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Abstract. Purpose: The purpose of this study was to
identify combinations of dose rate and exposure time that
have the potential to provide curative treatment with
targeted radionuclide therapy applying low dose rate beta
irradiation.

Methods: Five tumour cell lines, U-373MG and U-118MG
gliomas, HT-29 colon carcinoma, A-431 cervical squa-
mous carcinoma and SKBR-3 breast cancer, were used.
An experimental model with 10° tumour cells in each
sample was irradiated with low dose rate beta particles.
The criterion for successful treatment was absence of
recovery of cells during a follow-up period of 3 months.
The initial dose rates were in the range 0.1-0.8 Gy/h, and
the cells were continuously exposed for 1, 3 or 7 days.
These combinations covered dose rates and doses achiev-
able in targeted radionuclide therapy.

Results: Continuous irradiation with dose rates of 0.2—0.3
and 0.4-0.6 Gy/h for 7 and 3 days, respectively, could kill
all cells in each tumour cell sample. These treatments gave
total radiation doses of 3040 Gy. However, when
exposed for just 24 h with about 0.8 Gy/h, only the
SKBR-3 cells were successfully treated; all the other cell
types recovered. There were large cell type-dependent
variations in the growth delay patterns for the cultures that
recovered. The U-118MG cells were most resistant and the
U-373MG and SKBR-3 cells most sensitive to the
treatments. The HT-29 and A-431 cells were intermediate.
Conclusion: The results serve as a guideline for the
combinations of dose rate and exposure time necessary to
kill tumour cells when applying low dose rate beta
irradiation. The shift from recovery to “cure” fell within
a narrow range of dose rate and exposure time
combinations.
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Introduction

Many types of tumour overexpress cell surface-associated
antigens or receptors suitable as targets for radionuclide
therapy, and many types of targeting agent have been
suggested or are already being applied for such therapy. This
therapy is currently employed for lymphomas [1, 2] using
radiolabelled antibodies and also for neuroendocrine [3—5]
and paediatric tumours [6, 7] using radiolabelled somato-
statin analogues and meta-iodobenzylguanidine (mIBG),
resgpectively. In the majority of these cases, beta emitters such
as °°Y, *'Tand '""Lu have been applied. The results have, so
far, essentially shown palliative effects [1, 8—12], and there is
hope that combinations of beta particle emitters, e.g. *°Y
and '""Lu, will improve the therapy results [13].

The cell-killing capacity of low LET radiation, i.e.
photons and electrons, is well known when applying high
dose rates, typically 0.5-2.0 Gy/min, as in external
radiotherapy [14, 15]. However, the extensive experimen-
tal and clinical knowledge on the effects of external
radiotherapy can be deployed to only a limited extent in
understanding the effects of radionuclide therapy. A major
difference is that the dose rate in radionuclide therapy is at
least two orders of magnitude lower than in external
radiotherapy [10, 16-19]. The lower dose rate allows for
DNA repair and repopulation during the radiation expo-
sure, which is not the case during high dose rate exposures.
Basic radiobiological studies have shown that low dose
rates, in the range of 0.1-1.0 Gy/h, give a much lower
biological effect (per dose unit) than high dose rates in the
range 0.5-2.0 Gy/min [15, 17, 20, 21]. It is also known that
an inverse dose rate effect exists in that dose rates of 0.2—
0.4 Gy/h can give more cell kill than dose rates in the range
0.7-1.0 Gy/h [15, 22].
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Only crude estimates can be made from previous
experiments to elucidate which combinations of low dose
rate and exposure time can cure a metastasis containing, for
example, 10> cells. Cell survival has most often been
analysed after a cell cloning 1-2 weeks after the radiation
exposure. For example, a total dose of about 30-50 Gy,
given with 0.1-1.0 Gy/h, seems necessary to decrease the
smgle cell survival probability to 107> [23, 24] and thereby
give a reasonable chance of killing 10° tumour cells.
Furthermore, targeted radionuclide therapy is complicated,
since it is not enough only to consider the macroscopic
dose concept; different cellular and intracellular distribu-
tions of radionuclides can give different biological effects
although the macroscopic dose is the same [25, 26].

