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OncoboxPD (Oncobox pathway databank) available at https://open.oncobox.com is the collection of 51
672 uniformly processed human molecular pathways. Superposition of all pathways formed interactome
graph of protein–protein interactions and metabolic reactions containing 361 654 interactions and 64
095 molecular participants. Pathways are uniformly classified by biological processes, and each pathway
node is algorithmically functionally annotated by specific activator/repressor role. This enables online
calculation of statistically supported pathway activation levels (PALs) with the built-in bioinformatic tool
using custom RNA/protein expression profiles. Each pathway can be visualized as static or dynamic
graph, where vertices are molecules participating in a pathway and edges are interactions or reactions
between them. Differentially expressed nodes in a pathway can be visualized in two-color mode with
user-defined color scale. For every comparison, OncoboxPD also generates a graph summarizing top
up- and downregulated pathways.

� 2022 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Molecular pathway research is a rapidly growing field that is
developing exponentially since the emergence of high-
throughput microarray, next generation sequencing, proteomic
technologies, and supporting bioinformatic tools [1–7]. Molecular
pathways describe certain biological processes at the molecular
level and include up to several hundred different molecular partic-
ipants [7]. Molecular pathways most frequently are understood as
networks of protein–protein interactions, or biochemical reactions,
or their combinations [6].

At present, multitude of molecular interactions was docu-
mented, and thousands of molecular pathways were reconstructed
and published [5,6]. The molecular interactions and reactions can
be detected both experimentally and by using artificial intelligence
methods [8,9].

Several high-throughput databases of molecular interactions
and molecular pathways became available over the past decades,
including Pathway interaction database [10], QIAGEN SABio-
sciences [11], Pathway Studio [12], Reactome [13], Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) [14], Signaling Pathways
Integrated Knowledge Engine (SPIKE) [15], Metacyc [16], Human-
Cyc [17], and PathBank [6]. Some of these databases select path-
ways by their function, such as HumanCyc collection of human
metabolic pathways[17], or SynSysNet collection of synaptic
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protein–protein interactions[18]. Some databases propose specific
classification terms, e.g. metabolism, genetic information processing,
environmental information processing, cellular processes, organiza-
tional systems, diseases, drug development categories of pathways
in KEGG [14], or metabolic, drug action, drug metabolism, disease,
signaling, physiological categories in Pathbank [6]. Alternatively,
four molecular functions-based categories of signaling, metabolic,
cytoskeleton, and DNA repair were recently proposed for the path-
way classification [19].

However, to our knowledge all these pathway functional classi-
fication types are not algorithmically standardized, thus leading to
non-uniformly functionally annotated groups of pathways. Impor-
tantly, pathways frequently describe complex molecular processes,
and one pathway may be related to several functional categories.
Furthermore, there is a lack of uniform annotation for the individ-
ual molecular participants of intracellular pathways (e.g. pathway
nodes) in terms of their overall functional implication in the activa-
tion of a pathway.

With the increasing amount of OMICS data, new instruments
are needed for the unbiased accurate high-throughput analysis of
molecular pathways, including their annotation and visualization.
At present there are several molecular pathway visualization tools
[20] which can be grouped in two types. In the first type, the out-
puts are static pathway images not depending on the user’s custom
data. Such images are useful for illustrating functional interactions
under study without integrating them with the molecular expres-
sion data [21]. In the second type tools, interactive figures can be
obtained [22]. For example, KEGG software can use gene expres-
sion data to accentuate specific individual nodes on a pathway
[14], and Reactome software can highlight relevant pathways on
an overall interaction map [13]. PathBank software can process
the input concentrations of metabolites while returning their
adjusted visualization on an interactome graph [6].

However, next-generation molecular pathway analysis requires
not only visualization, but also calculation of numeric pathway
characteristics (e.g. extents of their up/downregulation) based on
the user experimental data. Currently, there is a lack of uniformly
assigned weights and coefficients reflecting each individual gene
product/node role in the activation of a pathway under study.

Recently, an algorithmic approach was proposed for assigning
of activation/repressor roles to the pathway components that
was applied for the automatic annotation of 3040 pathways [23].
These roles were translated into node-specific numeric indexes
necessary for calculating pathway activation levels (PALs).

