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Abstract

Introduction:The object recognition system involves both selectivity to specific object

category and invariance to changes in low-level visual features. Mounting neuroimag-

ing evidence supports that brain areas in the ventral temporal cortex, such as the

FFA and PPA, respond preferentially to faces and houses, respectively. However, how

regions in human ventral temporal cortex partitioned and functionally organized to

selectively and invariantly respond to different object categories remains unclear.

What are the changes of response properties at the intersection of adjacent but

distinctively-selective regions?

Method: Here, we conducted an fMRI study and three-pronged analyses to compare

the brain mapping relationships between the FFA to faces and the PPA to houses.

Specifically, we examined: 1) the response properties of object selectivity to the

preferred category; 2) the response properties of invariance to contrast and a concur-

rently presented non-preferred category; 3) whether there are asymmetrical changes

of response properties across the boundary from the FFA to PPA versus from the PPA

to FFA.

Results:We found that the response properties of FFA are highly selective and reliably

invariant,whereas the responses of PPAvarywith the image contrast and concurrently

presented face. Moreover, the response properties across the boundary between the

FFA and PPA are asymmetrical from face-selective to house-selective relative to from

house-selective to face-selective.

Conclusions: These results convergently revealed distinct response properties

between the FFA to faces and the PPA to houses, implying a combination of spa-

tially discrete domain-specific and relatively distributed domain-general organization

mapping in human ventral temporal cortex.
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1 INTRODUCTION

Object recognition is a fundamental visual cognition ability. At any

given moment, our visual environment normally contains multiple

objects. We recognize these objects quickly and effortlessly even

when they are encountered in unusual orientations, under different

illumination conditions, or partially occluded by other objects. Exten-

sive human and nonhuman primate studies have identified putative

higher-level visual areas in ventral temporal cortex thatmediate object

recognition. Neurons from distinct clusters in ventral temporal cor-

tex differentially and selectively activate to specific object category

(Grill-Spector &Weiner, 2014; Haxby, Gobbini, et al., 2001; Kanwisher

& Yovel, 2006; Kanwisher et al., 1997). For example, the activity of the

fusiform face area (FFA) is highly specific to faces and face-like stimuli,

whereas the parahippocampal place area (PPA) responds selectively to

houses (or scenes, landmarks, cityscapes, and rooms) (Epstein & Baker,

2019; Epstein & Kanwisher, 1998; Kanwisher et al., 1997). These func-

tionally specialized, category-selective regions are widely assumed to

provide object selectivity and to a large extent tolerant to confound-

ing factors such as object size, position, illumination, and other objects

that were concurrently presented (Bao & Tsao, 2018; Logothetis &

Sheinberg, 1996; Quiroga et al., 2005; Tanaka, 1996).

However, despite being extensively examined, how regions in

human ventral temporal cortex are partitioned and functionally orga-

nized to respond selectively to specific category and invariantly to

other object categories remains controversial (Grill-Spector &Weiner,

2014; Haxby et al., 2001; Quiroga et al., 2005; Tsao & Livingstone,

2008; Zoccolan et al., 2005, 2007). A large body of studies emphasized

that neurons in temporal cortex were both highly selective and reli-

ably invariant (Andrews & Ewbank, 2004; Grill-Spector et al., 1999;

Quiroga et al., 2005; Rust & Dicarlo, 2010). Responses of category-

selective areas to a simultaneously presented object pair were similar

to those to the preferred category in isolation (i.e., a max response in

face areas to faces or in scene areas to scenes) (Bao & Tsao, 2018;

Reddy&Kanwisher, 2007). On the other hand, some studies suggested

a trade-off relationship between object selectivity and low-level fea-

tures invariance. That is, neurons with high object selectivity typically

have relatively low invariance and vice versa (Zoccolan et al., 2007).

Responses to the preferred object were often reported to reduce by

the presence of a nonpreferred object in category-selective areas,

and responses to a pair of objects were very close to the average

of responses to each object individually (Baeck et al., 2013; Kliger &

Yovel, 2020; MacEvoy & Epstein, 2009; Zoccolan et al., 2005). Finally,

a compromising hypothesis holds that both types of information are

available from different neuronal populations in the temporal cortex,

namely, information about specific object features like retina location

and size, as well as information about object identity, which is tolerant

to changes in low-level visual features (Lueschow et al., 1994; Hung

et al., 2005; Guo & Meng, 2015; Kay & Yeatman, 2017; Schwarzlose

et al., 2008; Yue et al., 2011).

Here, we examined fMRI responses on a fine-scale across relatively

extensive cortical surface areas in ventral temporal cortex, including

the FFA and PPA, to investigate the response properties of category

selectivity to the preferred stimulus and invariance to changes in image

contrast and a concurrently presented nonpreferred stimulus. Among

all different types of objects, faces may be a unique category given

their evolutionarily crucial role in normal human social interactions.

Much evidence supports prioritized processing of faces and the spe-

cific cognitive and neural machinery of face processing, which cannot

be shared by other kinds of object perception (Duchaine&Yovel, 2015;

Kanwisher & Yovel, 2006; Tsao et al., 2003, 2006; Tsao & Livingstone,

2008). It is possible that the FFAwould bemore selective to faces than

other regions selective to their preferred category (e.g., PPA tohouses),

and thus the response of FFA would be uniquely and reliably toler-

ant to changes in low-level visual features as well as to concurrently

presented nonpreferred objects (e.g., houses). However, if a common

rule were applied to fairly partition regions in ventral temporal cor-

tex according to their preferred categories, there should be similar

response patterns between, for example, how the FFA responds to

faces and how the PPA responds to houses.