One way to obtain solid information on which combina-
tions of low dose rate and exposure time can give curative
treatments with beta particles (which also is low-LET
radiation) is, of course, through experiments and clinical
trials. In this study we used an experimental model with the
criterion that the low dose rate beta radiation must kill all 10°
tumour cells in a culture dish in order to simulate a successful
treatment. The follow—up period was 3 months.

The choice of 10° tumour cells is somewhat arbitrary
and is based on two arguments. The first is that this number
represents a small tumour cell cluster that normally cannot
be identified by routine diagnostic procedures such as
computed tomography or magnetic resonance imaging
(unless the tumour cells cause macroscopic changes in the
surrounding normal tissues). Furthermore, this number of
tumour cells in most cases does not cause symptoms in the
patient. Thus, a cluster of 10° tumour cells in a patient can
be considered an “occult” or “subclinical” tumour or
metastasis. The second argument is more practical, since
the presence of 10° tumour cells in a normal cell culture
dish or flask allows enough space for exponential growth
and, at the same time, frequent cell—cell contacts.

Our ambition was not to simulate the dose rate variations
in time and space that occur in radionuclide therapy. In the
clinical setting, the dose rate varies with time, not only as a
consequence of the physical half-life of the radionuclides,
but also due to time-dependent changes in their spatial
distribution [16, 17, 24, 26, 27]. Factors of importance are
ongoing vascularisation processes, variations in vessel wall
leakage and changes in blood flow. There are probably also
various diffusion and convection conditions in different
areas of tumours, resulting in variable penetration proper-
ties of the radiolabelled targeting agents. In addition, there
might be variations in the expression of target structures on
the tumour cells. All these time-dependent factors make it
difficult to establish basic and reproducible dose rate—
response relations in vivo.

Our experimental model was designed to give
reproducible and controllable irradiation conditions, and
we applied a model with a rather 10ng physwal half life
(*P sources with T),=14.3 days), giving only a slow
decrease in dose rate during the exposures. Relevant dose
rates were selected through the amount of radionuclide
placed in the irradiation chambers. The exposure times

were selected to correspond to the effective half-lives of
the radionuclides delivered by targeting agents of different

types.

In targeted radionuclide therapy it is, of course, also nec-
essary to consider unwanted side-effects on normal tissues.
However, analyses of normal tissue effects were beyond the
scope of this study. Hyperradiosensitivity [28, 29] at low
doses, bystander effects [30—32] and low dose rate-induced
apoptosis [33, 34] are all extensively studied processes. Our
model allows these processes to work together, but we did
not try to study them separately. The overall goal of the study
was to find “dose rateﬂexposure time” relations that could
kill all of the exposed 10° tumour cells, so that no remaining
cells would be observed after 3 months.

Materials and methods
Irradiation chambers

The irradiation chambers have been described previously [35], so
only a short description is given here. Three identical chambers were
used and each was filled with 400 ml distilled water containing 0.74—
2.22 GBq **P. The water was boiled and degassed shortly before
adding *?P and filling of the chambers, in order to avoid air bubbles.
The beta emitter >°P (orthophosphate) (7 ,=14.3 days) was obtained
from Amersham Pharmacia Biotech (Amersham, UK).

The upper area of the chambers, where the cells were exposed to
beta particles from *°P, was covered with a 0.5-mm thin transparent
polycarbonate foil. The radiation protection walls surrounding the side
and the bottom of the chambers, as well as the lid above the cell cultures,
consisted of 15-mm transparent polycarbonate (Macrolon). 32p could
not reach and be incorporated in the cells. The irradiated cells were
grown in 3-cm-diameter culture dishes with a plastic bottom thickness
of 1 mm. The culture dishes were placed directly on the thin foils
above the *?P source. The chambers were kept in cell culture
incubators at 37°C (Kebo Assab T304GF, Stockholm, Sweden) and
supplied with 5% carbon dioxide. The lid above the cultures had side
openings, allowing efficient passage of the incubator atmosphere.