Here, we present Oncobox pathway databank that accumulates
51 672 uniformly processed human molecular pathways extracted
from different source databases. Superposition of all pathways
formed interactome graph of protein–protein interactions and
metabolic reactions containing 361 654 interactions and 64 095
molecular participants. All pathways were functionally classified
by their main underlying biological processes according to Gene
Ontology (GO) tree. Each pathway node was algorithmically func-
tionally annotated by specific activation/repressor role index. This
enables direct calculation of pathway activation levels (PALs) using
human RNA/protein expression profiles. With the Web-based
bioinformatic tool or downloadable oncoboxlib Python library, user
can analize custom expression data to assess PALs in the samples
of interest compared to the built-in or custom set of controls,
and statistically evaluate differentially regulated pathways. Each
pathway can be visualized both as static or dynamic graph, where
vertices are molecules participating in a pathway and edges are
interactions or reactions between them. Differentially expressed
nodes in a pathway can be visualized in two-color mode with
user-defined color scale. Online version of Oncobox PD is freely

available at https://open.oncobox.com.
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2. Materials and methods

OncoboxPD utilizes virtual machines (VMs) located in Microsoft
Azure cloud. All VMs run on Ubuntu 20.04.3 LTS. On the entry
node, HTTP web server nginx is installed that is responsible for
processing user requests (2 vCPUs, 8 GB RAM, D2s size according
to Microsoft classification).

HTTP server and the processes running in Python communicate
through Web Server Gateway Interface (uWSGI 2.0.19
implementation).

JavaScript web application (running in the browser of a user)
interacts via REST API with the backend. On the server we have a
Python 3.7 application build on top of Django framework. A single
instance of PostgreSQL 13.3 is used as a data storage.

Calculation tasks are sent via RabbitMQ queue for processing to
compute optimized nodes (4–8 vCPUs, 8–16 GB RAM, F4s-F8s size
according to Microsoft classification). These settings can be
dynamically scaled up or down depending on current workload.
Once the calculation is complete, the results are returned to the
main node and made available to the user.
3. Results

3.1. Database content

Oncobox pathway databank (OncoboxPD) includes 51 672
human molecular pathways extracted from seven pathway knowl-
edge bases: Biocarta [24], KEGG [25], HumanCyc [17], Qiagen [11],
NCI [10], Reactome [26] and PathBank [6]. The data were collected
by combining manual and automatic parsing and curation of these
source datasets. The processed pathways are stored in OncoboxPD
with their original names in uniform format. Where possible, infor-
mation on pathway participants and their interactions was
extracted and catalogued (Table 1).

Since most of the initial pathway formats had different nomen-
clatures for designation of genes, proteins, metabolites, and others
relevant items, in OncoboxPD we introduced uniform nomencla-
ture according to the following rules. All genes and their products
are named according to HGNC nomenclature [27], version from 17
July 2017; metabolites are annotated by full names and also linked
to IDs from Chemical Abstract Service (CAS) [28], Chemical Entities
of Biological Interest (ChEBI) [29], The Human Metabolome Data-
base (HMDB) [30], PathWiz [31] and DrugBank [32] resources,
where available.

In addition to full-size pathways, we also included so-called
micropathways, where such micropathway is a sub-graph of an
existing pathway that contains major effector node and first to
third order neighbor nodes. The micropathways were generated
automatically using our previously published algorithm [23].

In the case of algorithmic parsing, the pathway connectivity
data were controlled manually. The team implementing expert
curation could edit algorithmically assigned node or component
names, interaction marks and node composition to avoid artifacts,
duplicates, and false interpretations. Pathway size (number of par-
ticipants in a pathway) varied substantially within and among
original datasets. In Biocarta, pathway size varied from 2 to 58 (av-
erage 16), in KEGG - from 1 to 284 (43), in HumanCyc - from 4 to
155 (26), in PathBank - from 2 to 217 (31), in NCI - from 2 to 180
(20), in Qiagen - from 2 to 709 (58), in Reactome - from 3 to 831
(36), Supplementary Figure S1.

Five source pathway datasets (Biocarta, KEGG, Qiagen, NCI, and
Reactome) had only gene products as the pathway nodes, and two
datasets (PathBank and HumanCyc) also contained metabolites as
the interactors.

https://open.oncobox.com/


Table 1
Composition of source pathway knowledge bases.

Source pathway knowledge
base

Number of
pathways*

Number of gene
products*

Number of
metabolites*

Type of interactions comprized

Biocarta 1.2 337 1 082 – protein–protein
KEGG 1.2 288 4 345 – protein–protein
HumanCyc 1.0 300 980 1 040 protein–protein, biochemical reactions,

transport
NCI 1.2 775 2 214 – protein–protein
Qiagen 1.4 (SABiosciences) 379 2 493 – protein–protein
Reactome 1.3 945 6 105 – protein–protein
Pathbank 1.0 48 648 1 405 55 571 protein–protein, biochemical reactions,

transport
Total 51 672 9 117 56 596 protein–protein, biochemical reactions,

transport

*Numbers are shown for unique items only.
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The percentage share of metabolic components per pathway
was in the range of 0–94 (mean 74%) for the pathways from Path-
bank, and 6–95 (mean 70%) for the pathways from HumanCyc
database.