Moreover, whether there is a clear boundary or a symmetrical

change in response properties between two adjacent but distinctively-

selective regions (i.e., FFA and PPA) remains elusive. Measurements in

the primate inferior temporal cortex have shown that the proportion of

selective neurons for a particular category within a category-selective

region, which was detected by using fMRI, is significantly higher than

the outside of this region. Within fMRI identified category-selective

regions in temporal cortex, a wide range of 29–97% neurons are

selective for the preferred category, with the highest proportion in

face-selective patches (Bell et al., 2011; Issa et al., 2013; Tsao et al.,

2006). However, as the FFA and PPA are adjacent to each other, neu-

ron selectivity across the boundary between the FFA and PPA remains

unknown. According to the category specialized modular hypothesis,

faces and houses are represented and discriminated in functionally

specialized and spatially distinct cortical areas. Thus, there should be a

clear boundary of neural response properties between the FFA to faces

and the PPA to houses. In contrast, distributed theories argue that

category-specific patterns of response arewidely distributed andover-

lapping organized (Behrmann & Plaut, 2013; Bell et al., 2011; Cohen &

Tong, 2001; Cox & Savoy, 2003; Haxby, Gobbini, et al., 2001; Weiner

& Grill-Spector, 2010). Thus, it may be hard to discern the boundary

between two adjacent category-selective regions in ventral temporal

cortex, including the FFA and PPA.

In the present study, we specified multiple successive regions of

interest (ROIs) on a fine-scale along a virtual line connecting the FFA

and PPA on the inflated gray matter surface to investigate response

patterns of two adjacent regions. Responses of defined ROIs to image

contrasts of faces and houses as well as concurrently presented face-

house stimuli were examined. In addition, we also compared variations

in category selectivity and invariance across theboundary between the

FFA and PPA.We hypothesize that, if category-selective regions might

be modularly partitioned and functionally organized at the same level,

changes in face-selectiveness versus house-selectiveness across the

boundary between the FFA and PPA should be symmetrical. If how the
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FFAresponds to facesmightbedifferent fromhowthePPAresponds to

houses, we should observe asymmetrical changes in face-selectiveness

versus house-selectiveness across the boundary from the FFA to PPA

and vice versa from the PPA to FFA.

2 MATERIALS AND METHODS

2.1 Subjects

Seventeen healthy adults participated in this study with informed con-

sent, including seven females, on average 26 years old. All subjects

had normal or corrected-to-normal visual acuity and color vision. This

study was approved by the Dartmouth College Human Protection

Committee.Data from five subjectswith headmovements greater than

3 mm were excluded from further data analyses. Part of the data was

independently analyzed and published for a separate study (Guo &

Meng, 2015).

2.2 Materials

The stimuli set of the localizer experiment was grayscale images,

including 16 faces and 16 houses. An independent set of grayscale

images was collected for the main experiment, including eight faces

and eight houses. All stimuli images of the main experiment were

equally transformed into a high-contrast version equivalent to 0.25

root mean square (RMS) and a low-contrast version equivalent to

0.025 RMS in normalized units. The contrast of all stimuli conditions

was adjusted by using MATLAB and the SHINE toolbox (Willenbockel

et al., 2010). In the main experiment, there were eight experimental

conditions, including four single-image conditions and four face-house

overlapping-image conditions: low-contrast faces with 0.025 RMS (lF),

high-contrast faces with 0.25 RMS (hF), low-contrast houses with

0.025 RMS (lH), high-contrast houses with 0.25 RMS (hH), overlap-

ping images of a low-contrast face with 0.025 RMS superimposed on

a low-contrast house with 0.025 RMS (lFlH), overlapping images of a

low-contrast face with 0.025 RMS superimposed on a high-contrast

house with 0.25 RMS (lFhH), overlapping images of a high-contrast

face with 0.25 RMS superimposed on a low-contrast house with 0.025

RMS (hFlH), and overlapping images of a high-contrast face with 0.25

RMS superimposed on a high-contrast house with 0.25 RMS (hFhH)

(Figure1(b)). The stimuliwerepresented in the center of the screenand

the visual angle of stimuli was 8.7o.

2.3 MRI acquisition

Image acquisition was performed at Dartmouth Brain Imaging Cen-

ter using a Philips Achieva Intera 3.0 T scanner with a 32-channel

head coil. Anatomical T1-weighted 3D images were acquired using a

magnetization-prepared rapid-acquisition gradient echo sequence at

the end of the scan session for each subject (TR = 8.2 ms, TE = 3.8 ms,

flip angle = 8◦, FOV = 240 mm, voxel size = 1 × 1 × 1 mm, 222

slices). BOLD imageswere collected using an echo-planar imaging (EPI)

sequence (TR= 2000ms, TE= 35ms, flip angle= 90◦, FOV= 240mm,

voxel size = 3 × 3 × 3 mm, 35 slices). During EPI scans, visual stim-

uli were presented to subjects via a Panasonic PT-D4000U projector

using MATLAB with Psychtoolbox (Brainard & Freeman, 1997; Pelli,

1997). The rear-projection screen was positioned at the rear of the

scanner and viewed with a mirror mounted to the head coil. The width

and height of the projected screen were 45.7 and 34.3 cm (1024 × 768

pixels), respectively. The distance between the mirror and the pro-

jected screen was 97.8 cm and the distance between the mirror and

subjects’ eyes was approximately 12.7 cm.

2.4 Experiment procedures

In the localizer experiment, each participant performed two runs to

localize the FFA and PPA as ROIs. Each run was consisted of five face

blocks and five house blocks, by alternating presenting, where each

run started with a 16 s fixation block. Each stimulation block was 16 s,

followed by a 16 s fixation period. Within each block there were 16

images from a single stimulus condition, and each imagewas presented

for 500 ms with a 500 ms inter-stimulus-interval (ISI). The partici-

pant performed a one-back repetition detection task to press a button

whenever there was a repetition of an image.