Dosimetry

The dosimetry has also been described previously [35]. The dose rate
for each chamber was controlled by measurements with a thin-walled
parallel ion chamber [36]. The ion chamber was calibrated using an
external ®°Co source with the front wall of the ion chamber at the dose
maximum depth, where the dose rate was 0.30 Gy/min. The *°Co
source was calibrated according to national standard procedures
accepted for radiotherapy purposes. The thin-walled parallel ion
chamber accurately measured the dose independent of dose rate down
to at least 0.01 Gy/h, if corrections were made for “leakage current” in
the instrumentation.

The measurements of dose rates were performed with the thin-
walled ion chamber placed in cell culture dishes standing on the 2p
radiation chambers. This procedure allowed mimicking of the dose rate
in the cell environment. All three chambers were measured repeatedly.
Measurements were also made with a surface hand detector (RNI 10/R
Intensimeter, Nuklex, Uppsala, Sweden), and a calibration curve was
constructed to facilitate repeated dose rate determinations during the
cell culture periods.
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Tumour cells

The cells used were HT-29 colorectal adenocarcinoma, A-431 cervical
squamous carcinoma, SKBR-3 breast cancer, all from the American
Type Culture Collection (ATCC), and the two gliomas U-118MG and
U-373MG from the Department of Pathology, Uppsala University,
Uppsala, Sweden. They were grown in Ham’s F-10 medium
supplemented with 10% fetal bovine serum, 2 mmol/l L-glutamine,
100 pg/ml streptomycin and 100 U/ml penicillin, all components from
Sigma AB (Stockholm, Sweden). The cells were normally grown in an
incubator of type Galaxy S (LabRum Klimat AB, Stockholm, Sweden),
and during the irradiations they were grown in a similar incubator
(Kebo Assab T304GF, Stockholm, Sweden). Both incubators were run
at 37°C and supplied with 5% carbon dioxide.

The cells in the study were selected for the following reasons.
SKBR-3 cells are often studied since they express large amounts of
HER?2 receptors and are therefore applied in experiments on HER2-
directed radionuclide targeting, using antibodies or affibody molecules
[37, 38]. A-431 cells express both large amounts of EGFR and also
rather large amounts of HER2 and are therefore often studied for
radionuclide targeting with both EGF ligands [39] and anti-HER2
antibodies [40]. Both cell types are planned for experimental therapy
using beta particle-mediated radionuclide therapy, especially 7L,
The two glioma cell lines also express EGFR [41] to some degree but
were, together with the HT-29 cells, selected because they have recently
been studied at our laboratory with regard to short-term effects after low
dose rate irradiations [35]. It was found that U-373MG cells showed
radiation-induced apoptosis, while U-118MG cells did not. The HT-29
cells were intermediate in this respect [35]. Furthermore, U-373MG
cells have previously been reported not to show hyperradiosensitivity at
low doses, while both U-118MG and HT-29 cells do [28].

Choice of dose rate and exposure time

In the previous study, with the same *?P chambers, we analysed
effects on cells after exposure to initial dose rates of only 0.05—
0.09 Gy/h for 7 days [35]. The cells in that study were analysed for
effects on cell number, apoptosis and cell cycle block at day 7 of
continuous exposure. However, we also allowed cells to continue to
grow for longer times in parallel dishes and found that all cultures
recovered. Thus, we decided to apply initial dose rates from 0.1 Gy/h
up to 0.8 Gy/h in the present study to have a reasonable chance of
“simulating” curative treatment. We could not apply higher dose
rates because of regulatory rules limiting the amount of **P that could
be handled in the cell culture laboratory. Furthermore, this dose rate
range is the same as that applied in published studies on low dose rate
effects [21-23], hyperradiosensitivity and low dose rate [29], and
radionuclide treatment of gliomas in vitro [42] and in vivo [43], and
actually covers the range up to the highest dose achievable in targeted
radionuclide tumour therapy [10, 16, 18, 27, 44].