All processed pathway datasets are available for download as
both ‘‘.xlsx” files for each separate pathway, and as combined ‘‘.csv”
files for the whole dataset.
3.2. Pathway architecture

In OncoboxPD, each molecular pathway is implemented as a
graph of interactions between its molecular participants. The graph
edges are interactions between the nodes, such as protein–protein
interactions, biochemical reactions, transport to different cellular
components, assembly or disruption of molecular complexes, and
other processes. Standard edge types in OncoboxPD are ‘‘activa-
tion”, ‘‘inhibition” and ‘‘other” (Table 2). Each edge on the graph
is directed, and when the underlying interaction is reversible, then
two oppositely directed edges are placed between the interactors.

Graph vertexes (nodes) represent formal functional units of a
pathway, or several molecular pathways that are interconnected
on the graph (Table 3). Every node may include one or few compo-
nents. For example, when a node stands for molecular complex,
then it comprises few components which can be proteins (gene
Table 2
Type of pathway graph edges in OncoboxPD.

Initial edge type in Biopax or different
format

Edge type in OncoboxPD
format

Direct interaction, activation or inhibition activation or inhibition,
respectively

SubPathwayInteraction other
ComplexAssembly other
Molecular interaction(between

participants from SubPathwayControl
item)
- activation or inhibition

activation or inhibition,
respectively

Catalysis, activation or inhibition activation or inhibition,
respectively

Modulation (activation-allosteric,
activation-nonallosteric, activation,
inhibition-competitive, inhibition-
other, inhibition-noncompetitive,
inhibition-allosteric, inhibition-
irreversible, inhibition)

activation or inhibition,
respectively

Transport activation, because it promotes
further molecular interaction

BiochemicalReaction activation, because it promotes
further molecular interaction

Indirect other
Compound other
Others other
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products) or non-protein molecules. In OncoboxPD, there is only
one depth level for ‘‘molecular complex” nodes. Each node has an
activation/repressor role coefficient (ARR) which characterizes its
relation to the overall pathway physiological or molecular effect.
ARR depends on role of an individual node is a pathway. In the cur-
rent implementation, ARR = 1 means that node is activator, ARR = -
1 is for repressor, ARR = 0 is for nodes with ambiguous or unclear
function, and ARR = 0.5 or ARR = -0.5 is for nodes with rather acti-
vator or rather repressor functions, respectively.

ARR value of a node is translated into specific gene ARR, accord-
ing to molecular functions that the respective gene product plays
in all pathway nodes. This is mentioned because the same gene
product can be involved in different nodes, sometimes with differ-
ent ARRs. Thus, overall role of a gene product in a pathway must be
weighted and characterized by an overall ARR value. This task can’t
be fulfilled effectively and unbiasedly by manual curation because
of big number of pathways and their apparently high complexity.
Thus, to uniformly annotate all pathways in OncoboxPD we used
a recursive algorithm that was recently developed in our team to
automatically annotate ARRs based on pathway graph architecture
and connectivity [23].

While a protein–protein interaction can be presented by an
edge between two participants, biochemical reactions and trans-
port processes require different format of graphic representation.
Number of participants of biochemical reaction (input and output
reactants, and enzymes) is typically more than two, and biochem-
ical pathway most frequently cannot be shown as a sequential ser-
ies of pairwise interactions. An auxiliary central node was
introduced for biochemical reactions to link an enzyme with input
and output reactants. Such central node denotes the process itself
and has no components. Similar approach was used for transport
processes to link input, output molecular participants, and a trans-
porter. Thus, auxiliary central nodes enable presenting pathways
as logical and uninterrupted scheme of molecular process.

The direction of reactions could vary in the source pathway
databases: ‘‘left to right”, ‘‘right to left”, ‘‘reversible”. We converted
each reaction or interaction in the format ‘‘left to right”, and every
reversible reaction was transformed into two coupled reactions.

In OncoboxPD, each gene product is named according to HGNC
nomenclature [27]. Full names of non-protein molecules were
saved in the PathBank database format, e.g. ‘‘Adenosine triphos-
phate”. Additionally, molecular IDs are assigned, where possible,
according to four different chemical databases: CAS [28], ChEBI
[29], HMDB [30], PathWiz [31], and DrugBank [32]. If a molecule
has no associated HGNC gene name, then it is not involved in cal-
culation of pathway activation level (PAL) using gene expression
data. However, such molecule may play a technically important
role by connecting an overall pathway graph which is a prerequi-
site for algorithmic assignment of ARRs.



Table 3
Type and composition of pathway graph nodes in OncoboxPD.

