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Abstract

Molecular interactions between protein complexes and DNA carry out essential gene regulatory 

functions. Uncovering such interactions by means of chromatin-immunoprecipitation coupled with 

massively parallel sequencing (ChIP-Seq) has recently become the focus of intense interest. We 

here introduce QuEST (Quantitative Enrichment of Sequence Tags), a powerful statistical 

framework based on the Kernel Density Estimation approach, which utilizes ChIP-Seq data to 

determine positions where protein complexes come into contact with DNA. Using QuEST, we 

discovered several thousand binding sites for the human transcription factors SRF, GABP and 

NRSF at an average resolution of about 20 base-pairs. MEME-based motif analyses on the 

QuEST-identified sequences revealed DNA binding by cofactors of SRF, providing evidence that 

cofactor binding specificity can be obtained from ChIP-Seq data. By combining QuEST analyses 

with gene ontology (GO) annotations and expression data, we illustrate how general functions of 

transcription factors can be inferred.

INTRODUCTION

Chromatin immunoprecipitation (ChIP) has become an important assay for the genome-wide 

study of protein-DNA interactions and gene regulation1–3. In a typical ChIP experiment, 
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protein complexes that contact DNA are crosslinked to their binding sites, the chromatin is 

sheared into short fragments, and then the specific DNA fraction that interacts with the 

protein of interest is isolated by means of immunoprecipitation (IP). A genome-wide readout 

of the protein binding sites is produced either by hybridization of the DNA pool to a tiling 

array (ChIP-chip4) or by end-sequencing of millions of different DNA fragments (ChIP-

Seq5–9). In higher organisms, particularly mammals, ChIP-chip data tend to have low 

resolution and are often quite noisy10, two shortcomings that ChIP-Seq promises to 

surmount. As a consequence, ChIP-chip is being rapidly displaced by ChIP-Seq in genome-

wide discovery of mammalian transcription factor binding sites.

The goal of ChIP-Seq data analyses is to find those genomic regions that are enriched in a 

pool of specifically precipitated DNA fragments. Regions of high sequencing read density 

are referred to as “peaks” to evoke the visual impression of many reads mapping to a 

specific region compared to few reads mapping to the genomic background. The output of 

software implementing peak-finding methodology is a list of “peak calls” that comprises the 

genomic locations of sites inferred to be occupied by the protein. To date, studies that have 

presented ChIP-Seq data5,6 used peak finding methodology that heuristically quantifies read 

density but does not take full advantage of certain important properties of the data such as 

the directionality of sequencing reads. The growing importance of ChIP-Seq demands 

development of rigorous and transparent statistical approaches that fully leverage the 

inherent advantages of ChIP-Seq.

We here describe QuEST (Quantitative Enrichment of Short Tags), a new ChIP-Seq data 

analysis method that is based on realistic statistical modeling of the ChIP-Seq experimental 

approach. QuEST generates peak calls with substantial power and resolution by leveraging 

key attributes of the sequencing data, such as directionality of reads and the size of 

fragments that were sequenced (which, importantly, is estimated from the data themselves 

rather than provided by the user). QuEST achieves the desired balance between sensitivity 

and specificity by calculating false-discovery rates (FDR) from controls that are routinely 

conducted as part of ChIP experiments. Underlying QuEST’s statistical framework is the 

Kernel Density Estimation approach11 (KDE), which facilitates aggregation of signal 

originating from densely packed sequencing reads at the transcription factor binding sites, 

leading to statistically robust peak calls.

To demonstrate the power and resolution of analyses facilitated by QuEST, we generated 

ChIP-Seq data for three functionally different human transcriptional regulatory proteins that 

have well-defined binding specificities and regulatory roles. GABP (GA-binding protein) 

and SRF (serum response factor) are thought to function primarily as transcriptional 

activators12–18, whereas NRSF (neuron-restrictive silencer factor) is a transcriptional 

repressor19,20. We apply QuEST to these data as part of a larger work flow that also 

includes MEME-based motif discovery and, in the case of SRF, identification of co-motifs 

that are indicative of cofactor interactions. Finally, the ChIP-Seq data are analyzed in 

conjunction with microarray results and GO terms to provide further insight into the 

function of the factors.
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RESULTS

Analytical Framework

QuEST requires data in the form of genome coordinates (‘tags’) obtained from mapping 

several million sequencing reads to a reference genome. Tags from forward and reverse 

reads cluster on opposite sides of the transcription factor binding site (TFBS; Fig. 1A) This 

is because sequencing proceeds from one end of the fragment towards its middle in a strand-

specific manner, which leads to an underrepresentation of tags in the immediate proximity 

of the TFBS.

