTL3 overexpression or knockdown TMZ-resistance GBM cells were analyzed by
qRT-PCR. (B)Theprotein levelofMETTL14 in theMETTL3overexpressionorknockdown
TMZ-resistance GBM cells were analyzed by western blot.
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