Four cell dishes were placed in each irradiation chamber when the
dose rate was as expected and the cells were then kept there for 24, 72
or 168 h (1, 3 or 7 days). The radiation exposure time was chosen not
to be longer than a week, since it is known from numerous articles in
the field of radionuclide therapy that the tumour cell retention of
radioactivity is generally in the range of some days up to about 1
week (in some cases it is only a few hours). Furthermore, it is well
known that the biological half-life of tumour targeting agents
(ligands, antibodies and antibody fragments) in the systemic
circulation is often shorter than a week (in the case of small ligands,
it is only a few hours). Thus, the longest exposure time considered to
be realistic was 1 week.
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Cell counting

The medium was removed from the cell dishes and the cells were
quickly washed with 0.5 ml trypsin-EDTA (0.25% trypsin/0.02%
EDTA solution in PBS, VWR, Stockholm, Sweden) and then
incubated with 0.5 ml trypsin-EDTA (37°C, 5% CO,) until the cells
detached. Next, 1.5 ml medium was added to each dish and the cells
resuspended to a single cell solution. For cell counting, 19.5 ml PBS
(pH 7.4) was added to 0.5 ml cell suspension and an electronic cell
counter was used (Coulter Z2, 7-20 um, Beckman Coulter,
Stockholm, Sweden).

Cell culture conditions during and after irradiations

Cells were seeded sparsely in culture dishes (diameter 3.5 cm,
surface 9.6 cm?, Nunc, Roskilde, Denmark) a few days before the
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Fig. 1. Examples of cell growth as a function of time after exposure to
low dose rate irradiation. a HT-29 and U-373MG cells were exposed
to 0.415 Gy/h as the initial dose rate and then continuously exposed
for 72 h. b A-431, U-118MG and SKBR-3 cells were exposed to
0.806 Gy/h as the initial dose rate and then continuously exposed for
24 h. Mean values and maximal variations from four parallel samples
are given
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Fig. 2. Summary of all low dose rate experiments carried out for
a U-118MG, b U-373MG, ¢ HT-29, d A-431 cells and e SKBR-3
cells. The cells were irradiated with different initial dose rates and
were then exposed to the radiation for 1, 3 or 7 days. The figures show
at which combinations of dose rate and exposure time all cells were
killed (area with no survivors), and at which at least some cells
survived and displayed regrowth (the regrowth area). The separation
between the two areas is indicated by bold solid lines. The total
delivered radiation dose (Gy) is given in parentheses near each point.
The 20-Gy isodose curve is indicated by a dashed line
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start of the radiation exposure. They were seeded so that each culture
dish contained about 10° cells at the start of the exposure. The first
cell count was made at the start of each experiment, on representative
culture dishes. If the cell number was about 10° per dish, four other,
parallel culture dishes were placed in each of the three irradiation
chambers. The irradiated cells were grown in the chambers with
unirradiated control dishes placed on a near radiation-shielded shelf
in the same incubator. The cells did not reach confluence during the
irradiation period. After the radiation exposure, the cells were moved
from the irradiation chamber incubator to another incubator and the
cell growth was followed for several months. At the first
subcultivation after the radiation exposure, the cells were transferred
from culture dishes to culture flasks (25 cm?, Nunc, Roskilde,
Denmark), and these flasks were then used throughout the growth
period. The medium in all culture dishes and flasks was replaced
three times a week. Cell counting was in most cases performed once a
week, followed by reseeding of 10° cells in each new flask.

Growth curves

The growth curves were constructed as if all cells had been saved at
each subcultivation. By calculating how many cells would have
been obtained if all cells had been saved, such high cell numbers as
10" (Fig. 1a) and even up to 10% (Fig. 1b) were obtained. In
reality, repeated dilutions were made to keep the number of cells in
each culture flask in the range of 10°-10° thus allowing for
exponential growth. Four parallel flasks were kept for each
experiment. In order to analyse the significance of the differences
between the groups, ¢ tests were performed.

