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Abstract

Background: In quantitative real-time polymerase chain reaction (qRT-PCR) experiments, accurate and reliable
target gene expression results are dependent on optimal amplification of house-keeping genes (HKGs). RNA-seq
technology offers a novel approach to detect new HKGs with improved stability. Goat (Capra hircus) is an
economically important livestock species and plays an indispensable role in the world animal fiber and meat
industry. Unfortunately, uniform and reliable HKGs for skin research have not been identified in goat. Therefore, this
study seeks to identify a set of stable HKGs for the skin tissue of C. hircus using high-throughput sequencing
technology.

Results: Based on the transcriptome dataset of 39 goat skin tissue samples, 8 genes (SRP68, NCBP3, RRAGA, EIF4H,
CTBP2, PTPRA, CNBP, and EEF2) with relatively stable expression levels were identified and selected as new candidate
HKGs. Commonly used HKGs including SDHA and YWHAZ from a previous study, and 2 conventional genes (ACTB
and GAPDH) were also examined. Four different experimental variables: (1) different development stages, (2) hair
follicle cycle stages, (3) breeds, and (4) sampling sites were used for determination and validation. Four algorithms
(geNorm, NormFinder, BestKeeper, and ΔCt method) and a comprehensive algorithm (ComprFinder, developed in-
house) were used to assess the stability of each HKG. It was shown that NCBP3 + SDHA + PTPRA were more stably
expressed than previously used genes in all conditions analysis, and that this combination was effective at
normalizing target gene expression. Moreover, a new algorithm for comprehensive analysis, ComprFinder, was
developed and released.

Conclusion: This study presents the first list of candidate HKGs for C. hircus skin tissues based on an RNA-seq
dataset. We propose that the NCBP3 + SDHA + PTPRA combination could be regarded as a triplet set of HKGs in skin
molecular biology experiments in C. hircus and other closely related species. In addition, we also encourage
researchers who perform candidate HKG evaluations and who require comprehensive analysis to adopt our new
algorithm, ComprFinder.
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Background
In molecular biology research, determining the relative
changes in target gene expression at the transcriptional
level requires precise quantitative analysis. The emergence
and development of quantitative real-time polymerase
chain reaction (qRT-PCR) has enabled comprehensive
mRNA quantification. Furthermore, qRT-PCR is a com-
monly used technique due to its accuracy, sensitivity, re-
producibility, and cost-effectiveness in analyzing gene
expression [1, 2]. The copy number of nucleic acid was
calculated through the changes in real-time fluorescence
reaction. The changes is typically reported as a cycle
threshold value (Ct) in the comparative Ct method [3].
The qRT-PCR assay relies on house-keeping genes
(HKGs) to obtain relative gene expression data [4, 5], thus
choosing HKGs has become a major source of error and
bottlenecks in qRT-PCR experiments.
In qRT-PCR experiments, inadequate HKG selection

may lead to an inappropriate interpretation of target
gene expression [6]. There are two common mistakes
when selecting HKGs: (I) HKGs are selected based on
experience without reviewing HKG research study, and
(II) a single HKG with poor stability is used. In recent
years, it has been reported with increasing frequency
that the commonly used HKGs, such as ACTB, GAPDH,
and 18sRNA, have critical limitations [7, 8]. Ideal en-
dogenous HKGs should exhibit consistent expression
levels across all experimental conditions (e.g. cell types,
physiological states, and growth conditions) [9, 10]. Un-
fortunately, no HKGs are stable across all experimental
conditions, which means that each experimental system
may need to use unique HKG(s) to accurately explore
the specific research question being investigated.
Goat (Capra hircus) is an economically important live-

stock species as a source of meat, hair, and dairy prod-
ucts [11]. Skin tissue, as the largest biological organ with
important functions including physical protection from
injury and infection, thermal insulation, and providing
the substrate for growing hair. To reveal the molecular
regulatory mechanism of hair follicle activity, it is neces-
sary to clarify the pattern of target gene expression
under different conditions, such as different stages of the
hair follicle cycle. Unfortunately, most molecular studies
examined goat skin have only included a single HKG
such as ACTB [12–14] or GAPDH [15, 16]. In 2014, Bai
et al. [17] selected 10 commonly used HKGs based on a
literature review to explore their stability in different
hair follicle cycles of Liaoning cashmere goats. However,
due to the limited number of animals used and testing
only of commonly used HKGs, the previously published
study [17] resulted in a limited impact. The development
of high-throughput RNA-seq technology provides a
method of determining spatiotemporal expression at the
transcriptome level, and provides a novel approach for

the identification of HKGs [18, 19]. This strategy was
successfully used to identify candidate HKGs for Arte-
misia sphaerocephala [7], Pyropia yezoensis [20], Eusca-
phis [21], Arabidopsis pumila [22], fish [23], tomato
leaves [24], and holstein cows [25]. Therefore, we hy-
pothesized that the novel, credible HKGs which serve
goat skin research can be predicted and validated via
transcriptome sequencing data.
In this study, the transcriptome dataset of 39 goat skin

tissue samples was analyzed. Potential HKGs were pre-
dicted, of which 8 genes (SRP68, NCBP3, RRAGA,
EIF4H, CTBP2, PTPRA, CNBP, and EEF2) were selected
based on their relatively stable expression levels. Four
commonly used HKGs (SDHA, YWHAZ, ACTB, and
GAPDH) were selected for comparison. These 12 genes
were amplified using qRT-PCR in four groups with dif-
ferent experimental treatments. Four different algo-
rithms (geNorm [26], ΔCt method [27], NormFinder
[28], and BestKeeper [29]) and a comprehensive method
(ComprFinder, a newly developed method by our team)
were used to evaluate the stability of each HKG. Finally,
the reliability of the recommended optimal HKGs was
validated and confirmed.

Results
Selection of novel candidate HKGs based on RNA-seq
data
From a complete transcriptome dataset, the fragments
per kilobase of exon model per million mapped reads
(FPKM) of all transcripts from each sample were ob-
tained. We first removed some transcripts which did not
have a credible function annotation, or exhibited low
levels of expression (FPKM = 0). This resulted in 15,853
unigenes being found for further selection. Next, genes
with a relatively high expression level (FPKM ≥10 or ≥
the 80th percentile) as determined by the mean FPKM
value, and genes with low variability as determined by
the coefficient of variation (CV, %), maximum fold
change (MFC), and dispersion measure (DPM), were
considered (see Methods section). As shown in Fig. 1,
the probability density curve of all 15,853 unigenes was
evaluated by these 4 indicators.