In the main experiment, we presented a participant with eight dif-

ferent types of visual stimuli (lF, hF, lH, hH, lFlH, lFhH, hFlH, hFhH) in a

block design. The participant performed a color detection task to press

a button whenever the whole image turned to red for 200 ms at ran-

dom times during the stimulus presentation. This study was consisted

of nine or ten runs, where each run was comprised of eight blocks, one

for each stimulus condition. Each run started with a 16 s fixation block,

and each stimulation block was interleaved with a 16 s fixation block.

Within each block there were eight images from a single stimulus con-

dition, and each image was presented for 1700 ms with a 300 ms ISI.

In total, each stimulation block was 16 s, and each run was 272 s. The

blocks were randomized across each run.

2.5 Data analysis

2.5.1 Preprocessing

T1-weighted images were processed using FreeSurfer’s (Fischl, 2012)

recon-all processing pipeline to segment subcortical structures and

reconstruct the cortical surface. The functional data were processed

with a surface-based processing pipeline using AFNI and SUMA. For

each BOLD run, we conducted the following processing: remove

spikes using 3dDespike, slice-time correction using 3dTshift, com-

pute anatomical alignment transformation to EPI registration using

align_epi_anat, head motion correction using 3dvolreg and normaliza-

tion using 3dcalc (Cox, 1996; Saad & Reynolds, 2012). BOLD images

were motion corrected and aligned to the first volume of the first
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F IGURE 1 (a) Schematic visualization of the functional ROIs from a representative subject. Each region was defined individually for each
subject from their functional localizer scans. The FFA (yellow), PPA (cyan), and the virtual line (red) connecting the FFA and PPA peak foci (white
dots) are shown on the inflated surface. (b) Examples of stimuli and experimental conditions in themain experiment. The red box (solid line)
represents a two-way factorial design (two levels of face contrast (low (lF, lFlH, and lFhH) vs. high (hF, hFlH, and hFhH))× three levels of house
contrast (none (lF and hF) vs. low (lFlH and hFlH) vs. high (lFhH and hFhH))) for the FFA selective to faces. The blue box (dashed line) represents a
separate two-way factorial design (two levels of house contrast (low (lH, lFlH, and hFlH) vs. high (hH, lFhH, and hFhH))× three levels of face
contrast (none (lH and hH) vs. low (lFlH and lFhH) vs. high (hFlH and hFhH))) for the PPA selective to houses. (c and d) Univariate andmultivariate
results of the localizer experiment in ROIs along the virtual line from the FFA to PPA. (c) Results of BOLD responses to faces and houses. The solid
red line represents the face condition and the dashed black line represents the house condition. (d) Results of classification accuracy for
distinguishing between faces and houses. The dashed blue line represents results of the left hemisphere and the solid green line represents results
of the right hemisphere. Shaded areas represent± 1 S.E.M. and significances aremarkedwith stars (ps< .001, corrected). LH is the abbreviation
for the left hemisphere and RH is the abbreviation for the right hemisphere

run. Data with equal or greater than 5 mm motion in any direc-

tion were excluded from further analysis. Using this criterion, five

subjects was excluded. As we have reconstructed the cortical sur-

faces, we can use @SUMA_Make_Spec_FS to create a new surface that

can be read by SUMA, use @SUMA_AlignToExperiment to create a

version of surface anatomy that has been registered to the exper-

iment anatomical volumes, and use 3dVol2Surf to map data values

from AFNI volume dataset to the surface dataset. Then, surface-

based images were submitted to a general linear model (GLM using

3dDeconvolve to obtain the beta coefficient values associated with

each block for each condition. All data were analyzed in both the

native space of each observer and the MNI305 space. The local-

izer data and the main experiment data were processed in the same

way.



LI ET AL. 5 of 14

2.5.2 ROIs localization from the FFA to PPA

To measure the changes of brain activity for faces and houses

across continuum regions from the FFA to the PPA, we specified

a virtual line connecting the FFA and PPA in the ventral tempo-

ral cortex on the inflated gray matter surface for each subject

(Figures 1(a) and S1). First, to functionally localize the FFA and

PPA as ROIs, a whole-brain GLM analysis was performed by con-

trasting faces versus houses on the localizer data for each subject

separately. Vertices were selected among several FreeSurfer parcella-

tions, including parahippocampal gyrus, collateral sulcus, lingual sulcus,

fusiform gyrus, inferior temporal sulcus, lateral occipito-temporal sul-

cus, inferior temporal gyrus, and posterior transverse collateral sulcus

(aparc. A2009s/Destrieux.simple.2009-07-29.gcs atlas). Vertex with

the strongest response to faces was selected as the FFA peak foci and

vertex with the strongest response to houses was selected as the PPA

peak foci within the aforementioned masks. For each subject, corre-

sponding RAS coordinates of the selected FFA peak vertex and PPA

peak vertex were obtained from the inflated graymatter surface. Then

we transformed them intoMNI surface coordinate system by convolv-

ing the native matrix with Talairach transformation matrix. Next, we

specified a virtual line connecting the coordinate of FFA peak foci (ROI

index 16) and the coordinate of PPA peak foci (ROI index 36) on the

inflated gray matter surface. Nineteen sets of coordinates (ROI index

17–35) were selected with equal spacing in-between along the virtual

line. Then, we extended the virtual line by 15 sets of coordinates (ROI

index 1–15 and ROI index 37–51) with identical space to both sides.

For each set of coordinates, we grouped five coordinates closest to the

given coordinate as one ROI (index) according to Euclidean distance.