Characteristic Node type
in
OncoboxPD

Gene composition Involvement
in evaluation
of ARR / PALa

Example

Node with one or more gene products/components
(proteins, nucleic acid molecules, small
molecules, protein complexes, bound
complexes)

participant one or several gene
products/components;

+/+ if node
contains gene
product

participant node Ub in HIF1Alpha pathway; gene
products UBB, UBC, UBD

Node with name of biological effect, or with another
crosslinking molecular pathway (entire pathway
as single item)

participant empty +/- participant node Glycolysis in 2-Ketoglutarate
Dehydrogenase Complex Deficiency pathway

Auxiliary transport node transport empty +/- transport node Ornithine in Arginine and Proline
Metabolism pathway. Citrulline transport from
cytoplasm to mitochondrial matrix

Auxiliary biochemical reaction node biochemical
reaction

empty +/- reaction node Glucose 1-phosphate + Uridine
diphosphategalactose -> Galactose 1-
phosphate + Uridine diphosphate glucose in Congenital
Disorder of Glycosylation CDG-IId pathway

a ‘‘+” and ‘‘-” indicates involvement of node in evaluation of ARR coefficients or PAL values.
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3.3. Functional annotation of molecular pathways

In OncoboxPD, an attempt was made to functionally character-
ize all pathways according to their molecular physiological impli-
cation. To this end, we used Gene Ontology (GO) annotations
[33], and analyzed gene sets corresponding to molecular pathway
components using enrichGO function of ClusterProfiler R package
[34] to identify biological processes which are statistically signifi-
cantly linked with each individual pathway. We then assigned
these specific GO tags to the respective molecular pathways and
functional groups of pathways were, therefore, formed as those
having common GO tag(s) (Fig. 1). Altogether, we identified 6
485 such functional groups (Fig. 1).

Different functional groups differed � three orders of magni-
tude by their representation and included 1–1021 molecular path-
ways (Fig. 2). The biggest functional groups with more than 800
pathways are listed in Table 4.
Fig. 1. Schematic representation of molecular pathway functional classification accordin
and includes pathways, where this GO term is statistically significantly enriched (adj
compositions were considered.

2283
3.4. Pathway activation level calculation

Pathway activation level (PAL) is a metric allowing direct calcu-
lation of pathway activity levels using high-throughput gene
expression data e.g. obtained by transcriptomic or proteomic
screens. It can take positive and negative values in case of up-
and downregulation of a pathway, respectively [1,7,35]. PAL values
can serve to characterize molecular processes in-depth and in a
large scale [19,35], or can be used as the biomarkers for many
aspects of human biology including molecular pathology and per-
sonalized medicine [36–38]. In this version of OncoboxPD, we
include PAL calculation and visualization tool that can supplement
the database with the functional analysis of the pathways.

OncoboxPD has Web-based built-in tool for PAL calculation that

is available at https://open.oncobox.com. User can upload expres-
sion data of interest to interrogate pathway activation compared
to controls. PALs are calculated according to [35] as follows:

PALp ¼ 100 �PnARRn;p � lgðCNRnÞ=
P

njARRn;pj,
g to GO terms enrichment. Each functional group corresponds to a specific GO term
usted p-value less than 0.05). In this assay, only the pathways with unique gene

https://open.oncobox.com/


Fig. 2. Size distribution of GO functional groups of pathways (number of pathways
included). Groups with more than 800 pathways are shown right to dashed red line.
(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Table 4
Functional OncoboxPD pathway groups with more than 800 members.

Pathway functional group ID (GO Tag) Number of pathways
included

Activation of protein kinase activity 1021
Peptidyl-serine phosphorylation 937
Fc receptor signaling pathway 896
Response to peptide hormone 883
Regulation of MAP kinase activity 882
Immune response-activating cell surface receptor

signaling pathway
869

Neuronal death 858
Regulation of neuron death 834
Positive regulation of cellular protein localization 833
Blood coagulation 817
Gland development 810
Positive regulation of cell adhesion 802
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where PALp is PAL for pathway p, CNRn is case-to-normal ratio,
ratio of gene n expression level in a sample under study to average
level in control group; ARR (see above; activator/repressor role) is a
Boolean value that depends on function of gene n product in path-
way p. ARR can take values of � 1 when n inhibits p; 1 when n ac-
tivates p; 0 when n has ambiguous or unknown role in p; 0.5
and � 0.5, when n is rather activator or inhibitor of p, respectively.