(1) FPKM. Potential HKGs were relatively highly
expressed genes [8]. In this study, 5623 genes had
FPKM values ≥10 (35.5% of 15,853 genes, the green
area in Fig. 1a).

(2) CV (%). The most promising HKGs would have the
lowest CV values. A total of 2266 genes with a
CV ≤ 20% (14.3% of 15,853 genes, the red area in
Fig. 1b) were retained in this step with CVs ranging
from 7.7 to 20.0%.

(3) DPM. Most stable genes exhibited lower DPM
values. The default parameter of DPM < 0.3
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returned an excessive 7025 unigenes, and so a more
stringent DPM < 0.2 was used. Following this, 2026
genes (12.8% of 15,853 genes, the yellow area in Fig.
1c) were retained in this step with DPM values
ranging from 0.09 to 0.2.

(4) MFC. This parameter reflects the range of
extremum value, and the lowest MFC values are
preferable. In this study, MFC < 2.5 was used which
produced 2508 genes (15.8% of 15,853 genes, the

blue area in Fig. 1d), all within the range of 1.35 to
2.5.

A Venn diagram was constructed for the 4-color
blocks (green, red, yellow, and blue corresponding to
those used in Fig. 1a-d, respectively). This showed that
1325 genes (Fig. 1e) met all 4 of the above requirements,
and are significantly enriched in 11 signaling pathways
(q < 0.05) as shown in Additional file 1: Figure S1. These

Fig. 1 Probability density curve of FPKM, CV, DPM and MFC of 15,853 unigenes. a-d The y-axes indicate the probability values in all 15,853 genes.
e The overlap genes were found by the Venn diagram analysis

Table 1 The summarised information of 12 potential HKGs based on transcriptome data

Type Gene symbol Mean_FPKM CV (%) Ranking order a MFC b DPM c

New predicted candidate HKGs RRAGA 51.4 8.4% 6 1.416 0.083

PTPRA 23.8 9.1% 8 1.474 0.090

SRP68 27.2 9.2% 9 1.510 0.091

EIF4H 133.0 9.5% 16 1.479 0.094

NCBP3 10.0 9.5% 17 1.542 0.094

CTBP2 22.5 9.9% 25 1.566 0.098

CNBP 226.5 14.3% 458 1.880 0.141

EEF2 499.7 15.1% 619 1.923 0.149

Suggested by previous study SDHA 44.0 18.5% 1679 2.710 0.182

YWHAZ 137.5 19.2% 1946 2.320 0.189

Conventional HKGs ACTB 556.1 24.6% 4456 2.962 0.239

GAPDH 391.6 29.9% 6855 2.945 0.286
a Ranking order in all genes based on CV value within all 15,853 unigenes
b MFC, maximum fold change, highest/lowest FPKM value of one gene within 39 transcriptome profiles
c DPM, dispersion measure, were determined by PaGeFinder method and an acceptable value should be ≤0.3
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genes were considered as candidate HKGs and of these,
8 genes (RRAGA, PTPRA, SRP68, EIF4H, NCBP3,
CTBP2, CNBP, and EEF2) that with lower CV value,
higher FPKM value, and easier primers design were se-
lected for further qualification. Besides, 4 genes outside
of the initial 1325 were considered, including SDHA and
YWHAZ as they had previously been proposed by other
researchers [17], and ACTB and GAPDH genes were in-
cluded as the most commonly used endogenous HKGs
for exploring target gene expression in goats. In total, 12
candidate HKGs were analyzed in subsequent steps.
Each gene was ranked based on its CV value with a
lower CV receiving a higher-ranking order (Table 1).

Amplification specificity and efficiency of the candidate
HKGs and target genes
A total of 15 primer pairs including 12 candidate HKGs
and 3 target genes were designed for qRT-PCR experi-
ments. Detailed information on gene symbol, primer se-
quence, and amplicon specifications are shown in
Additional file 1: Table S1. Amplification efficiency for
all 15 genes ranged from 96.4% for DKK1 to 103.9% for
PTPRA, and the coefficient of determination (R2) varied
from 0.9986 to 0.9999. The specificity for each paired
primer was validated by the melting curve analysis,
which showed a single amplification peak (Additional file
1: Figure S2). Each pair of primers had good specificity
and amplification efficiency around 100%.

Expression profiles of the candidate HKGs
The mean Ct (the average of 3 technical replicates in the
same sample) values were used to calculate gene expres-
sion levels among samples with distinct experimental
factors. As shown in Fig. 2 and Additional file 1: Table
S2, the Ct values of the 12 candidate HKGs varied
widely from 20.74 to 31.60. The most highly expressed

gene was ACTB (mean Ct value: 23.25 cycles), and the
lowest was SRP68 (mean Ct value: 29.07 cycles). The top
3 genes with low standard deviations were SRP68
(0.875), NCBP3 (0.970), and PTPRA (0.972). The 3 most
variably expressed genes were ACTB (1.483), CNBP
(1.277), and GAPDH (1.258). The narrower standard de-
viation range of a gene means it has higher expression
stability in different samples. Although some genes had
a lower standard deviation than others, experimental er-
rors are always possible. Therefore, to obtain a reliable
evaluation of these candidate HKGs, further analysis
with more scientific algorithms is needed.

Analysis of HKG expression stability
In this study, 4 publically available algorithms were used
to evaluate HKGs for higher-accuracy stability rankings:
geNorm, NormFinder, BestKeeper, and the ΔCt method.

geNorm analysis
Gene expression stability was determined by the M-
value in geNorm analysis; the lower M value suggests a
higher gene expression stability. For group 1, the two
most stable genes were EIF4H and EEF2 with the lowest
M value, and GAPDH was the most unstable gene
(Fig. 3a). For group 2, the two most stable genes were
EIF4H and PTPRA, and ACTB was the most unstable
gene (Fig. 3b). For group 3, the two most stable genes
were EIF4H and PTPRA, whereas ACTB was the most
unstable gene (Fig. 3c). For group 4, the two most stable
genes were NCBP3 and PTPRA, and GAPDH was the
most unstable gene (Fig. 3d). For all samples, geNorm
analysis was conducted on 39 samples and 12 HKGs. It
was determined that the 3 most stable genes were
PTPRA, EIF4H, and NCBP3. Conversely, ACTB, CNBP,
and GAPDH were the most unstable genes (Fig. 3e).