QuEST first constructs two separate profiles, one for forward, and one for reverse tags. 

These profiles are characterized by strong peaks where tags are particularly dense (Fig. 1). 

The distance between forward and reverse peaks is not known a priori, but it is important to 

account for it and to correctly combine the two separate profiles into one. Since this distance 

may vary considerably among experiments, QuEST estimates it from a particularly robust 

subset of the data. We refer to half of this distance as the “peak shift” (Methods).

Once the experiment-specific peak shift has been estimated, the forward and reverse profiles 

are shifted by an equal amount and added to produce the Combined Density Profile (CDP) 

on which all subsequent analyses are carried out (Fig. 1B; Supplementary Fig. 1; Methods). 

By combining the profiles in this manner, QuEST accomplishes two key aspects of ChIP-

Seq analysis: first, the signals from reverse and forward reads are represented by a single 

classifier; second, local maxima of this classifier correspond to protein-DNA crosslinking 

points, providing an estimate for the location of the TFBS.

The CDP is then searched for enriched loci in a process referred to as ‘peak calling’ to 

identify putative transcription factor binding sites. Specifically, initial candidates for peaks 

are identified as positions in the reference genome corresponding to local maxima of the 

CDP with sufficient enrichment compared to the control data (Methods). The strongest of 

these are likely to be due to real binding events, whereas weaker-scoring peaks may be false 

positives, requiring the setting of a CDP threshold for peak calling. Since this threshold may 

vary considerably between experiments, the desired balance between sensitivity and 

specificity is achieved by a calibration procedure. Briefly, the negative control data are 

separated into two sets, one of which is used as a pseudo-ChIP sample in which peaks are to 

be predicted, and the other of which serves as a background for this sample. Any peak that is 

predicted in this comparison is a false positive. Hence, the false-discovery rate (FDR) 

estimate is given by the ratio of the number of peaks predicted in the pseudo-ChIP analysis 

and the number of peaks identified in the real ChIP experiment. This approach allows the 

user to set specific thresholds and find out the FDR, or vary the thresholds until a desired 

FDR is achieved (Methods; Supplementary Fig. 2).

As a final result, for each peak in the list of high-confidence peak calls, QuEST reports a 

score quantifying the tag enrichment at the peak and a genome coordinate that corresponds 

to the position of that peak. Each such coordinate is a predictor of the position of a binding 

event, likely an endogenous TFBS occupied by the immunoprecipitated transcription factor. 

The KDE-derived score QuEST reports for each peak is proportional to the frequency at 
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which the TFBS was present in the sequenced library. Because the score reflects the amount 

of evidence for the peak, QuEST ranks the final peak calls accordingly.

Performance of QuEST

ChIP Datasets—To evaluate key aspects of the performance of QuEST, we generated five 

libraries from the human Jurkat cell line and sequenced them using the Solexa platform 

(Table 1). One library each was from ChIPs against the transcriptional activators GABP and 

SRF, two were from ChIPs against the transcriptional repressor NRSF (utilizing two 

different antibodies, one polyclonal and the other monoclonal), and one was a negative 

control library for which the immunoprecipitation step was bypassed (“reversed-crosslinks, 

no IP” or RX-noIP). We generated 7.9, 8.7, 8.8 and 5.4 million mapped sequence tags for 

GABP, SRF, NRSF polyclonal and NRSF monoclonal datasets respectively (Table 1) as 

well as 17.4 million mapped tags for the RX-noIP library. QuEST identified 6442 (GABP), 

2429 (SRF), 2960 (NRSF polyclonal) and 2596 (NRSF monoclonal) peak positions with 

significant enrichment of ChIP sequencing reads. Saturation analysis indicated that these 

libraries were sequenced to sufficient depth to identify the majority of significant peaks 

(Supplementary Fig. 3).

Robustness and Reproducibility—The QuEST scores of the 2320 peaks shared 

between the two NRSF datasets were exceptionally strongly correlated (r=0.97; Fig. 2A). 

The mean distance between corresponding peaks from the two data sets was 0.2 bp, with a 

standard deviation of 13.5 bp (Fig. 2B), demonstrating highly reproducible peak call 

positions. Overall, these results are evidence of QuEST’s ability to produce accurate 

quantification of tag enrichment that results in reproducible and robust peak calls.

Overlap of QuEST Peaks with Previous Studies—We identified previously 

described transcriptional targets of GABP, SRF, and NRSF providing some measure of 

validation for the peaks identified by QuEST in this study. These include GABP-regulated 

interleukin-16 (IL16) and cytochrome c oxidase subunits IV and Vb12 and SRF-regulated 

FHL221 QuEST also identified three peaks in the autoregulated SRF gene16, one in the 

promoter and two in one of the introns. Finally, the genes Calbidin 1, BDNF, SYT4 and 

NAV1 are NRSF targets in mouse embryonic stem cells20, and their orthologs were also 

marked by peaks in our data.