In total, there were 51 sets of ROIs along the line connecting the FFA

and PPA for each hemisphere. Finally, we get the corresponding nodes

index of the selected 51 sets of ROIs on the inflated surface. Coordi-

nates of the FFA peak foci, the PPA peak foci and two endpoints of the

virtual line has been displayed in the supplementary materials for each

subject (Table S13). The size of eachROIwas about 2.874mm2 on aver-

age. The cortical surface distance between the FFA peak and PPA peak

was about42.51mmfor the left hemisphere and40.34mmfor the right

hemisphere on average.

2.5.3 ROIs localization from the occipital pole to
the FFA and from the occipital pole to the PPA

To investigate the brain selectivity for faces and houses from the occip-

ital lobe to the ventral temporal cortex, we specified two virtual lines

on the inflated gray matter surface from the occipital pole to the FFA

and from the occipital pole to the PPA. We first selected the median

coordinate of the occipital lobe (ROI index 16) as one starting point

of the virtual line according to the anatomical mask in FreeSurfer. The

selected coordinates of the occipital pole in the right hemisphere were

[ −20, −125, −41], and those in the left hemisphere were [25, −123,

−54] in the MNI surface coordinate system. Then, 28 sets of coordi-

nates (ROI index 17–44) were selected with equal spacing in-between

along the virtual line from the occipital pole (ROI index 16) to the

FFA/PPA peak (ROI index 45). The virtual line was extended by 15 sets

of coordinates (ROI index 1–15 and ROI index 46–60) with identical

space to both sides. Similarly, for each set of coordinates, we grouped 5

coordinates closest to the given coordinate as one ROI (index) accord-

ing to Euclidean distance. In total, there were 60 sets of ROIs along

the two virtual lines connecting the occipital pole and the FFA/PPA

for each hemisphere. Finally, we get the corresponding nodes index of

the selected 60 sets of ROIs on the inflated surface. The cortical sur-

face distance between the occipital pole and the FFA peak was about

72.55 mm for the left hemisphere and 75.17 mm for the right hemi-

sphere on average. The cortical surface distance betweenoccipital pole

and the PPA peak was about 73.80 mm for the left hemisphere and

74.46mm for the right hemisphere on average.

2.5.4 Univariate analysis of category selectivity

We examined the changes of BOLD responses (Figures 1(c) and 2) and

selectivity (Figure 3) for faces and houses across ROIs from the FFA to

PPA. For eachROI along the virtual line, we obtained the beta values by

averaging 5 vertices responses for each condition (Figure 1(c) and 2). A

beta value was a coefficient of the GLM (per vertex) that estimates the

strength of the relationship between a covariate (e.g., stimulus condi-

tion) and BOLD signal time course. For each ROI, the averaged beta

values were computed for each experimental condition across sub-

jects and were used in subsequent statistical analyses. Selectivity was

calculated separately for each subject using the formula:

Selectivity= Preferred beta values – nonpreferred beta values

For face selectivity, preferred beta values were responses to con-

ditions containing face (i.e., lF, hF, lFlH, lFhH, hFlH, hFhH), and non-

preferred beta values represented responses to house-only conditions

(i.e., lH, hH). The selectivity for face was obtained by contrasting

responses of lF versus lH, hF versus hH, lFlH versus lH, lFhH versus hH,

hFlH versus lH and hFhH versus hH. For house selectivity, preferred

beta values were responses to conditions containing houses (i.e., lH,

hH, lFlH, lFhH, hFlH, hFhH), and nonpreferred beta values represented

responses to face-only conditions (i.e., lF, hF). The selectivity for house

was obtained by contrasting responses of lH versus lF, hH versus hF,

lFlH versus lF, lFhH versus lF, hFlH versus hF, and hFhH versus hF.

2.5.5 Multivariate pattern analysis

Multivariate pattern analysis (MVPA) was performed using skit-learn

packages (Pedregosa et al., 2011). For each subject, a linear support

vector machines (SVMs) classifier with fivefold cross-validation was

used to classify representation patterns of faces and houses. In the

localizer experiment, beta valuesof eachROI for faces andhouseswere

submitted to the SVMand the classification accuracieswere computed

by averaging output scores from fivefold cross-validation. In the main
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F IGURE 2 BOLD responses to all conditions (lF, hF, lH, hH, lFlH, lFhH, hFlH, and hFhH) across ROIs along the virtual line from the FFA to PPA
in themain experiment. (a and b) Changes of averaged beta values to all conditions for the left (a) and right (b) hemispheres. (c and d) Smoothed
beta values to all conditions for the left (c) and right (d) hemispheres. Vertical dashed lines indicate the FFA peak foci (ROI index 16) and PPA peak
foci (ROI index 36). LH is the abbreviation for the left hemisphere and RH is the abbreviation for the right hemisphere

F IGURE 3 Linear regressions of beta
values from ROI index 21–30 for all conditions.
(a) Linear regressions of beta values for
single-image conditions (i.e., lF, lH, hF, hH). (b)
Linear regressions of beta values for
overlapping-image conditions (i.e., lFlH, hFlH,
hFhH, lFhH). The horizontal axes represent the
ROI index from 21 to 30 along the virtual line
from the FFA to PPA and the vertical axes
represent the beta values for each condition.
LH is the abbreviation for the left hemisphere
and RH is the abbreviation for the right
hemisphere

experiment, we used a fivefold cross validation scheme for the dataset

of single-image conditions (i.e., lF, hF, lH, and hH). For each fold, we

used 80% data to train a classifier and tested the classifier with the

remaining 20% data. The classification accuracy for each single-image

condition was the average of the fivefold cross validation accuracies.