Fig. 2 Boxplot of absolute Cq value of the 12 candidate genes in all skin tissue samples. Boxes indicated median (Q2) and quartiles first and third
(Q1 and Q3) and whiskers corresponded to the minimum and maximum values
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geNorm can be used to determine the minimum opti-
mal number of HKGs needed for accurate normalization
under different experimental treatments by analyzing
pairwise variation (Vn/Vn + 1). This method recognizes
Vn/Vn + 1 < 0.15 as a threshold value, and “n” as an ap-
propriate number of HKG needed. The V2/V3 values for
all the experimental variables were below the cut-off
value of 0.15 (0.067, 0.078, 0.099, 0.091, and 0.081 for
group 1, 2, 3, 4, and all samples, respectively), which indi-
cate that using double HKGs (first two genes in each
group) is sufficiently accurate for use in normalizing qRT-
PCR derived gene expression data (Additional file 1:
Figure S3). The triplet or more gene combinations can
also be used as Vn/Vn + 1 < 0.15 (n ≥ 3).

NormFinder analysis
Expression stability values, as determined by NormFin-
der, are shown in Table 2. For group 1, SDHA and
EIF4H were the most stable HKGs, and ACTB was the
least stable gene, which was the same as was determined
by geNorm. In group 2, SDHA and NCBP3 were the
most stable HKGs while ACTB was the least stable gene.
In group 3, SDHA and YWHAZ got the top rank, while
ACTB ranked at the lowest. In group 4, PTPRA and
NCBP3 were the most stable, while GAPDH ranked at
the lowest. In all samples, SDHA and NCBP3 were the
most stable, while ACTB was the least.

Fig. 3 Average expression stability (M-value) calculated by geNorm. a Group 1, 4 different development stages; b Group 2, 3 time-points in hair
follicle cycle; c Group 3, 4 goat breeds; d Group 4, 5 sampling sites on the body of the goat. e All samples including groups 1–4

Table 2 Gene expression stability calculated by NormFinder

Gene name Group 1 Group 2 Group 3 Group 4 All samples

SDHA 0.007(1) 0.006 (1) 0.006 (1) 0.008 (8) 0.009 (1)

NCBP3 0.011 (5) 0.007 (2) 0.017 (8) 0.006 (2) 0.011 (2)

PTPRA 0.008 (3) 0.011 (5) 0.014 (4) 0.005 (1) 0.012 (3)

EEF2 0.012 (7) 0.008 (3) 0.014 (6) 0.006 (3) 0.012 (4)

CTBP2 0.013 (8) 0.012 (7) 0.013 (3) 0.007 (6) 0.013 (5)

EIF4H 0.008 (2) 0.012 (6) 0.017 (7) 0.007 (4) 0.014 (6)

YWHAZ 0.010 (4) 0.017 (10) 0.011 (2) 0.007 (5) 0.015 (7)

RRAGA 0.015 (9) 0.010 (4) 0.019 (9) 0.008 (7) 0.015 (8)

SRP68 0.011 (6) 0.015 (9) 0.019 (10) 0.009 (9) 0.016 (9)

GAPDH 0.019 (11) 0.015 (8) 0.014 (5) 0.014 (12) 0.018 (10)

CNBP 0.016 (10) 0.019 (11) 0.026 (11) 0.012 (10) 0.021 (11)

ACTB 0.021 (12) 0.021 (12) 0.028 (12) 0.014 (11) 0.026 (12)

Table 3 Expression stability std-values calculated using
BestKeeper

Gene name Group 1 Group 2 Group 3 Group 4 All samples

SRP68 0.468 (1) 0.506 (3) 0.631 (1) 0.767 (3) 0.663 (1)

SDHA 0.516 (2) 0.464 (1) 0.737 (3) 0.760 (2) 0.733 (2)

NCBP3 0.611 (8) 0.510 (4) 0.743 (4) 0.826 (6) 0.753 (3)

CTBP2 0.536 (3) 0.538 (6) 0.776 (6) 0.746 (1) 0.764 (4)

EIF4H 0.546 (4) 0.573 (7) 0.709 (2) 0.912 (9) 0.768 (5)

EEF2 0.557 (5) 0.473 (2) 0.813 (8) 0.875 (7) 0.775 (6)

PTPRA 0.562 (6) 0.615 (9) 0.758 (5) 0.822 (5) 0.779 (7)

RRAGA 0.693 (9) 0.530 (5) 0.789 (7) 0.820 (4) 0.811 (8)

YWHAZ 0.586 (7) 0.742 (12) 0.856 (10) 0.901 (8) 0.871 (9)

CNBP 0.778 (11) 0.583 (8) 0.987 (11) 0.986 (12) 0.962 (10)

GAPDH 0.948 (12) 0.674 (10) 0.837 (9) 0.981 (11) 0.984 (11)

ACTB 0.719 (10) 0.679 (11) 1.203 (12) 0.978 (10) 1.114 (12)
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BestKeeper analysis
The BestKeeper algorithm used std-values to assess
HKG stability with the lower the std-value, the more
stable HKG expression was. As shown in Table 3, in
group 1, SDHA and PTPRA were the most stable HKGs,
whereas RRAGA was the least stable. The same was ob-
served with the geNorm analysis. In group 2, SDHA and
EEF2 were the most stable HKGs, while ACTB was the
least stable. In group 3, SDHA and YWHAZ got the top
rank, while SRP68 ranked at the lowest. In group 4,
EEF2 and NCBP3 were most stable, while GAPDH was
the least. In all samples, SDHA and EEF2 were most
stable, while ACTB was the least.

ΔCt analysis
The 12 candidate HKGs were analyzed using the Delta
Ct method, the data of which is presented in Table 4.
The stability of the gene is inversely related to the std-
value, thus a lower value indicates greater stability. In
group 1, the two most stably expressed genes were
PTPRA and SDHA, and the lowest were GAPDH and
ACTB. In group 2, the two most stable genes were EEF2
and SDHA, and the least were ACTB and CNBP. In
group 3, SDHA and PTPRA were the most stably
expressed, whereas ACTB and CNBP were the least. In
group 4, the top two stably expressed genes were NCBP3
and EEF2, whereas CNBP and GAPDH were the least. In
all samples, the 3 most stable genes were PTPRA, EEF2,
and SDHA, while GAPDH, CNBP, and ACTB were the
least stable genes.