Cell kill versus regrowth

The criterion for killing of a cell culture with 10° cells was that no
living cells could be seen in the phase contrast microscope and that
no regrowth was observed after at least 3 months of follow-up, also
applying electronic cell counting.

Growth delay

Growth delay was also analysed after 1, 3 or 7 days of continuous
low dose rate exposure. The growth curves of the irradiated samples
in some cases did not have the same slope as the control curves, so it
was not possible to wait and measure growth delay when the
recovered cells and the control cells had a similar growth rate.
Instead, growth delay was defined as the time it took for the
irradiated cells to reach the cell number 10'° in relation to the time it
took for the control cultures to reach this number.

Literature survey

The Medline-based PubMed database was used to survey effects of
targeted radionuclide therapy and of low dose rate therapy.
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Results
Growth curves

Figure 1 shows examples of growth curves for control cells
and cells exposed to continuous low dose rate beta
irradiation. In Fig. 1a the initial dose rate was 0.415 Gy/h
and the exposure time 72 h. After 72 h the dose rate had
decreased to 0.359 Gy/h, and the exposure gave a total dose
of about 27.8 Gy. The irradiated HT-29 cells recovered
after irradiation and resumed, after about 50 days, a similar
growth rate as the controls. In contrast, the U-373MG cells
completely ceased to grow after the same radiation
exposure. After more than 30 days, only a few giant cells
could be identified in the microscope. They were too few to
be counted with the electronic cell counter. However, there
was a possibility that at least a few of these cells could
grow later, so they were observed (with normal medium
changes) for up to 3 months. Nevertheless, no recovery
could be observed; instead, the cells disappeared. It was
then concluded that the irradiation procedure had killed all
U-373MG cells. Thus, the HT-29 cultures survived the
treatment, while the U-373MG cells died.

Figure 1b shows examples of growth curves for an
initial dose rate of 0.806 Gy/h and an exposure time of
24 h. After 24 h the dose rate had decreased to 0.768 Gy/h
and the exposure gave a total dose of about 18.9 Gy. The
irradiated A431 cells continued to grow, but at a slower rate
than the controls. The growth of irradiated U-118MG cells
was arrested for up to about 40 days after the treatment.
During those 40 days, resting cells were observed in the
culture flasks, but there was no sign of growth. After
40 days a few mitotic cells were observed in the phase
contrast microscope, and the number of cells was thereafter
measured with the electronic cell counter. A clear regrowth
was seen after 60 days. However, their growth rate was
slower than that of the corresponding controls. The SKBR-
3 cells looked severely damaged (fragmented, decreasing
in number and forming giant cells) some days after the
exposure and were too few to be counted with the electron-
ic cell counter. Within 1 month, no surviving cells could be
observed in the culture flasks. In this case, too, we contin-
ued to control the culture flasks for 3 months (with normal
medium changes) and found that there were no remaining
cells in these cultures. Thus, A-431 and U-118MG cells
survived, while the SKBR-3 cells died.

The conclusions from the examples in Fig. 1a and b are
that four different responses were observed:

— The HT-29 cells recovered to the control growth rate
after a growth delay.

— The U-118MG cells recovered after a growth delay but
continued to grow at a slower rate than the controls.

— The A-431 cells continued to grow without delay but at
a slower rate than the control

— The U-373MG and SKBR-3 cells died.
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figure indicate at which dose rates and exposure times there was no
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Cell kill and regrowth versus dose rate and exposure time

Figure 2 summarises cell-killing and regrowth results from
all performed low dose rate experiments. All five analysed
cell types were irradiated with different initial low dose
rates (0.1-0.8 Gy/h) and were continuously exposed for 1,
3 or 7 days.