Also, we tested the classifier with the dataset of all overlapping-image

conditions (i.e., lFlH, lFhH, hFlH, and hFhH). For each subject, the face

classification accuracy was the percentage of the face category pre-

dicted form lF, hF, lFlH, lFhH, hFlH, and hFhH conditions by the SVM

model in eachROI. These classification accuracieswere then submitted

to a two-way repeated-measures ANOVA (two levels of face contrast

(low (lF, lFlH, and lFhH) versus high (hF, hFlH and hFhH)) × three levels

of house contrast (none (lF and hF) versus low (lFlH and hFlH) ver-

sus high (lFhH and hFhH)), the solid red box in Figure 1(b)). Similarly,

the house classification accuracy was the percentage of the house cat-

egory predicted form lH, hH, lFlH, lFhH, hFlH, and hFhH conditions

by the SVM model in each ROI. These classification accuracies were

submitted to another two-way repeated-measures ANOVA (two levels

of house contrast (low (lH, lFlH and hFlH) versus high (hH, lFhH and

hFhH)) × three levels of face contrast (none (lH and hH) versus low
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(lFlH and lFhH) versus high (hFlH and hFhH)), the dashed blue box in

Figure 1(b)).

3 RESULTS

3.1 Category preference from the FFA to PPA in
the localizer experiment

Figure 1(c) shows the category preference for each ROI along the vir-

tual line from the FFA to PPA in the localizer experiment. We can tell

that the defined FFA responded larger to faces than to houses, and

the defined PPA responded larger to houses than to faces. In order to

statistically examine the changes of category selectivity from the FFA

to PPA, we performed a paired t-test between responses to faces and

responses to houses for each ROI. We found significant differences

in ROIs around the FFA peak (ROI index 16) and the PPA peak (ROI

index 36). The significant ROIs were ROI index 16–18 in the left hemi-

sphere and ROI index 14–19 in the right hemisphere on the FFA side,

displaying a narrow distribution of face selectivity, whereas the sig-

nificant ROIs were ROI index 26–43 in the left hemisphere and ROI

index 33–46 in the right hemisphere on the PPA side, displaying a wide

distribution of house selectivity. Furthermore, we conducted a MVPA

to investigate the category representation patterns for faces versus

houses across ROIs from the FFA to PPA. Figure 1(d) shows the clas-

sification accuracy for discriminating faces and houses in ROIs along

the virtual line. Then, we performed a one sample t-test between the

classification accuracy and chance level (0.5) for each ROI. Significant

above-chance level ROIs were marked with stars (ps < .001 corrected,

markedwith * in Figure 1(d)).

3.2 Distinct category selectivity from the FFA to
PPA in the main experiment

In the main experiment, Figure 2 shows BOLD responses (averaged

beta values) to all conditions across ROIs from the FFA to PPA, display-

ing narrower responses graphs on the FFA side to faces than those on

the PPA side to houses (which even appears to be a double peak). We

first performed a one sample t-test for BOLD responses to each con-

dition. The significant p values are provided in Table S1. Then, to test

the significance of face selectivity, we performed a two-way repeated-

measures ANOVA (two levels of face contrast (low vs. high) × three

levels of house contrast (none vs. low vs. high), the solid red box in

Figure 1(b)) for responses to faces of each ROI from the FFA to PPA.

We found significant main effects of face contrast, house contrast and

an interaction effect in several ROIs (ps < .01, corrected). Bonferroni

post hoc tests revealed that only activity of the lFhH condition (e.g.,

see Figure 1(b) for a demonstration) was significantly different from

other conditions (ps < .05, corrected), which might due to the low vis-

ibility of superimposed face image in this condition. The significant p

values are provided in Table S2. In addition, to clearly visualize the dis-

tinct patterns of category selectivity between the FFA to faces andPPA

to houses, we smoothed the raw beta values by using a Gaussian pro-

cess (http://github.com/SheffieldML/GPy) for each individual subject.

Then, we averaged the smoothed beta values across subjects for each

condition (Figures 2(c) and 2(d)).

To test the significance of house selectivity, we also performed

another two-way repeated-measuresANOVA (two levels of house con-

trast (low vs. high) × three levels of face contrast (none vs. low vs.

high), the dashed blue box in Figure 1(b)) for responses to houses of

each ROI from the FFA to PPA. We found significant main effects of

house contrast, face contrast and an interaction effect in several ROIs

(ps < .05, corrected). Bonferroni post hoc tests revealed that the con-

trast of houses and overlapping presented faces could influence the

activities of ROIs on the PPA side (ps < .05, corrected). Activities of

the hFlH condition were significantly different from other conditions

in several ROIs (ps < .05, corrected), similar to the effect of the lFhH

condition. The differences between responses of ROIs on the PPA side

to houses and those on the FFA side to faces were mainly reflected in

the following two ways. First, there was a significant contrast effect in

ROIs on the PPA side rather than on the FFA side, that is, activities of

the high-contrast house (hH) condition were significantly greater than

those of the low-contrast house (lH) condition in several ROIs around

the PPA peak. Second, activities of the lH condition and lFhH condition

were significantly greater than those of the lFlH condition in ROIs on

the PPA side, indicating that responses of PPA to low-contrast houses

weremodulated by the overlapping presented low-contrast face. How-

ever, responses of PPA tohigh-contrast houses cannot be influencedby

the overlapping presented face. The significant p values are provided in

Table S3.

It seemed that results shown in Figure 2 support our hypothesis to

find asymmetrical changes in face selectiveness versus house selec-

tiveness across the boundary between the FFA and PPA. To quantify

the changes of category-selectiveness across the boundary, we con-

ducted linear regressions between beta values for each condition and

ROIs from index 21 to 30 along the virtual line from the FFA to PPA. If

the changes in face selectiveness were symmetric with those in house

selectiveness, we should have seen responses to faces decrease (neg-

ative slop coefficients) and responses to houses increase (positive slop

coefficients), with an “x”-shaped pattern across the boundary. Figure 3

shows the results of linear regressions for all conditions (i.e., lF, hF, lH,

hH, lFlH, lFhH, hFlH, and hFhH). We found that the regression slope

coefficients were negative for all conditions (i.e., a trend of decreasing

responses across theboundary), rather thanan “x”-shapedpattern. The

slope coefficients for the face-only (lF, hF) conditions were significant

different from those for the house-only (lH, hH) conditions (ps < .01,

corrected), and the regression lines of house-only conditions were

almost flat in the horizontal direction. Statistical significance levels

were shown in Table S4.