PAL calculator can use as the controls custom data provided by
the user, or (default setting) human tissue RNAseq profiles
obtained from healthy donors killed in road accidents. User can
upload file with expression data and create a new analysis. At this
stage, user can select pathway database, and can use an auxiliary
option ‘‘scores for control samples” that enables calculating PAL
values for the control samples to assess variations in the control
group. The output results are returned as ready-to-download
tables with CNR and PAL values for all samples under analysis.
Alternatively, the results can be explored, analyzed and visualized
with the web service. By clicking on the results, user can obtain
overall PAL table, Sample table and pathway activation chart for
the group of samples under analysis. Clicking on Sample table
returns separate PAL datasheets for each sample. For every path-
way in a given sample, its pathway activation chart can be visual-
ized by the software. The sample-specific datasheet also includes
CNR for all genes under analysis (for example, for up to 36,183
genes when profiles from the default collection are used as the
norms), and log2(CNR) values. In every sample profile, each path-
way ID can be clicked to obtain tabs for differentially expressed
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genes included in this pathway and their CNRs; pathway nodes
and components; static and dynamic pathway graphic scheme.

Pathway activation chart is automatically generated for every
sample or every group of samples (Fig. 3). It summarizes overall
PAL calculation results and returns top 10 most strongly activated
pathways (ordered top to bottom) and top 10 most strongly inhib-
ited pathways (ordered bottom to top) with PAL values, their p-
values and FDR-adjusted p-values (Benjamini – Hochberg correc-
tion). The principle of p-value calculation is shown on Table 5.

Pathway activation chart represents top most strongly activated
andmost strongly inhibited molecular pathways in a sample/group
of samples. The number of displayed top pathways can be selected
by the user. When a group of samples is investigated, then t-test p-
value is shown for the comparison between case and control
groups. All graphic materials generated are available for download
as.png and.svg files. The detailed guidelines for PAL calculation and
analysis with step-by-step screenshots is available through open.
oncobox.com. Also, three thyroid cancer expression profiles[39]
are preloaded for each user as demo example of samples with
PAL calculating results (using six healthy thyroid samples from
ANTE collection as control group).

Alternatively, we also developed a Python library oncoboxlib,
that can be run on local computer and can be freely downloaded
by the user. To calculate PAL values, Oncoboxlib requires files with
HGNC gene symbols [27] and the corresponding expression levels
for at least one case and at least one control sample. Installation
instruction for Oncoboxlib and demo-example are available in Sup-

plementary File 1 and at https://pypi.org/project/oncoboxlib.
3.5. Pathway visualization.

OncoboxPD collection is supplemented by pathway visualiza-
tion tool. It allows to interactively visualize pathway structure
and internal molecular interactions in the format of static or
dynamic directed graph (Fig. 4 A, B).

Therein, static graph automatically obtains optimal layout to
avoid node or line overlap and to adapt node size to its labels
(Fig. 4A). As an option, user can switch from optimal to compact
layer mode to decrease distances between the nodes. In turn,
dynamic graph is interactive scheme that can be moved using
Cytoscape plugin, where user can customize the layer by drugging
the items (nodes) with mouse. This option is helpful in case of
complicated interactions and long node labels.

Color of each node reflects logarithm of mean CNR for all of its
components and corresponds to a scale given below with green
color for upregulated, and red color for downregulated nodes.
The default scale is designed to represent all lg(CNR) variabilities
present on the graph for the case under investigation. However,
user can customize color intensity by manually selecting scale lim-
its, but this can lead to equal maximum color intensity for some
nodes if they exceed the scale threshold. Such nodes will be
marked by bold black frame. The nodes shown by grey color have
no gene components and no CNR values. Unaffected or poorly
affected nodes (with CNR � 1, and lg(CNR) � 0) are shown white.

Red arrows show inhibitory interactions, green arrows - activat-
ing interactions; arrows for ambiguous or poorly investigated
interactions are shown black. Arrows involved in biochemical reac-
tions or transport processes are comprised as the activating inter-
actions. Auxiliary central nodes of biochemical reactions and
transport processes have rhombic shape and are filled in black with
no label because they denote the process but not its molecular par-
ticipants (Fig. 5). Such nodes without gene products involved have
no CNR values, but they are necessary for ARR assignment to all
pathway graph members.

http://open.oncobox.com
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Fig. 3. Example of pathway activation chart. Green lines show top 10 most strongly activated pathways (ordered top to bottom), red lines show top 10 most strongly
inhibited pathways (ordered bottom to top). Thickness is proportionate to absolute value of PAL. In this example, RNA sequencing gene expression profiles of three thyroid
cancer samples [39] were compared with six healthy thyroid normal samples from ANTE collection [40]. PAL values, t-test p-values and FDR-adjusted p-values are shown
right to the pathway names. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 5
Principle of p-value calculation for pathway activation chart.