Precision and Accuracy of Peak Calls—Theoretically, the genomic coordinate 

QuEST reports for each of its peaks should be ‘marked’ by the canonical TFBS motif. We 

first determined canonical motifs and their corresponding position specific scoring matrices 

(PSSMs) using the de novo motif finder MEME22. For each ChIP-Seq experiment, the input 

data into MEME was the set of 200 bp sequences from around each peak call. The resulting 

motifs closely corresponded to the previously established canonical recognition sites for 

each of the three factors12,15,23. To then determine the specific positions of motifs within 

the peak call regions, we asked for statistically significant matches of the PSSMs in the 200 

bp around each QuEST peak, using a log-odds-ratio approach and a stringent threshold 

(Methods). The majority of peaks contained one or more highly significant PSSM matches, 

which were used to evaluate the resolution of QuEST peak calls. Remarkably, the mean 
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distance between peak call and motif ranged from 0.1 bp in the NRSF monoclonal set to 

2.55 bp for GABP, with the standard deviation ranging from 13.4 bp to 21.8 bp (Fig. 3).

Leveraging QuEST Peak Calls for Biological Insight

Canonical Motifs—Our MEME analysis found that the canonical motifs of each 

transcription factor were most significantly enriched in their respective QuEST peaks (Fig. 

4). Canonical motifs explain 71% (GABP), 33% (SRF) and 69% ( NRSF) of the peaks after 

accounting for motifs that are expected to occur by chance (Methods, Supplementary Fig. 

4), illustrating QuEST’s high specificity in TFBS discovery. The comparatively low fraction 

of SRF peaks explained by its canonical motif is likely explained by cofactor interactions 

(see below). GABP and SRF, both of which assemble into a complex with a pair of DNA 

binding subunits12,16, most frequently contain two motifs (Fig. 4), in contrast to NRSF 

peaks, which typically harbor one.

Interactions with other Factors—For SRF, the initial MEME analysis also yielded the 

SP1 motif. It explains a substantial fraction of peaks (48%), providing evidence that the 

previously suggested interaction25 between SP1 and SRF is common.

We also conducted a second round of MEME analyses focusing only on those peak-

associated sequences that did not contain the canonical SRF motif. Such peaks may be due 

to indirect DNA binding of the targeted factor via a different, interacting, DNA binding 

protein. This analysis yielded an additional significant motif that resembled the recognition 

site of the Ets family of factors. This motif explained an additional 17% of the SRF peaks. 

The prevalence of an Ets-like motif may be due to the previously described interaction 

between SRF and the Ets factor ELK417,26. We note that the anti-SRF antibody has no 

detectable crossreactivity with other proteins on Western blots (not shown). The same 

strategy applied to the NRSF dataset reproduced the discovery of NRSF half-sites 

previously reported (Fig 4), and resulted in an additional 16% of peaks explained. No 

significant additional motifs were found for GABP.

We observed that a large fraction of SRF peaks (29%) occurred within 100 bp of GABP 

peaks, while NRSF peaks almost never coincided with either SRF or GABP peaks. The 

close proximity of SRF and GABP peaks might suggest that SRF not only physically 

interacts with the Est factor ELK417 but, in some promoters, with GABP as well.

Inference of Transcription Factor Function by Analysis of Genes with Peak 
Calls—QuEST analyses can be combined with orthogonal genome-wide data or resources 

such as GO to provide general insights into the functions of proteins targeted by ChIP-Seq 

experiments. For both GABP and SRF, a large majority of peak calls (83% and 72% 

respectively) were within 2kb of a gene. By contrast, only 53% of NRSF peak calls were 

within 2 kb of a gene, suggesting that NRSF’s effects on gene regulation are, on average, 

exerted over longer distances than those of GABP and SRF. Having obtained a set of peak-

associated genes, we conducted gene expression profiling and Gene Ontology (GO) analyses 

to gain additional functional insight into the three DNA binding proteins of our study.
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Gene expression profiling revealed that NRSF-associated genes were expressed at 

significantly lower relative levels than the average of all genes (Wilcoxon test, p-value < 

2.2e-16, nNRSF=1274 mvs. nall=20588). This result is consistent with NRSF’s known 

general function as a transcriptional repressor and with previous results5. By contrast, both 

SRF-associated genes and GABP-associated genes were significantly higher expressed than 

the average gene (Wilcoxon test, both p-values <2.2e-16, nSRF=1936 and nGABP=5394 vs 

nall=20588, Supplementary Fig. 5), which is consistent with their activator functions 12, 15.