In addition, in order to evaluate any possible confounding effects

of size difference between the face-selective area and the house-

selective area, we conducted a two-way ANOVA on the slope coef-

ficients of responses to face-only and house-only conditions across

ROIs on the boundary side and nonboundary side. If the differences

of slopes could have been explained simply by the size difference

http://github.com/SheffieldML/GPy
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F IGURE 4 Selectivity for faces and houses in ROIs along the virtual line from the FFA to PPA. (a and b) Selectivity for the preferred face
category for the left (a) and right (B) hemispheres. (c and d) Selectivity for the preferred house category for the left (c) and right (d) hemispheres.
Vertical dashed lines represent the FFA peak foci (ROI index 16) and PPA peak foci (ROI index 36). LH is the abbreviation for the left hemisphere,
and RH is the abbreviation for the right hemisphere

between category selective areas, the slope coefficients of face-only

conditions on the boundary side (ROI index 1–10) should be different

from those of house-only conditions on the boundary side (ROI index

21–30) and nonboundary side (ROI index 41–50). We found signifi-

cant main effects of the boundary side and interaction effect. Further

paired t-tests revealed a significant difference in slopes between the

responses to face-only conditions in the boundary side (ROI index 21–

30) and the nonboundary side (ROI index 1–10, p = .001 for LH and

p = .003 for RH, corrected). However, there were no significant dif-

ference in slopes between the responses to face-only conditions in

the boundary side (ROI index 21–30) and the responses to house-

only conditions in the nonboundary side (ROI index 41–50, p = .2 for

LH and p = .6 for RH, corrected). We also found no significant dif-

ferences in slops between the responses to face-only conditions in

the nonboundary side (ROI index 1–10) and the responses to house-

only conditions in the boundary side (ROI index 21–30). That is, the

differences between the responses of FFA to faces and those of the

PPA to house across the boundary can hardly be explained by the size

differences between the face-selective area and the house-selective

area. These results convergently suggested that distinct category

tuning profiles between the FFA and PPA were mainly due to the

heterogeneity of these two regions. We attached a table in supple-

mentary materials regarding the slope coefficients for each subject

(Table S14).

To further quantify the differences of selectivity between FFA to

faces and PPA to houses, we calculated the selectivity for faces relative

to houses and the selectivity for houses relative to faces (see Section

2). We found that the selectivity of ROIs on the FFA side to all condi-

tionswereonly in twomodes, corresponding to thedifferencebetween

the presence (or high visibility) and absence (or low visibility) of a face

(Figure 4). In contrast, the selectivity of ROIs on the PPA side varied

more widely for all conditions, which was consistent with the results

shown in Figure 2. Notably, activities of ROIs on the PPA side were

modulated not only by the contrast of houses but also by the over-

lapping presented face, indicating relatively low selectivity. Statistical

significance levels were shown in Table S5 for face selectivity and Table

S6 for house selectivity.

3.3 Results of multivariate pattern classification
accuracies from the FFA to PPA in the main
experiment

Figure 5 shows the changes of classification accuracies for faces and

houses across ROIs from the FFA to PPA. We employed a centered

moving average with a 5-length window size to smooth the classifi-

cation accuracies. In this case, two start points and two end points

on the virtual line were not included. A two-way repeated-measures

ANOVA (two levels of face contrast (low vs. high) × three levels of

house contrast (none vs. low vs. high), the solid red box in Figure 1(b))

was performed on face classification accuracies for each ROI along

the virtual line from the FFA to PPA. The main effect of face contrast,

house contrast and the interaction effect were significant in several

ROIs (ps < .05, corrected) in both hemispheres. We further conducted

a Bonferroni multiple comparison test to investigate the interaction

effect. The face classification accuracy in the lFhH conditionwas signif-

icantly different from other conditions (ps < .05, corrected) in several

ROIs, presumably due to low visibility of the superimposed face image
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F IGURE 5 Results of decoding classification accuracies across ROIs along the virtual line from the FFA to PPA in themain experiment. (a and
b) The changes of face classification accuracies corresponding to six conditions (lF, hF, lFlH, lFhH, hFlH, and hFhH) for the left (a) and right (b)
hemispheres. (c and d) The changes of house classification accuracies corresponding to six conditions (lH, hH, lFlH, lFhH, hFlH, and hFhH) for the
left (c) and right (d) hemispheres. Vertical dashed lines indicate the FFA peak foci (ROI index 16) and the PPA peak foci (ROI index 36). LH is the
abbreviation for the left hemisphere, and RH is the abbreviation for the right hemisphere

in this condition, which is consistent with the univariate results. The

significant p values are provided in Table S7.

Another two-way repeated-measures ANOVA (two levels of house

contrast (low vs. high) × three levels of face contrast (none vs. low vs.

high), the dashed blue box in Figure 1(b)) was performed on house clas-

sification accuracies for each ROI from the FFA to PPA. Themain effect

of house contrast, face contrast, and the interaction effect were signifi-

cant in several ROIs (ps< .05, corrected) in both hemispheres.Multiple

comparison test revealed that the house classification accuracy in

the hFlH condition was significantly different from other conditions

(ps < .05, corrected) in several ROIs, similar to the effect of the lFhH

condition described above. Consistent with a previous report (Guo &

Meng, 2015), no differencewas found between the low-contrast house

(lH) condition and the high-contrast house (hH) condition, indicating

that the contrast alone did not affect the representation pattern of

houses in ROIs on the PPA side. However, the house classification

accuracies in the lFhH condition and lH condition were significantly

larger than those in the lFlH condition, suggesting that the represen-

tation pattern of house was affected by the overlapping presented

low-contrast face. The significant p values are provided in Table S8.