Number of
control
samples

Number of case
samples (replicates)
under analysis

Method of p-value calculation

3 or more 3 or more t-test
3 or more 1 p-value is defined as a quantile of

PAL in a sample investigated
relatively to PAL distribution in
control samples

less than 3 any number p-value is not calculated
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3.6. Human interactome graph of protein interactions and metabolic
reactions

Using collection of pathways as the knowledgebase of molecu-
lar interactions, we also built combined human interactome and
metabolome model. This is the directed graph, where nodes are
genes or metabolites, and edges are known pairwise molecular
interactions present in the OncoboxPD. The model was visualized
using Gephi software and ForceAtlas2 algorithm [41] (Fig. 6).
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Totally, we used molecular architectures of 50 178 different
pathways. Complex pathway nodes containing n molecular partic-
ipants were divided into n nodes with only one participant. Thus,
each vertex represents one pathway participant on the graph. We
then combined all pathway graphs together based on the coincid-
ing gene products and metabolites. The resulting interactome
graph includes 122 929 vertices and 600 137 edges. It incorporates
totally 64 095 molecular participants and 361 654 interactions (ex-
cluding auxiliary nodes and interactions).

From all these pathways, we excluded molecular participants
which were not connected within the overall network (less than
1% of the initial pathway members). The remaining molecular
interactors formed a connected graph. The graph density was
8.08*10-5, average vertex degree (the number of edges connecting
the vertex) was 4.9. However, some vertices had extremely high
vertex degree, for example, 25 336 for Cytidine monophosphate,
24 034 for Coenzyme A, 23 300 for gene product CRLS1, 22 718
for gene product DGAT1, 2 813 for gene product PEMT, and 2 799
for S-Adenosylmethionine. The interactome model built enables
finding the shortest path between genes of interest, or to identify
gene interactomic neighborhood (e.g. at the distance of one, two
or three edges). The model built is available in graphml format
(https://doi.org/10.6084/m9.figshare.16617676.).

https://doi.org/10.6084/m9.figshare.16617676.)


Fig. 4. TRAF molecular pathway visualization using OncoboxPD software. Nodes correspond to individual pathway components or to their complexes. Color of every node
reflects logarithm of mean CNR for all node components, according to a scale given with green upregulated, and red downregulated nodes. Grey nodes have no gene
components, and no CNR values. Nodes that are unaffected (with CNR � 1) are shown white. Red and green arrows stand for inhibitory and activating interactions,
respectively. Ovals denote gene products, octagons - metabolites, hexagons – complexes, and other nodes (text labels without recognized molecular components) are shown
as rectangles. A bold black border indicates outlier values that are outside of scale limits. In this example, RNA sequencing gene expression profile of thyroid papillary cancer
sample TC15 [39] was compared against six healthy thyroid samples from ANTE collection [40]. A) Static pathway graph. B) Projection of dynamic interactive pathway graph.
The figure can be found following the path: result file in Folders(‘‘example” with green icon)->sample TC15 in Sample table-> Pathway activation level tab->TRAF Pathway->
static and dynamic graphs. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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4. 3.7.Comparison with the previous pathway aggregator
databanks

There are several previously published knowledge bases that
systematically aggregate information related to molecular path-
ways. For example, OmniPath accumulates data in the form of five
databases including annotations of signaling network interactions,
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enzyme-post-translational modification relationships, characteris-
tics of individual proteins, protein complexes, and of their roles in
intercellular communication [42,43]. OmniPath has web-based, R,
Cytoscape, and python applications which can generate and visual-
ize custom (e.g. tissue specific) molecular networks. However,
there is no option of calculating functional molecular pathway acti-
vation metrics using gene/protein expression data.



Fig. 5. OncoboxPD visualization of GDP-mannose biosynthesis molecular pathway. Nodes correspond to pathway participants. Color reflects node activation according to color
scale on the bottom. For this example, thyroid papillary cancer sample 5 RNA sequencing profile [39] was normalized on six healthy thyroid samples from ANTE collection
[40]. Nodes that don’t correspond to known gene products are shown grey because for them no CNR value can be calculated. Auxiliary central nodes of biochemical reactions
(BR) have rhombic shape and are filled in black. Ovals denote gene products, octagons - metabolites. Green arrows denote activating interactions. The figure can be found
following the path: result file in Folders (‘‘example” with green icon) ->sample TC15 in Sample table-> Pathway activation level tab-> De novo triacylglycerol biosynthesis
pathway -> static graph. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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In turn, Scalable Precision Medicine Open Knowledge Engine
(SPOKE) resource combines several relevant databases of not only
molecular pathways, but also of diseases, symptoms, biological
processes, genes, relevant drugs and their side effects [44]. It can
generate and visualize molecular networks based on the built-in
databases. However, the source datasets cannot be extracted by
the user.