GO analysis27 (Supplementary Tables 1–3) revealed that NRSF-associated genes are mostly 

involved in neuronal function, which is consistent with previous results5. Both SRF and 

GABP had significant enrichment of genes that are involved in basic cellular processes, 

particularly those related to gene expression. These results are consistent with both GABP 

and SRF being fundamental regulators of basic cell biology, rather than specialized factors 

with specific physiological roles. GABP is the more broadly acting of the two factors, as 

reflected by its almost three-fold larger number of QuEST peaks and associated genes.

DISCUSSION

ChIP-Seq is rapidly becoming the approach of choice for genome-wide discovery of protein-

DNA interactions, generating a need for robust and transparent analytical methodologies 

that leverage its inherent strengths. We developed QuEST to meet this need and utilized it as 

part of a work flow that is effective at producing a high-confidence list of specific and active 

TFBSs.

The high resolution of QuEST peak calls, evident for each of the diverse transcription 

factors we analyzed, is perhaps the most noteworthy methodological aspect of our results. 

For example, 89% of peaks that contained a significantly matching canonical TFBS motif in 

the NRSF polyclonal data were within 25 bp of the motif center, and 56% were within 10 bp 

(Fig. 3). QuEST thereby brings within reach an important goal in annotative functional 

genomics, which is to identify at high confidence the precise locations at which DNA 

binding proteins interact with the genome.

One feature that merits some discussion is the score QuEST generates for each peak, 

according to which the peaks are ranked. The score is directly proportional to the amount of 

tag enrichment in the set of DNA fragments that yielded sequences. Thus, a peak with a 

score of 50 is due to a TFBS that was twice as abundant in the DNA sample as a TFBS with 

a peak score of 25. While both scores may be above the reporting cutoff chosen (by the 

desired FDR), and are therefore considered real, there is twice the support for (and hence the 

confidence in) the stronger peak.

One potential drawback of QuEST is that it does not convert peak scores into definitive P-

values. Instead, the stringency of peak calls is determined by the score threshold at which 

the peaks are reported, and the FDR is calculated for this threshold. Users can either use the 

default threshold or specify their own and assess the stringency through the FDR.

Model-free analysis as implemented in QuEST may be considered less powerful than 

approaches that leverage the additional power of an explicit model for the ChIP-Seq data. 
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However, such explicit modeling will likely be elusive in the near future because of the 

many experimental and biological factors that influence the eventual enrichment signal that 

is detected by ChIP-Seq. Some part of the enrichment signal ought to reflect occupancy by 

the transcription factor, but confounding factors such as antibody specificity, epitope 

accessibility, and susceptibility of TFBS-adjacent DNA to shearing will be difficult to model 

explicitly. Furthermore, downstream manipulation necessary for library building, especially 

library amplification and sequencing, introduce additional biases into the enrichment signal. 

Together, these factors contribute to increased variance of signal strength across the binding 

sites, and complicate detection of weak binding signals. Application of QuEST or similar 

approaches will enhance our empirical understanding of ChIP-Seq data over the course of 

the next few years.

METHODS

Density profiles

Individual density profiles for forward and reverse reads at any position i of the genome are 

given by , where h is the kernel density 

bandwidth (we used h = 30 bases),  is the Gaussian kernel 

density function, and C+/−(j) gives the number of 5’ read ends at position j for forward and 

reverse reads respectively. In contrast to the original kernel density estimator11, our density 

profiles represent un-normalized density estimates in which the sum is limited to sample 

points proximal to any given position (within 3 KDE bandwidths). These modifications were 

done for computational convenience (Supplemental Methods).

The CDP used in actual peak calling is calculated according to the formula H (i) = H+ (i−λ) 

+ H− (i+λ), where λ is a peak shift parameter estimate, and H+ and H− are the positive and 

negative strand density profiles as defined above.

Peak shift estimation

For regions in which the number of tags exceeded 600 in a window of 300 bp, we calculated 

forward and reverse profiles and recorded local maxima. Regions for which the highest 

scoring local maximum was 20-fold or greater than the next scoring maximum, for both 

negative and positive strands, and for which the enrichment in the ChIP sample was at least 

20-fold over that for the RX-noIP sample, were selected. The peak shift parameter value was 

calculated as half of the average distance between peaks on the negative and positive strand. 

This estimate is robust across all 4 ChIP datasets (Supplementary Fig. 6) and highly 

concordant for the two NRSF datasets.