A comprehensive ranking of the four methods examined
Next, the ComprFinder algorithm was employed to ob-
tain a comprehensive score that was used to rank the
potential HKGs (Table 5). In group 1, the 3 most stable
HKGs were EIF4H, PTPRA, and SDHA. In group 2,

SDHA, NCBP3, and EEF2 were the most stable HKGs
analyzed. In group 3, SDHA, PTPRA, and EIF4H were
the three most stable HKGs analyzed. In group 4,
NCBP3, PTPRA, and EEF2 were the most stable genes.
The overall rankings, from the highest to the lowest sta-
bility, were NCBP3 > SDHA > PTPRA > EEF2 > EIF4H >
SRP68 >CTBP2 > YWHAZ > RRAGA >GAPDH >CNBP >
ACTB. It is interesting to note that the top 3 genes in
different group rankings have at least 2 of NCBP3,
SDHA, and PTPRA. In contrast, the commonly used
HKGs, ACTB, and GAPDH, were relegated to the bot-
tom 2 and 4 positions, respectively.
NCBP3, SDHA, PTPRA were the 3 most stable HKGs

across all samples with scores within a tight range, cal-
culated final score (FS) of 0.096, 0.099, and 0.108, re-
spectively. They were also preferably ranked in groups
1–4 relative to other genes and were therefore consid-
ered to be the 3 most promising candidate HKGs, and
were advanced for further validation.

Validation of the recommended HKGs by DKK1, SHH, and
FGF5 genes
Based on the above analyses, 3 target genes (DKK1,
SHH, and FGF5) were further characterized based on
their changes in expression levels during the secondary
hair follicle cycle (T1, T2, T3) with normalizations using
different single HKG and multi-gene combinations. It
was observed that NCBP3, SDHA, and EEF2 were the
top 3 HKGs in group 2 (factor: hair follicle cycle) based
on their ComprFinder FS values. Therefore, it can be
concluded that the combination of NCBP3 + SDHA +
EEF2 was the best-normalized gene set for group 2.
Since these 3 genes (NCBP3, SDHA, and PTPRA) are
possibly the most important candidate HKGs, they were
further characterized to determine optimal combinations
for normalization of gene expression studies. Four
multi-gene combinations, including NCBP3 + SDHA +
PTPRA, NCBP3 + SDHA, NCBP3 + PTPRA, and SDHA +
PTPRA, in addition to 3 single-genes (NCBP3, SDHA,
and PTPRA) were added to this analysis. Conversely,
ACTB and GAPDH were used for comparison and were
also examined as the multi-gene combination ACTB +
GAPDH. In total, 11 multi-gene combinations or single
genes were used as normalization factors.
As is shown in Fig. 4a, the expression profiles of

DKK1 were similarly obtained using the 8 stable single-
gene and multi-gene combinations. Furthermore, it was
observed that DKK1 was more highly expressed in T2
compared to T1, and it was most highly expressed dur-
ing the T3. Among the unstable single- and multi-gene
combinations, only ACTB and ACTB + GAPDH per-
formed similarly to the stable genes. However, the gene
expression profile as normalized by GAPDH was differ-
ent from the other conditions, and no significant

Table 4 Gene expression stability calculated by the ΔCt
method

Gene name Group 1 Group 2 Group 3 Group 4 All samples

PTPRA 0.391 (1) 0.439 (4) 0.573 (2) 0.443 (3) 0.499 (1)

EEF2 0.423 (4) 0.412 (1) 0.587 (4) 0.428 (2) 0.500 (2)

SDHA 0.391 (2) 0.417 (2) 0.535 (1) 0.475 (4) 0.503 (3)

NCBP3 0.457 (6) 0.424 (3) 0.643 (7) 0.422 (1) 0.512 (4)

EIF4H 0.392 (3) 0.441 (5) 0.604 (5) 0.483 (6) 0.520 (5)

CTBP2 0.486 (8) 0.516 (7) 0.619 (6) 0.493 (8) 0.553 (6)

YWHAZ 0.425 (5) 0.549 (8) 0.583 (3) 0.486 (7) 0.557 (7)

RRAGA 0.573 (10) 0.442 (6) 0.672 (8) 0.479 (5) 0.568 (8)

SRP68 0.460 (7) 0.583 (9) 0.702 (10) 0.499 (9) 0.590 (9)

GAPDH 0.740 (12) 0.594 (10) 0.699 (9) 0.731 (12) 0.741 (10)

CNBP 0.555 (9) 0.690 (11) 0.957 (11) 0.644 (11) 0.757 (11)

ACTB 0.582 (11) 0.826 (12) 1.198 (12) 0.597 (10) 0.973 (12)
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difference has been identified among T1, T2, and T3.
Expression of the SHH gene was even during the T1 and
T2, but there was a significant decrease in T3 (Fig. 4b).
The 5 multi-gene combinations and NCBP3, SDHA
identified this trend, but PTPRA did not. Though the
GAPDH-normalized gene expression profile had similar
trends to stable multi-gene combinations, ACTB was dif-
ferent. The combination of ACTB + GAPDH identified
this expression change as a trend, but was not able to
detect significant changes in expression. The expression
profile of the FGF5 gene, when normalized by the most
stable candidate HKGs used individually or in combin-
ation here, were very similar. High expression levels
were observed in T2, but no statistical significance was
identified relative to T1 and T3 (Fig. 4c). The combin-
ation of ACTB + GAPDH showed a similar pattern to
the stable HKGs, but when ACTB and GAPDH were
used individually, the expression patterns were com-
pletely different. Furthermore, significant differences in
ACTB were also identified in T2 relative to T1.
The above-mentioned results derived from Fig. 4 re-

flect the differences of expression profiles of a single tar-
get gene normalized by 11 types of single or multiple-
gene combinations. To further understand the relation-
ship of those single or multi-HKG combinations, a cor-
relation analysis on these relative expression data (2-ΔCt)
of 3 target genes was performed. As shown in Fig. 5, the
normalized results using NCBP3 + SDHA + EEF2 and
NCBP3 + SDHA + PTPRA had a high correlation coeffi-
cient (R = 0.990, P < 0.001), suggesting that they have ex-
tremely similar normalization capabilities. Other double-
gene combinations including NCBP3 + SDHA, NCBP3 +
PTPRA, and SDHA + PTPRA had high correlation coeffi-
cients, ranging from 0.969–0.997 with NCBP3 + SDHA +
EEF2. Also, these double-gene combinations had high

correlation coefficients of 0.989–0.994 with NCBP3 +
SDHA + PTPRA. This indicated that these 3 types of
double-gene combinations exhibited similar
normalization capabilities to NCBP3 + SDHA + EEF2 and
NCBP3 + SDHA + PTPRA. For single stable HKGs,
NCBP3, SDHA, and PTPRA also exhibited high correl-
ation coefficients with NCBP3 + SDHA + EEF2 (0.942–
0.973) and NCBP3 + SDHA + PTPRA (0.952–0.977). The
ACTB, GAPDH, and ACTB + GAPDH combinations had
relatively low correlation coefficients with any of the
stable single- (0.513–0.780) and multi-gene combina-
tions (0.548–0.738).