In ConsensusPathDB database, individual molecular interac-
tions are catalogued, and user can interrogate enrichment of speci-
fic gene networks [45]. However, the pathways are available for
download as the non-organized lists of genes or metabolites, with-
out information on their molecular interactions. Instead, all molec-
ular interactions are available as a single dataset without link to
pathways and with hidden type of interaction. However, for a frac-
tion of pathways and interactions this information can be viewed
via built-in online visualization tool, but in every case the interac-
tion type is not annotated with the functional effect(s) on a path-
way, such as activation/inhibition/other in the OncoboxPD.

The Pathway Commons tool combines many pathways-related
databases, and has R, Cytoscape, and Java packages enabling to
visualize and to certain extent to analyze the pathways [46]. On
the other hand, it cannot calculate pathway activation metrics,
and has no option of building pathway activation charts.

PathMe [47] database uniformly merged three large primary
sources of molecular pathways (KEGG, Reactome, WikiPathways).
PathMe transforms different original interaction and node types
to Biological Expression Language (BEL) types to assess similarity
of the same pathways from different sources (e.g., mTOR pathway
from KEGG, Reactome, WikiPathways). Such similar pathways then
can be merged as the larger networks according to degree of a
coincidence of the same molecular participants and interactions.

We conclude, therefore, that OncoboxPD has the following
advantages:
2287
-presenting molecular pathways in a uniform format that is
ready for directly functionally assessing pathway activation
metrics;

-built-in tool for calculating pathway activation levels (PALs) for
50 K + molecular pathways using custom RNA/protein expression
data;

-quick graph overview of most strongly differentially regulated
pathways;

-visualization of pathway activation charts in two alternative
(static and dynamic) modes, where color of each node of a given
pathway reflects its up/downregulation in a sample of interest;

However, OncoboxPD has the following limitations:
-a user cannot create custom pathways in a web-tool;
-similar pathways from different database are given separately

and not merged;
-molecular interactants are not attributed by cell/tissue

localization;
-only molecular pathways are listed, without separate pairwise

molecular interactions;
–no local application for pathway visualization is available to

download.
Main distinguishing features of OncoboxPD in comparison with

other pathway aggregator databanks is shown in Table 6.
5. Discussion

We report here OncoboxPD collection that includes 51 672
molecular pathways, which is to our knowledge currently the big-
gest human molecular pathways database with functionally char-
acterized individual pathway nodes. Furthermore, all pathways
are functionally classified according to GO terms enrichment pat-
terns. OncoboxPD is a structured curated collection of protein-



Fig. 6. Human interactome model of protein interactions and metabolic reactions. Graph vertices represent pathway participants: gene products (green), metabolites (blue)
and auxiliary nodes/nodes with label of biological effect (grey). Graph edges are interactions between pathway participants. Edges inherit color from donor nodes. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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based and of metabolic human molecular pathways. All pathway
participants, their interactions and reactions are uniformly pro-
cessed and annotated, and are ready for numeric analysis of exper-
imental expression data.

We did not aggregate here neither databases which may con-
tain data with remarkably different levels of evidence like
WikiPathways that can be edited by the users, nor datasets of pair-
wise molecular interactions (like IntAct). Unfortunately, we
couldn’t quantitatively estimate the reliability of each piece of data
included in OncoboxPD because pathway construction was done
by expert teams managing the source databases using different
approaches, datasets, and algorithms. However, we can highlight
some technical limitations of data presentation and storage which
are peculiar to certain source knowledgebases. First, using of non-
machine-readable formats may lead to loss of certain information.
For example, KEGG database uses graphical.png format and origi-
nal xml-based KGML format, and ceased to support universal Bio-
PAX format. In KEGG, graphical format frequently contains
information that is not included in machine-readable KGML for-
mat, e.g. biological process names, conditions of interactions, labels
of spatial compartments, or separately given participants without
clear links to other interactors.

In turn, PathBank database provides several alternative formats
for each pathway: BioPAX, SBGN, SBML, PWML, RXN, and SDF. But
only one of them, i.e. PWML (PathBank original format), contains
all the information from the corresponding visual map. However,
even there some elements may have only coordinates for the pic-
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ture, but no information about their link with other process partic-
ipants. Such labels are absent in other formats, thus leading to
partial loss of data.

Furthermore, the universal format BioPAX has no clear direction
and type of interaction in ‘‘subpathway” items in several cases,
when interactors are simultaneously ‘‘activators” and ‘‘activated”
or ‘‘inhibitors” and ‘‘inhibited” without a clear link between certain
role and certain interaction or reaction. Qiagen SABiosciences data-
base provided data only in the graphic format that had to be man-
ually curated during construction of OncoboxPD. Another
important issue is maintenance of the above source databases,
their regular updates and availability. For example, the databases
Biocarta and NCI PID ceased to exist in their original form, but were
saved in various aggregator resources after specific data process-
ing, that theoretically could alter data completeness.