In addition, we adopted a surface-based searchlight decoding analy-

sis to assess local regions whose activity patterns distinguish between

face and house categories throughout the whole brain. Given that the

FFA and PPA were defined from the activation-based GLM analysis by

contrasting face and house conditions in the localizer scan, the search-

light analysismaximizes thepossibility of finding vertices outsideof the

defined FFA and PPA that may be preferentially associated with the

perception of faces and houses (Chen et al., 2011). This analysis was

performed in the native space of individual subject by using Nilearn

and scikit-learn packages (Abranham et al., 2014; https://github.com/

nilearn/nilearn). We first defined an adjacency matrix based on the

inflated gray matter surface mesh such that nearby vertices were con-

catenated within the same searchlight. Then, we employed a 5 mm

radius of disks to construct a searchlight structure for each vertex

of the surface mesh. We used the dataset of face-only (i.e., lF, hF)

and house-only (i.e., lH, hH) conditions in the main experiment to

train and test a linear Ridge regression classifier, with all parame-

ters set to default values as provided by the scikit-learn packages

(alpha = 10). For each vertex, a fivefold cross-validation classifier

was performed to distinguish between faces and houses. This proce-

dure yielded an information-based map highlighted regions containing

category information on the cortical surface. For each subject, the

searchlight information-based map showed considerable overlap with

the activation-based map from the univariate GLM analysis of the

localizer data. To assess the statistical validity of the decoding accuracy

map on the group level, we transformed the accuracymap of individual

subject into the standard surface space (fsaverage). Then, a one sample

t-testwasperformed to compare the classificationaccuracyagainst the

chance level (0.5) for each vertex. Figure S3 shows the results of group

analysis of searchlight decoding accuracy. Colored vertices indicate

searchlight clusterswith significantly above-chanceclassificationaccu-

racy (chance level= 0.5, p< .001, uncorrected). These results, together

with our ROI analyses, suggested that the defined FFA and PPA were

highly sensitive and selective to faces and houses, respectively.

https://github.com/nilearn/nilearn
https://github.com/nilearn/nilearn
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F IGURE 6 Univariate andmultivariate results of themain experiment from the occipital pole to the FFA/PPA. (a and b) The changes of BOLD
activities to all conditions across ROIs along the virtual line from the occipital pole to the FFA for the left (a) and right (b) hemispheres. (c and d) The
changes of BOLD activities to all conditions across ROIs along the virtual line from the occipital pole to the PPA for the left (c) and right (d)
hemispheres. (e and f) The changes of face classification accuracies corresponding to six conditions (lF, hF, lFlH, lFhH, hFlH, and hFhH) across ROIs
along the virtual line from the occipital pole to the FFA for the left (e) and right (f) hemispheres. (g and h) The changes of house classification
accuracies corresponding to six conditions (lH, hH, lFlH, lFhH, hFlH, and hFhH) across ROIs along the virtual line from the occipital pole to the PPA
for the left (g) and right (h) hemispheres. Vertical dashed lines represent the occipital pole (ROI index 16) and the FFA/PPA peak foci (ROI index 46).
LH is the abbreviation of the left hemisphere, and RH is the abbreviation of the right hemisphere

3.4 Results of the main experiment from the
occipital pole to the FFA and from the occipital pole
to the PPA

To further confirm the differences of category selectivity were spe-

cific to the category selective regions, we investigated the changes

of BOLD activities and classification accuracies across ROIs from the

occipital pole to the FFA and PPA, respectively. Consistent with the

results shown in Figure 2, for all conditions, the responses variedmore

widely around the PPA to houses than those around the FFA to faces

(Figures 6(a)–6(d)). For each ROI along the virtual line from the occip-

ital pole to the FFA, we conducted a two-way ANOVA (two levels of

face contrast (low vs. high) × three levels of house contrast (none vs.

low vs. high), the solid red box in Figure 1(b)) for responses to faces.We

found statistically significant main effects and an interaction effect in

several ROIs (ps < .05, corrected) in both hemispheres. Multiple com-

parisons revealed that the contrast effect was in the occipital cortex

not in the FFA, except for the low visibility of overlapping presented

face condition (lFhH). The significant p values are displayed in Table

S9. For each ROI along the virtual line from the occipital pole to the

PPA, another two-way ANOVA (two levels of house contrast (low vs.

high) × three levels of face contrast (none vs. low vs. high), the dashed

blue box in Figure 1(b)) was performed for responses to houses. We

found significant main effects and an interaction effect in several ROIs
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(ps< .05, corrected).Multiple comparisons revealed that activity of the

hH condition was significantly greater than that of the lH condition in

several ROIs along the virtual line. Activity of the lFhH condition was

significantly greater than that of the lFlH condition in ROIs around the

PPA peak, which was consistent with results shown in Figure 2. The

significant p values are displayed in Table S10.

Figures 6(e) and 6(f) show the changes of face classification accu-

racies across ROIs from the occipital pole to the FFA. Figures 6(g)

and 6(h) show the changes of house classification accuracies across

ROIs from the occipital pole to the PPA. Two-way ANOVA revealed a

significant interaction effect in several ROIs (ps< .05, corrected). Mul-

tiple comparisons revealed that significant effects of contrast were in

the occipital cortex not in theFFAorPPA, except for the lowvisibility of

overlapping presented face condition (lFhH) and low visibility of over-

lapping presented house condition (hFlH). The significant p values are

displayed in Table S11 and S12. These results, together with univariate

and multivariate results across ROIs from the FFA to PPA, suggested

a better face selectiveness in the FFA than house selectiveness in the

PPA. To graphically display the distinct response properties between

the FFA and PPA, we also attached results of the functional localizer

scan along virtual lines from the occipital pole to the FFA and PPA in

Figure S2.