Discussion
Standard criteria for HKG screening for skin tissue
research in goats
Which candidate HKGs should we choose?
Four original algorithms were used to identify the ex-
pression stability values of 12 candidate HKGs and their
FS values were determined using a comprehensive algo-
rithm. However, even for the final ComprFinder value,
the results varied between different groups. If the top 3
genes were considered, groups 1–4 should theoretically
be EIF4H + PTPRA + SDHA, SDHA +NCBP3 + EEF2,
SDHA + PTPRA + EIF4H, and NCBP3 + PTPRA + EEF2,
and a total of 5 HKGs (EIF4H, PTPRA, SDHA, NCBP3,
EEF2) would be needed in goat skin research. In theory,
it is preferable to use multiple high-performing HKGs as
a normalization factor. However, in practice, the add-
itional cost and excessive number of HKGs, limit the
number of samples that can be tested. Therefore, the
minimum number of HKGs should be used to meet the
relevant statistical needs, in addition to reducing experi-
mental costs [10, 30]. In this study, NCBP3, SDHA, and
PTPRA were the top 3 most stable HKGs for all samples,

Table 5 Comprehensive rankings calculated using the ComprFinder method

Ranking
No

Group 1 Group 2 Group 3 Group 4 All samples

Gene Score Gene Score Gene Score Gene Score Gene Score

1 EIF4H 0.063 SDHA 0.059 SDHA 0.129 NCBP3 0.105 NCBP3 0.096

2 PTPRA 0.090 NCBP3 0.082 PTPRA 0.170 PTPRA 0.105 SDHA 0.099

3 SDHA 0.093 EEF2 0.090 EIF4H 0.180 EEF2 0.193 PTPRA 0.108

4 EEF2 0.171 EIF4H 0.210 SRP68 0.230 SDHA 0.211 EEF2 0.129

5 SRP68 0.174 RRAGA 0.227 EEF2 0.247 SRP68 0.245 EIF4H 0.143

6 YWHAZ 0.256 PTPRA 0.236 NCBP3 0.252 CTBP2 0.263 SRP68 0.192

7 NCBP3 0.282 CTBP2 0.322 YWHAZ 0.277 EIF4H 0.309 CTBP2 0.248

8 CTBP2 0.358 SRP68 0.430 CTBP2 0.293 RRAGA 0.327 YWHAZ 0.311

9 RRAGA 0.605 GAPDH 0.609 GAPDH 0.399 YWHAZ 0.361 RRAGA 0.320

10 CNBP 0.637 YWHAZ 0.630 RRAGA 0.404 ACTB 0.795 GAPDH 0.603

11 ACTB 0.677 CNBP 0.697 CNBP 0.730 CNBP 0.820 CNBP 0.680

12 GAPDH 0.971 ACTB 0.943 ACTB 1.000 GAPDH 0.994 ACTB 1.000
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and 2 of those ranked in the top 3 of each group. They
were therefore considered as the most three stably
expressed HKGs, and for further validation.

How many candidate HKGs should be used?
There is still no specific theory prescribing a certain
number of HKGs to be used. In the above discussion,
NCBP3, SDHA, and PTPRA were proposed for their ex-
cellent stability, however, which single or multiple gene
combinations (NCBP3 + SDHA + PTPRA, NCBP3 +
SDHA, NCBP3 + PTPRA, SDHA + PTPRA, NCBP3,
SDHA, PTPRA) should be used? Compared with the per-
formance of NCBP3 + SDHA + EEF2 or NCBP3 +

SDHA + PTPRA, the detection efficacy of NCBP3 (as
shown in Fig. 4a), SDHA (as shown in Fig. 4b), and
PTPRA (as shown in Fig. 4b-c) were not consistent.
Considering that the single gene performances were not
good, it is recommended that single HKGs should be
avoided, even if they were the top-ranked HKGs.
For the double gene combinations NCBP3 + SDHA,

NCBP3 + PTPRA, and SDHA + PTPRA (as shown in
Fig. 4a-c), similar expression patterns and detection
efficacy were observed as the NCBP3 + SDHA + EEF2
or NCBP3 + SDHA + PTPRA combinations. It was shown
that compared to NCBP3 + PTPRA and SDHA + PTPRA,
NCBP3 + SDHA yielded similar results as the NCBP3 +

Fig. 4 Relative gene expression levels normalized by 11 types of single or multiple gene combinations of HKGs. Expression of DKK1 (a), SHH (b),
and FGF5 (c) were normalized by the most stable single or multiple gene combinations (NCBP3 + SDHA + EEF2, NCBP3 + SDHA + PTPRA, NCBP3 +
SDHA, NCBP3 + PTPRA, SDHA + PTPRA, NCBP3, SDHA, PTPRA,) and the most unstable single or multiple genes combination (ACTB, GAPDH, ACTB +
GAPDH). The error bars represent the SEM, and the paired t-test in any two stages, (*P < 0.05, **P < 0.01, n = 6) for each hair follicle cycle time-
point of IMCG. T1, T2, and T3 indicate the anagen, catagen, and telogen, respectively
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SDHA + EEF2 or NCBP3 + SDHA + PTPRA combinations,
possibly because NCBP3 and SDHA were among the top
in the final stability ranking in group 2. This also implies
that SDHA+ PTPRA, SDHA+ PTPRA, and NCBP3 +
PTPRA may be the optimal double gene combinations for
groups 1, 3, and 4, respectively. There are still 3 genes,
NCBP3, SDHA, and PTPRA, and there is no type of
double gene combination able to cope with multiple fac-
tors (groups 1–4).
Considering that the 3-gene combination of NCBP3 +

SDHA + PTPRA exhibited better stability, it can be ap-
plied to various factors in goat dermatologic research,
and 3 HKGs is still an acceptable number for qRT-PCR
experiments. Therefore, it is recommended that
NCBP3 + SDHA + PTPRA be adopted as the HKG com-
bination for skin research in goats.