Figure 2 parts a—e show a similar and general pattern.
When applying 7 days of continuous irradiation, low initial
dose rates, about 0.2—0.3 Gy/h, were enough to kill all cells.
When cells were exposed for only 3 days, a dose rate in the
order of 0.4-0.6 Gy/h was necessary to kill all cells. Only the
SKBR-3 cells were killed after 24-h exposure to about
0.8 Gy/h. As mentioned in Materials and methods, higher
dose rates could not be used in these experiments, so we do
not know how high the dose rates would have to be during
24-h exposure in order to kill the other cell types. It was
found that the regrowth pattern was the same in all four
flasks.

However, even if the results looked rather similar and
independent of cell type, there were some cell type-
dependent differences. The U-118MG cells (Fig. 2a)
required, during 7 days’ exposure, at least about 0.3 Gy/h
as the initial dose rate to be completely growth inactivated.
The U-373MG cells (Fig. 2b) were completely growth
inactivated after an initial dose rate of only about 0.15 Gy/h
and 7 days’ exposure. Thus, the U-373MG cells were, in
these cases, easier to kill than the U-118MG cells.
Considering all cells, it seemed that the U-118MG cells
were most resistant and U-373MG and SKBR-3 most
sensitive, while A-431 and HT-29 were intermediate.

Cell kill and regrowth versus total dose

The 20-Gy isodose curve is drawn with a dashed line in
Fig. 2a—e. For U-373MG and SKBR-3 cells, at least a total
dose of 20 Gy was necessary to prevent regrowth. For HT-29
and A-431 cells an even higher total dose seemed necessary,
and for the resistant U-118MG cells it seemed that total doses
of at least 40 Gy were necessary to prevent regrowth.

Growth delay as a function of dose rate

Figure 3a—e shows growth delays versus the initial dose rate
after 1, 3 or 7 days of continuous low dose rate exposure. The
growth delay curves in Fig. 3a show that the radioresistant
U-118MG cells had growth delays, after 24-h exposure,
which increased slowly as a function of the initial dose rate.
A growth delay of 2 months was obtained at about 0.7, 0.3
and 0.2 Gy/h after 1, 3 and 7 days of continuous exposure,
respectively. The growth delay curves for the more radio-
sensitive U-373MG cells increased more steeply (Fig. 3b),
and a growth delay of 2 months was obtained at about 0.5
and 0.2 Gy/h after 1 and 3 days of continuous exposure,
respectively. Thus, the U-373MG cells were more sensitive
than the U-118MG cells also with regard to growth delay.
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Both the HT-29 cells (Fig. 3c) and the SKBR-3 cells
(Fig. 3e) had a biphasic growth delay curve after 1 day’s
exposure. The A-431 cells (Fig. 3d) had a slow increase in
growth delay as a function of dose rate after 1 day’s
exposure.

The SKBR-3 cells had a growth delay that increased
rather steeply as a function of the dose rate and reached a
value of 2 months at about 0.50 and 0.15 Gy/h after 1 and
7 days of continuous exposure, respectively (Fig. 3e).

Growth delay as a function of total dose

The same growth delay data as in Fig. 3a—e are instead
plotted as a function of the delivered total dose in Fig. 4a—c,
but here, for clarity, without the maximal variations. In all
cases, there was a general increasing growth delay as a
function of dose. Growth delays in the order of 10 days
were obtained for all cells after delivery of total doses in the
range 5—15 Gy, independent of whether the dose was given
during 1, 3 or 7 days. Delays around 100 days required
total doses of about 15-20 Gy when given during 1 day and
25-40 Gy when given during 3 or 7 days, for all cells.

Discussion

The obtained results can hopefully serve as a guideline for
the combinations of dose rate and exposure time necessary
to kill tumour cells when applying low dose rate beta
irradiation. The shift from regrowth to “cure” (no surviving
cells) fell, for each cell type, within a narrow range of
combinations.

The U-118MG cells were more resistant to the treatments
than the U-373MG and SKBR-3 cells. The A-431 and HT-29
cells showed intermediate resistance. However, the differ-
ences between the cell lines were not dramatic, and it can be
generally stated that when applying 7 days of continuous
irradiation, initial dose rates of about 0.2-0.3 Gy/h were
enough to kill all cells in the cultures. When exposed for
3 days, an initial dose rate in the order of 0.4-0.6 Gy/h was
needed. When the cells were exposed for only 24 h it was not
possible to kill all the cells (with the exception of SKBR-3
cells), even if the initial dose rate was as high as about
0.8 Gy/h.