Peak calling

Candidate peaks were identified where the QuEST score profile achieved a local maximum 

within a 21 bp window, provided their QuEST score was above the ChIP-threshold, which is 

determined in conjunction with the FDR procedure described below. Within each region, 

local peaks were identified. A peak was eliminated when the lowest point between it and the 
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adjacent higher peak was greater than 0.9 times the CDP value of the higher peak. The 

remaining peaks were reported as “calls” if (1) the value of background CDP was lower than 

the background CDP threshold or (2) the ratio of the of ChIP CDP to the background CDP 

exceeded a specified threshold (referred to as “the rescue ratio”).

False Discovery Rate Estimate for the Number of Peaks

For each experiment, the RX-noIP data were split into two data sets, one of which served as 

a pseudo-ChIP data set (and matched the ChIP data in the number of reads) and the other 

served as the background set. Then, CDPs were calculated for ChIP, pseudo ChIP and 

background datasets. Using the same score thresholds and rescue ratios, peaks were called in 

the ChIP and pseudo-ChIP datasets independently by comparison to the background data. 

The number of called peaks in the pseudo-ChIP data is the false discovery number (FDN), 

and the FDR is simply the FDN divided by the number of peaks called in the ChIP-Seq 

experiment. For identification of peaks that were used in subsequent MEME analyses, a 

rescue ratio of 10 was used for all data sets, and for each dataset the score threshold was set 

such that the FDN was 1.

MEME analyses

For motif identification, we extracted, for each dataset separately, “peak-associated 

sequences” comprised of the set of 200 bp sequences surrounding each peak call. MEME 

was then applied with all default parameters to yield significantly overrepresented motifs in 

each dataset. To identify alternative motifs in the SRF and NRSF data, a log-of-odds 

threshold of 3.0 was used to remove the peaks containing canonical motifs in the 200 bp 

window around the peak, after which MEME was applied again. See Supplementary 

Methods.

MAST analyses

The number of peaks explained by a particular motif was generated by taking the maximum 

of the difference between the total number of peaks containing a motif, and the number that 

could be explained by chance, at a range of stringencies (E-values) using the MEME tool 

MAST. A description of E-value estimation can be found in Supplementary Methods. For 

MAST curves, see Supplementary Figure 4.

Additional Methods

ChIP-Seq library construction and sequencing, gene expression analysis and in further 

detail, density profile generation, peak calling, and MEME-based motif discovery are 

described in Supplementary Methods.

QuEST software is freely available for nonprofit use at http://mendel.stanford.edu/sidowlab/

downloads/quest/. All data presented in this study (Rx-noIP and ChIP-Seq data, and peak 

call coordinates) can be found at the same website.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
QuEST’s representation of ChIP-Seq data using density profiles.. (A) GABP ChIP-Seq reads 

from the promoter and CpG island of the Nitric oxide synthase interacting protein gene. 

Hypothetical GABP binding in five cells and the corresponding DNA fragments with 

sequencing reads. Below, actual read data. Forward reads are displayed as small blue bands 

and reverse reads as small maroon bands. (B) Forward (blue) and reverse (maroon) Read 

Density Profiles derived from the read data contribute to the Combined Density Profile 
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(orange). The zero x-coordinate corresponds to coordinate 54775300 of human 

Chromosome 19, NCBI build 36.
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Figure 2. 
Reproducibility and robustness of QuEST results assessed by comparison between two 

independent NRSF data sets. (A) Correlation between NRSF polyclonal and NRSF 

monoclonal peak scores (rho = 0.97) with the inset expanding the portion near the graph 

origin. (B) Bar chart of the distance between NRSF polyclonal and NRSF monoclonal peak 

call positions.
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Figure 3. 
Resolution of QuEST as quantified by the distance between QuEST peak calls and TFBS 

motif centers. Histograms in each panel represent the distribution of peak distances to the 

nearest high-scoring motif.
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Figure 4. 
Motif analysis results. Each panel displays significantly overrepresented motif Weblogos24 

for each of the three transcription factors. Pie-charts show the fraction of peaks with motifs 

in close proximity to the peak (< 100 bps). Histograms show the distribution of the motif 

number within 100 bps of the peak.
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Table 1

ChIP-Seq data and analysis summary.

GABP SRF
NRSF
polycl.

NRSF
monocl.

Number of aligned ChIP reads 7862231 8721730 8813398 5358147

Number of peaks called by QuEST 6442 2429 2960 2596

FDR estimate 1/6442 1/2429 <1/2960 1/2595

% peaks near genes (<2Kb or internal) 83% 72% 53% 53%

Nat Methods. Author manuscript; available in PMC 2010 August 07.