The HKGs of skin tissue in goats and other species
As noted previously, common HKGs used in traditional
skin research of goats were either ACTB [12–14] or
GAPDH [15, 16], so erroneous data might be obtained.
Therefore, the advantage of a set of appropriate HKGs is
very valuable. Regarding target genes that have under-
gone significant changes, these can be identified by less
stable HKGs. But for target genes that show slight

changes, these can only be identified by optimal HKGs
[30]. As far as we know, only one previous HKG study
reported on goat skin tissue, Bai et al. [17] selected ten
commonly used HKGs by consulting the literature. The
selected HKGs were tested on 3 stages of hair follicle
cycle in Liaoning cashmere goats (referred to here as T1,
T2, and T3 of IMCG), and authors finally recommended
the SDHA + YWHAZ +UBC as the HKGs. But their
geNorm values (V2/V3 = 0.159 and V3/V4 = 0.144) imply
that the combination of 3 genes was not ideal. In the
present study, large number of biological samples were
provided for determination and validation, and multiple
algorithms were used for evaluation, with the RNA-seq
dataset was used for prediction and selection. Therefore,
in terms of both the number and quality of HKGs, this
study is a significant stepforward from previous studies.
When studying the target gene expression level in skin

tissue from other species, such as Angora rabbits [31],
mink [32], mice [33], and humans [34], ACTB or GAPD
H are generally used as the HKGs. The selection of
HKGs from the same type of tissue within neighboring
species has been widely recognized and accepted. Thus,
the data presented here could prove HKGs are suited to
skin tissue research, not only for goats, but also for other
species.

Fig. 5 Heat map of correlation coefficients of relative gene expression levels based on different normalized HKGs. Three target genes were
detected in 18 skin samples and normalized by different types of HKGs. The number in each color block is the correlation coefficient (R-value),
and the number below the color block is the P-value of the corresponding R-value. The sample size was 54 (3 target genes*18 skin samples) for
each color block
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Selection and validation of HKGs based on RNA-seq data
Selection and validation of HKGs using RNA-seq produced
more reproducible results, had greater sensitivity, yielded
better correlation with protein expression levels, and had
more accurate detection and higher coverage [35]. To the
best of our knowledge, this study is the first one to report
on the selection and validation of novel HKGs for qRT-PCR
analysis in goats. Two novel HKGs (NCBP3 and PTPRA)
and a known HKG (SDHA) belonging to the NCBP3 +
SDHA+PTPRA combination were recommended. Using a
similar approach as other studies [19–21], new and im-
proved HKGs were identified through analyzing an RNA-
seq dataset. While this study demonstrated the advantages
of using RNA-seq datasets in the discovery of new HKGs, it
is also possible that the prediction of HKGs by RNA-seq
datasets may be lacking in some respects. For example, the
ranking order of these candidate HKGs (Table 1) and the
determined FS (Table 5) did not match (compared in Add-
itional file 1: Table S3). Specifically, the CV values of
RRAGA and SRP68 were in the top 3, although in the final
ranking they did not appear in the top 3 positions of any
group (groups 1–4 and all samples). This might be the rea-
son why RNA-seq samples in the selection stage and the
qRT-PCR samples used in the determination stage did not
completely overlap. This phenomenon is consistent with
those reported by Gao et al. [20] and implies that the HKGs
predicted by RNA-seq screening were not fully reliable, and
need further validation by qRT-PCR experiments.
As mentioned before, ACTB and GAPDH are currently

the most popular HKG in the literature, but their limited
normalizing capacity was verified here. This suggests
that scientists must be cautious when selecting trad-
itional HKGs, especially when identifying target genes
that have slight changes in expression. Therefore, it is
recommended that common HKGs be included as a
comparison, to provide direct evidence. Of course, it
must also be acknowledged that mining reliable HKGs
require scientific experimental design, complete experi-
mental materials, more algorithmic tools, and a certain
amount of scientific research time [30], but these are not
available to every research laboratory. Therefore, those
experimental systems that do not meet the above condi-
tions were recommended to search for HKGs in close
species using the ICG platform [36]. Meantime, use as
many HKGs as possible and calculate their arithmetic
mean as the normalization factor to increase experimen-
tal stability, instead of simply using a single HKG such
as ACTB or GAPDH.

Comprehensive analysis
The requirement of comprehensive analysis, and the
shortcomings of the previous algorithms
After evaluating candidate HKGs with the above-
mentioned algorithms (geNorm [26], NormFinder [28],

BestKeeper [29], and the ΔCt method [27]), it is not sur-
prising that the rankings of candidate genes may vary de-
pending on the algorithm used [30]. Thus, another
algorithm is needed for comprehensive ranking. After
reviewing the literature on HKGs, it was determined that
2 types of comprehensive algorithms were mainly used:
(1) the primary ranking order was used to calculate the
arithmetic average, and then get the final ranking [24, 37];
(2) using the primary ranking order, the geometric average
is then calculated to get the final ranking. RefFinder [38]
is a typical representative (https://www.heartcure.com.au/
reffinder/?type=reference) and many studies [7, 19, 20, 22,
39–41] have used it (Times Cited: 352, on Web of Science,
2020/2/3), which illustrates its vast impact. Both the above
comprehensive algorithm types depend on the ranking
number of the original algorithms. Due to this, it is pos-
sible that the use of ranking numbers may cause some
errors.
These ranking numbers reflect the true size of stability

values of these candidate HKGs, but they should not be
used as the input numerical value for the next calcula-
tion. Doing so would excessively reduce or enlarge the
real differences among them. Referring to our experi-
mental data as an example, these candidate HKGs were
evaluated and unevenly distributed (Fig. 6a) on the axis
of the four algorithms. The RefFinder algorithm provides
them with the uniform rank of 1–12 (Fig. 6b), and then
calculates the geometric average for each candidate
HKG. The RefFinder algorithm increases the gap be-
tween PTPRA and EIF4H, and reduces the gap between
CNBP and ACTB (the axis of the geNorm algorithm in
Fig. 6a and b). We consider this was unreasonable for
the comprehensive evaluation and therefore, in this
study, a new algorithm for comprehensive analysis was
developed.