The studied dose rates are the highest that can be
achieved in targeted radionuclide therapy [10, 16, 18]. The
total doses achieved after 1, 3 or 7 days’ exposure also
correspond to the highest achievable doses in targeted
radionuclide therapy [16], and most often total doses of no
more than 10-20 Gy are obtained in targeting of B-cell
lymphomas [19]. However, there are indications from
preclinical studies that dramatic “dose amplification” per
receptor interaction can be achieved by using effective
residualising agents [45].

The obtained dose rates in beta particle-based radionu-
clide therapy are to a large extent a consequence not only of
the amount of radionuclides bound to each tumour cell, but
also of the cross-fire effect. This means that radionuclides
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bound to one cell also irradiate nearby cells owing to the
long range of the radiation [44, 46]. This can increase the
dose rate tenfold, and makes it reasonable to assume that
dose rates in the range used in our model experiments can
be achieved in tumours in patients. The dose rate will be
lower for a single tumour cell considering only the
radionuclides bound to that cell [25]. Beta particles with
a long range will permit rather uniform dose distributions
and hopefully deliver therapeutically relevant radiation
doses also to non-targeted tumour cells.

Lower dose rates than we applied will probably not lead
to curative treatments when beta particles are applied. From
the obtained results it is obvious that, at least for the five
types of tumour cell tested, we succeeded in finding “dose
rate—exposure time” combinations that could distinguish

between “cure” (killing of 10° tumour cells) and “relapse”
(recovery of tumour cells).

There may be cases in which only a fraction of the
tumour cells have to be killed directly by radiation, since
the remaining tumour cells may be killed through
bystander effects [30-32] or other factors (e.g. limited
nutrition supply, natural immune response, adjuvant
chemo- or immunotherapy). However, our model can be
applied under the assumption that 10° tumour cells have to
be killed by radiation, even if other tumour cells are killed
by other means.

When considering radionuclide therapy it is, of course,
also important to consider unwanted effects on normal
tissues. The tolerance doses for most normal tissues are not
known when exposure is to low dose rate irradiation.
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Targeted radionuclide therapy, using, for example, radi-
olabelled antibodies, fragments of antibodies or various
receptor ligands, is expected to result in highly tumour-
specific uptake of the therapeutic radionuclides. Thus, for a
curative intent it is reasonable to establish the necessary
tumour dose rates and exposure times. Another obvious
question is which targeting agent should be tried for each
type of tumour and, most importantly, whether the required
conditions can be achieved without excessively severe
side-effects on normal tissues. However, analyses of effects
on normal tissues were beyond the scope of this study.

Here we discuss the observed cell type-dependent
differences. In a previous study [35] we published data
on low dose rate acute effects, using three of the cells in the
present study: U-118MG, U-373MG and HT-29. In that
study the initial dose rate was only 0.05-0.09 Gy/h and the
exposure time, 7 days. As would be expected in view of our
new data, all cultures did grow after such treatment. It was
shown that the U-373MG cells had, at day 7, the most
pronounced reduction in cell number owing to a combina-
tion of a G, block and radiation-induced apoptosis. There
were surprisingly low reductions in U-118MG and HT-29
cell numbers. U-118MG had a G, block but no radiation-
induced apoptosis. HT-29 had both a G, block and some
radiation-induced apoptosis, but the amount of apoptosis
was smaller than for U-373MG cells. Thus, the results from
that study indicated the U-373MG cells to be more
sensitive than the other two cell lines owing to a higher
degree of apoptosis. This is in agreement with the cell-
killing results from the present study.