In the examples given, we explained PAL calculation for RNA
expression data. However, the same algorithms may be also
applied for the quantitative proteomic profiles. In addition, algo-
rithmic assessment of pathwaymutation enrichment, e.g. in cancer
samples [48–50], will be another possible direction of developing
this database. The current pathway activity assessment interface
is tailored to analize gene expression/proteomic data, but further
updates may increase its functionality to assess also high-
throughput metabolomic profiles. Another direction of future
investigations is cross-linking gene/protein expression profiles
with metabolomic data for the hybrid pathways including both
gene products and metabolites, as shown on Fig. 5. Such integra-



Table 6
Major characteristics of selected pathway aggregating databanks.

Database (DB)
name

OncoboxPD Pathway
Commons [46]

ConsensusPathDB [45] SPOKE [44] OmniPath [42,43] PathMe [47]

Number of DBs/
pathway DBs

7/7 22/8 31/12 47/4 103/11 3/3

Human pathway
databases
included

Biocarta,
HumanCyc, KEGG,
NCI, PathBank,
Reactome, Qiagen

Reactome, NCI,
HumanCyc,
PANTHER,
KEGG, INOH,
NetPath,
Pathbank

Reactome, KEGG, Humancyc,
NCI, Biocarta, Netpath, INOH,
Ehmn, Pharmgkb, Smpdb,
Signalink, Wikipathways

NCI and Reactome from
Common pathways, KEGG
(number of pathways is
not available),
WikiPathways

AlzPathway, Ma’ayan
2005, CancerCellMap/
NetPath, CST,
Macrophage, KEGG,
NCI, PANTHER,
Reactome, SPIKE,
WikiPathways

Reactome,
KEGG,
Wikipathways

Number of
pathways

51,672 5,772 5,578 1,822 Not annotated 3095

Number of
interactions

391,327 2,424,055 864,683 2,250,197 507,997 greater
than215,000

Non-pathway
interactions

– + + + + –

Participant type molecular molecular molecular 11 types (molecular and
and others)

molecular molecular

Web built-in
visualization
tool for:

canonical
pathways

canonical
pathways,
interactions

canonical pathways, their
fragments, interactions

interactions, custom
pathways

Not available merged
canonical
pathways,
interactions

Local applications Python R, Java,
Cytoscape

Cytoscape – Python, R, Cytoscape Python

Functional
analysis by
pathway
classification

+ – – – – –

Intracellular
localization of
pathway
participants

– + – – – –

Web analysis of
custom gene
expression data

Scoring of
pathway
activation

– Enrichment/over-representation
analysis

– – –

Construction of
custom
pathways

– – + + + –

Annotated effect
of interactions
(activation,
inhibition,
neutral)

+ – – – + +
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tion requires differential weighting of the PAL values obtained after
gene/protein expression data and metabolomic profiles, which is
currently unsolved problem and will be a matter of further studies.

Five out of seven source databases of OncoboxPD collection
contain only protein–protein interactions (Table 1), and two
remaining datasets contain also metabolite interaction data. To
our knowledge, there is still no analytic system for pathway-level
processing of high-throughput metabolomic data, and this may
be important direction of future OncoboxPD development. For
example, quantitative metabolomic data could be employed to cal-
culate activation levels for the metabolic pathways, where the
case-to-normal ratios (CNRs) will be found by comparing metabo-
lite concentrations in the case and control biosamples.

In the future, we plan to maintain OncoboxPD a growing data-
base that will be regularly updated when new pathways, or their
more relevant functional annotations become available.

In OncoboxPD, we for the first time uniformly algorithmically
classified large collection of molecular pathways according to the
physiological processes they are involved by using Gene Ontology
terms. The same approach may be employed for annotating new
pathway collections, and such functional labels may be important
to identify groups of relevant processes specific to certain condi-
tions. For example, it was shown recently that signaling, cytoskele-
ton, metabolic and DNA repair pathways have distinct features in
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mutation accumulation and transcriptional activation in cancer
[19].

Finally, OncoboxPD is currently the collection of human path-
ways and related analytic tools, whereas in the future it can be
expanded to a number of model organisms where large-scale inter-
actomic data are available.

Availability of data and materials.
OncoboxPD database and the corresponding built-in tools are

freely available at https://open.oncobox.com. OncoboxPD can be
accessed in two ways: by starting a new session (no registration
needed), or by continuing previous session (authorization
required). More detailed description of the access modes is given
in the Help section at open.oncobox.com. The option of PAL calcu-
lation is also possible using oncoboxlib Python library, available at

https://gitlab.com/oncobox/oncoboxlib.
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