The ComprFinder algorithm
ComprFinder was intentionally developed to replace
RefFinder and the comparison of the two algorithm’s re-
sults are shown in Additional file 1: Table S4. It can be
seen that the FS and ranking order of the 12 candidate
HKGs calculated using the two algorithms are different.
For example, NCBP3 (0.096), SDHA (0.099), and PTPRA
(0.108) were the top 3 genes for all samples calculated
by ComprFinder, whereas PTPRA (2.14), SDHA (2.45),
and EEF2 (3.13) were the top three calculated by RefFin-
der. The ComprFinder algorithm directly standardizes
the results of the original algorithms, unlike RefFinder,
which uses the ranking numbers of original algorithms.
Theoretically, if the series of HKG expression stability
values calculated by each original algorithm is uniformly
distributed (likely does not exist), the results of Compr-
Finder and RefFinder algorithms will be the same. Using
the ranking numbers, the real differences among the
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candidate HKGs will excessively reduce or increase.
Therefore, the new comprehensive algorithm can over-
come the intrinsic errors caused by artificial assignment.
Standardized processing allows the results of different al-
gorithms to have the same dimension and makes them
essentially comparable. Finally, the standardized results
can be integrated to get a series of scores and a final
evaluation. Therefore, ComprFinder would be a more
reasonable algorithm than RefFinder for the comprehen-
sive evaluation of HKGs.
We provide a ComprFinder algorithm tool

(Additional file 2) for researchers who have compre-
hensive evaluation needs for candidate HKGs. This
tool is based in Microsoft Excel and can be downloaded
from the supplementary materials of this article. Briefly,
after inputting the original algorithm results into the input
area, the ComprFinder algorithm automatically processes
the data and all candidate HKGs will be scored and pre-
sented in the output area. Although the use of ComprFin-
der in this study was based on geNorm, BestKeeper,
NormFinder, and the ΔCt method, analysis is not limited
to these 4 algorithms.

Conclusion
In this study, we present the first list of candidate HKG se-
lection for goat skin tissue based on transcriptome data.
The NCBP3 + SDHA+ PTPRA combination was identified
and recommended as the triplet HKGs for skin molecular
biology studies in goats and other closely related species.
In addition, a comprehensive algorithm tool based in
Microsoft Excel, ComprFinder, was developed for the
comprehensive evaluation of candidate HKGs.

Methods
Animals and skin tissue samples
All animals and sampling procedures in this study were
supervised and approved by the Institutional Animal
Care and Use Committee of Southwest University. Each
1 cm2 skin tissue was sampled from the Inner Mongolia
cashmere goat (IMCG), Dazu black goat (DBG),
Hechuan white goat (HCWG), or the first filial

generation (F1, DBG♂ × IMCG♀). Detailed information
regarding the animal source, method of the animal sacri-
ficed, anesthesia procedure, sampling procedure, and
sample preservation is found in Additional file 1: Tables
S5 and S6. All samples were stored at − 80 °C until fur-
ther usage.
A total of 48 skin tissue samples were collected to deter-

mine (determination stage) and to validate (validation
stage) the potential HKGs. The sample sizes (n) for every
group (factor) and every level were described in the legend
of Fig. 7. In the determination stage of this study (Fig. 7c,
Additional file 1: Table S5), all samples were collected
from does. Four groups were used, including age (4 devel-
opment stages, group 1), sampling time (3-stages of hair
follicle cycle, group 2), breed (4 different breeds, group 3),
and sampling site (5 different sampling sites on the body
of the goat, group 4). As shown in Fig. 7c, group 1 in-
cluded F1_P0, F1_P60, F1_P240, and F1_Adult, which were
sampled at 0-day, 2 months, 8 months, and 2 years after
birth from F1. Group 2 included IMCG_T1, IMCG_T2,
and IMCG_T3, which were sampled during the anagen
(September), catagen (December), and telogen (March)
from IMCG. Group 3 consisted of animals from 4 breeds
and included IMCG, DBG, F1, and HCWG. Skin samples
from each of the breeds were sampled in the anagen phase
of the hair follicle cycle. Skin biopsies collected from
group 4 (#4, #5, #6, #12, and #14 from IMCG, as described
in our previous publication [42]), were taken from the
forearm, dorsal chest, lateral chest, thigh, and the inner
side of the forearm as described in our previous study. Ex-
cept for samples #4, #5, #12, and #14, all samples analyzed
here were collected from the lateral chest of the goat body.
Except for samples belonging to F1_P0, F1_P60, and F1_
P240, all samples were collected from adult goats. In the
validation stage of this study (Fig. 7e, Additional file 1:
Table S6), 3 bucks of IMCG were added to group 2, to en-
hance validation accuracy.

RNA isolation and cDNA synthesis
Total RNA was extracted using the RNAiso Plus kit
(#9109, TaKaRa, China) according to the manufacturer’s

Fig. 6 Gene stability values and rank order. The same color presents the same gene. a Twelve candidate HKGs unevenly distributed on the axis,
this is their true distribution; b Twelve candidate HKGs evenly distributed on the axis ordered by 1–12
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instructions. The concentration and purity were deter-
mined using the Nanodrop2000 (Thermo, USA) with
the 260/280 ratios being between 1.8 and 2.0, and the
260/230 ratios were greater than 1.6 in all analyzed RNA
samples. First-strand cDNA was synthesized using the
5X All-In-One RT MasterMix (with AccuRT Genomic
DNA Removal Kit) (#G492, ABM, Canada) and 1:4 vol-
umes of DEPC water was added to dilute the samples.

Selection of candidate HKGs
Transcriptome sequencing data of 39 goat skin tissues
(unpublished data, Fig. 7a) was performed using the
paired-end sequencing technology on an Illumina Nova-
Seq 6000 platform. After assembly and annotation, the
gene expression profiles and read counts of unique tran-
scripts were converted into FPKM values on the plat-
form BMKCloud (www.biocloud.net), according to the
formula FPKM = cDNA fragments/[mapped fragments
(millions) × transcript length (kb)]. Based on the FPKM
value of every gene in each transcriptome, the CV and
MFC were calculated using Microsoft Excel and DPM
was calculated using a jar package [43]. The CV is de-
fined as the ratio of the SDFPKM to the mean of the
FPKM of all samples for one gene. The DPM parameter
was introduced for the identification of the HKGs on

pattern gene finder (PaGeFinder) [43], and their jar
package was downloaded and run from the PaGeFinder
website. The MFC, which is defined as the fold change
between the largest and smallest FPKM values within 39
RNA-seq were calculated. The standard criteria for
HKGs are relatively high expression level, and low ex-
pression variation, therefore, a candidate HKG should
have a relatively high FPKM value, and low CV, DPM
and MFC values.
Genes with RPKM, CV, MFC, and DPM fulfilling the cri-

teria of HKGs were retained for further analysis (Fig. 7b).
Moreover, two HKGs (SDHA and YWHAZ) from a previ-
ous study by Bai [17], and two commonly used HKGs
(ACTB and GAPDH) were also considered as HKGs. All
candidate HKGs were amplified using qRT-PCR for subse-
quent determination and validation. The probability density
curve was drawn by an in house script (Additional file 3)
using the Matlab software (https://ww2.mathworks.cn/
products/matlab.html). Venn diagram analysis was per-
formed using the OmicShare online platform tools (http://
www.omicshare.com/tools).