The intrinsic radiosensitivity measured as S,g,, after
exposure to a high dose rate (most often 0.5-2.0 Gy/min)
photons has previously been determined for four of our
studied cell lines. No determination of S,g, for SKBR-3
cells was found in the literature. The results are given in
Table 1 [28, 47-54].

There is also a review article on the intrinsic radiosen-
sitivity, measured as cell survival at the dose 2Gy, S,,, for
694 human cell lines, of which 271 were from tumours
[55]. The tumour cell lines were grouped according to
tumour type, and the S,g, values for the U-118MG and
U-373MG gliomas and the A-431 cervical carcinoma used
in this study fell within the expected range of values for the
corresponding types of tumour. Thus, these cells can be
considered typical for their tumour groups, at least
regarding intrinsic radiosensitivity at high dose rate
exposure. The HT-29 colorectal carcinoma is an exception,
since it seems to be somewhat more radioresistant than
most other colorectal carcinomas.

Table 1. Survival at 2Gy after exposure to high dose rates

Cell line Survival at 2Gy  References

U-118MG  0.44-0.70 [28], [47]

U-373MG  0.60-0.62 [28], [48], [49]

HT-29 0.55-0.78 [28], [50], [51], [52], [53], [54]
A-431 ~0.52 [53]

1193

Considering the values in Table 1, it is clear that there is
no relation between S, and the effects of low dose rate
irradiations. For example, the U-118MG cells were found
to be most radioresistant to a low dose rate, while their S,y
values were in the same range as for the other cell lines.
The U-373MG cells, which were considered most sensitive
to a low dose rate, also had S, values in the same range.

One possible explanation of the lack of agreement
between intrinsic radiosensitivity measured as S,¢, and the
effect of a low dose rate is that there are cell type-dependent
differences in repopulation during low dose rate irradia-
tions. Such differences can probably “overshadow” the
differences in intrinsic radiosensitivity. Another possible
explanation might be cell type-dependent differences in the
capacity for low dose rate-induced apoptosis. The latter is
supported by our previous study [35], which showed that
low dose rate-induced apoptosis was more frequent in U-
373MG cells than in HT-29 cells and that no such apoptosis
could be observed for U-118MG cells. Furthermore, it
seems as if differences in hyperradiosensitivity (measured
at low doses but at a high dose rate) are not of great
importance, since the U-118MG and HT-29 cells have been
reported to show hyperradiosensitivity, while U-373MG
cells do not [28]. Had hyperradiosensitivity been of
importance under the exposure conditions in this study,
then U-373MG cells should have been more resistant than
HT-29 and U-118MG cells.

It has recently been suggested that variations in
radiosensitivity at low dose rates are related to the
compactness of chromatin [56], but it is not known
whether the cells in our study have any differences in this
respect. In another recent experimental study, a good
therapeutic effect at a low dose rate was reported; in fact, if
the total delivered dose was in the range 1-2 Gy, the effect
was as good as that achieved at a high dose rate, although
the difference in dose rate was nearly three orders of
magnitude [57]. This indicates that there are basic radiation
biology aspects of low dose rate radiation that have to be
analysed in much more detail. A clue to the molecular
factors involved came from a recent report showing that
activation or inhibition of the DNA damage sensor ATM is
of importance [58]. It was found that DNA damage
inflicted at a low rate failed to activate ATM; however, if
ATM was activated by chloroquine, the cells survived the
low dose rate much better.

We conclude that dose rates in the range 0.2-0.3 Gy/h
are necessary in order to kill 10° tumour cells during 1
week’s exposure. Higher dose rates, such as 0.4—0.6 Gy/h
and >0.8 Gy/h, are necessary if the exposure times are only
3 days and 1 day, respectively. If, in some cases, a good
therapeutic effect cannot be obtained with beta particle
radionuclide therapy because of too low dose rates and/or
too short exposure times, then repeated (fractionated)
treatment is a possibility to improve the result. However,
the cellular response to repeated low dose rate exposures
has to be analysed in further studies, since there is a risk of
radiation-induced changes in the growth pattern of the
tumour cells surviving the first exposure, as shown in
Fig. 1b.
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