Primer design and amplification efficiency analysis
Specific primers were designed using the Primer-BLAST
[44] web tool (https://www.ncbi.nlm.nih.gov/tools/

Fig. 7 The workflow of this study. a The sample information of transcriptome sequence data of these IMCG (n = 3*3), DBG (n = 3*3) and F1_Adult
(n = 7*3); b Candidate housekeeping genes were preliminarily selected by four indicators which including FPKM, CV, DPM, and MFC, and were
further selected by Venn diagram analysis; c The sample information of the qRT-PCR experiments on the 4 experimental groups, with 3 biological
replicates in every level of each group. Group 1, different development stages (n = 4*3); Group 2, hair follicle cycle stages (n = 3*3); Group 3,
breeds (n = 3*3); Group 4, sampling sites (n = 5*3). d Candidate housekeeping genes were determined using 4 algorithms, including geNorm,
NormFinder, BestKeeper and the ΔCt method. An additional comprehensive analysis was conducted using ComprFinder, a new algorithm
developed by the authors. e The selected HKGs were validated by 3 target genes, and were performed on 18 skin samples (n = 6*3)
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primer-blast/) based on the sequences of the unigenes.
The criteria for primer design were as follows: primer
lengths of 17–24 bp, GC content of 50–66%, theoretical
anneal at around 60 °C, and amplicon lengths of 100–
200 bp. All primers were synthesized by the Beijing Gen-
omics Institute (Beijing, China).

qRT-PCR analysis
Sample reactions were performed in a 10 μL reaction
volume with 5 μL of 2× qPCR MasterMix (#MasterMix-
S, ABM, Canada), 1 μL cDNA template, 0.3 μL each pri-
mer, and 3.4 μL DNase/RNase-free water and run on the
Bio-Rad CFX96 Real-Time PCR Detection System. The
thermal cycling conditions were conducted according to
the reagent kit instructions as follows: enzyme activation
at 95 °C for 10 mins, followed by 40 cycles of denatur-
ation at 95 °C for 15 s, annealing/extension at 60 °C for
60 s. The specificity of the SYBR green PCR signal was
confirmed by melting curve analysis. All samples were
analyzed in 3 replicates. Serial tenfold dilutions (dilution
ratio 1:103–1:1010) of cDNA template (note: in primer
amplification test, cDNA template is PCR product with

the same primer) were used to generate a slope of the
standard curve to calculate the amplification efficiency
and R2 of each paired primer. All qRT-PCR experiments
and data analyses in the present study were performed
following the MIQE guidelines [45, 46].

Determination of expression stability of HKGs by four
traditional algorithms
The Ct data of all the candidate HKGs obtained from
the qRT-PCR experiments were evaluated by 4 algo-
rithms, geNorm [26], NormFinder [28], BestKeeper [29],
and the ΔCt method [27] (Fig. 7d).

A comprehensive analysis was performed using a newly
developed algorithm
After using the above-mentioned traditional evaluation
algorithms, another algorithm was developed for com-
prehensive ranking. The new algorithm, ComprFinder,
standardizes the output values from the above 4 algo-
rithms then arithmetically averages them to get their FS
and final ranking order (Fig. 7d).

Fig. 8 Schematic diagram of the ComprFinder algorithm. The same color presents the same gene. From step 1 to step 2, the uneven distribution
of these 12 HKGs will not change, but they are proportionally enlarged or reduced to the range of 0–1. Calculated the arithmetic mean value for
each gene to determine the final ranking order
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The schematic diagram of the ComprFinder algorithm
is presented in Fig. 8. Specifically, STEP 1, according to
the original algorithm results ordered the values from
small to large to find the minimum and the maximum.
From this, the range was calculated (1) where A is one
of the original algorithms, and is also used to calculate
ΔB, ΔC, and ΔD. In STEP 2, the values from the original
algorithm were standardized in the interval [0,1], where
the minimum value = 0 and the maximum value = 1. The
normalized value (A’i) was calculated (2) where i is one
of these candidate HKGs, and is also used to calculate
B’i, C’i, and, D’i. All the other data were assigned nor-
malized values between 0 and 1. This step makes these
stability values that belong to the same HKG but from
different original algorithms abide by the additive prop-
erty. In STEP 3, arithmetic averages of the standardized
values for each candidate HKG were calculated, and
then these FS were sorted to obtain their final rankings
(Fig. 8). The FSi (3) was determined with n being the
number of original algorithms we used.

ΔA ¼ Amax −Amin ð1Þ
A’i ¼ Ai −Aminð Þ=ΔA ð2Þ
FSi ¼ A’i þ B’i þ C’i þ D’ið Þ=n ð3Þ

Experimental validation of the HKGs
To verify the results, the 3 best candidate HKGs were
selected (NCBP3, SDHA, and PTPRA), as well as the
most unstable and most commonly used HKGs (ACTB
and GAPDH). Next, the HKGs were verified and evalu-
ated using 3 target genes (DKK1, SHH, and FGF5),
which are the hot genes in hair follicle research (Fig. 7e).
Considering the need to accurately evaluate target gene
expression profile, 3 new bucks were added in the ori-
ginal sample size of 3 does, (6 adult IMCG, 3♂ and 3♀)
and were sampled over 3 time-points (T1, T2, and T3)
(Additional file 1: Table S6). The qRT-PCR was con-
ducted as described in the determination stage. The
paired sample t-test was performed using Microsoft
Excel, and the graph was plotted using GraphPad Prism
6. The results are presented as Mean ± SEM, * P < 0.05,
** P < 0.01. For multiple gene combinations, the geomet-
ric average of their Ct value was calculated [26]. The
relative gene expression level was calculated as 2-ΔCt,
ΔCt =Δ (Cttarget gene-CtHKGs).
To further evaluate the internal relationship of these

candidate HKGs, a correlation analysis was performed.
First, the target genes were normalized by different
HKGs or HKG combinations, to calculate their ΔCt
values. Then their copy numbers were converted to rela-
tive expression levels with 2-ΔCt. Finally, their

normalized-based expression levels were examined by
the correlation analysis.
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