4 DISCUSSION

The main finding of this study is that response properties of the FFA

to faces are different from those of the PPA to houses. First, responses

of the FFA were invariant to the changes in low-level visual features

(i.e., contrast), while responses of the PPAweremodulated by stimulus

contrast. Second, responses of the FFA were highly selective to faces

and invariant to the concurrently presented house image, whereas

responses of thePPAwere significantly susceptible to the concurrently

presented face image. Third, responses of ROIs to faces across the

presumed boundary from face-selective to house-selective decreased

sharply, suggesting a boundary line of face-selective area. In contrast,

responses of ROIs to houses across the presumed boundary from

house-selective to face-selective only slightly decreased and surpris-

ingly increased again on the FFA side, making it difficult to determine

a borderline of house-selective area. By conducting linear regressions

and comparing the slopes of response changes, we found asymmetry

changes of response properties from the FFA to PPA for faces versus

from thePPA toFFA for houses. Further analyses ofmultivariate repre-

sentation patterns demonstrated that the representation of preferred

stimulus was more robust in the FFA than in the PPA, confirming that

underlying mechanism of face processing in the FFA is different from

house processing in the PPA.

Responses of the PPA were modulated by low-level features, such

as image contrasts and concurrently-presented images. However, dis-

tinct response properties between the FFA to faces and the PPA to

houses can hardly be explained by any effects of difference in low-level

visual features for the following reasons. First, stimulus contrast was

carefully controlled by using the SHINNE toolbox. Second, by analyzing

multivariate representation patterns in ROIs from the occipital pole to

the FFA andPPA,we did not observe any significant differences of clas-

sification accuracy between face category and house category in the

occipital lobe, both in the main and localizer experiment data. Third,

consistent with our results, low-level visual features (such as, spatial

frequency, orientation, contrast) modulated responses in the house-

selective region have been reported in previous studies (Berman et al.,

2017; Epstein & Baker, 2019; Groen et al., 2017; Guo & Meng, 2015;

Nasr et al., 2014; Nasr & Tootell, 2012; Rajimehr et al., 2011; Watson

et al., 2014). High-level aspects of house category information and low-

level visual features are inextricably linked in the PPA, indicating the

complex nature of processing within the PPA.

Why do the FFA and PPA display distinct response properties? A

revised normalization model was proposed to account for different

response profiles of category-selective areas to variations of low-level

visual features (e.g., contrast, size) and concurrently presented multi-

ple stimuli (Bao & Tsao, 2018; Kliger & Yovel, 2020). The framework of

revised normalization model refers to an operation in which responses

of neurons aredividedbya common factor representing summedactiv-

ities of a pool of neighboring neurons (Carandini &Heeger, 2012). That

is, responses of a given ROI are determined not only by the presented

stimulus but also by the homogeneity of neighboring neurons (Baeck

et al., 2013;MacEvoy& Epstein, 2009; Zoccolan et al., 2007). If the cat-

egory selectivity of neighboring areas of a given ROI is homogenous,

the normalization pool should be unresponsive to nonpreferred stim-

ulus and the normalization factor would be very small. Therefore, this

ROI would be highly selective to the preferred stimuli and invariant to

changes in low-level features as well as concurrently presented non-

preferred stimulus, coinciding with the response property of the FFA

to faces. However, if the category selectivity of neighboring areas of

a given ROI is heterogenous, the normalization pool would respond

to presented stimulus to a large extent. Thus, responses of the given

ROI to the preferred stimuliwould benormalizedbyneighboring areas,

which is similar to the response property of the PPA to houses. For our

results, responses of the PPA to housesmight be normalized according

to low-level visual features of the presented stimuli (i.e., contrast) and

a concurrently presented face.

Consistent with our results, differences between face neu-

rons/areas and other category-selective neurons/areas have been

reported by several studies (Bell et al., 2011; Tsao et al., 2006). These

findings, together with ours, support the notion that faces may be a

special class of visual stimuli and face neurons may be a special type

in temporal cortex. Many perceptual studies have shown that human

faces attract and modulate attention more quickly and reliably than

other object categories (Hershler & Hochstein, 2005; Morrisey et al.,

2019; Ro et al., 2007). It is not new that faces have been thought to

be processed by a specialized mechanism, such as holistic processing

(Maurer et al., 2002; Richler & Gauthier, 2014) and a special config-

uration that can be disrupted by inversion (Pallett & Meng, 2015).

Moreover, the priority of face processing may be innate in humans, for

instance, newborns tended to look longer normal faces than scram-

bled faces (Morton & Johnson, 1991; Cassia et al., 2004 Turati et al.,

2008; Tsao & Livingstone, 2008). As the specific mechanism of face
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processing, the decrease in the rate of house classification may not

necessarily be only owing to the specific attention-grabbing power

of faces. In the present study, there were no differences between the

hH and lFhH conditions both in univariate vertex-wise activities and

multivariate pattern results. The rate of house classification is hurt by

the presence of faces only when the concurrently presented house

image was in the low contrast (i.e., lH vs. lFlH), suggesting that the

response property of PPA was modulated by the attributes of house

images.

Our study is the first to directly compare the response properties

of two neighboring category-selective areas on the inflated relatively

extensive cortical surface. Nonetheless, recent studies examined the

within-category organization of neural representations (e.g., face parts

and face features) on a fine-scale by using ultra-high field fMRI and

vertex-wise tuning models (de Haas et al., 2021; Zhang et al., 2021).

In addition, while we focused on a virtual line connecting the FFA and

PPA, which often runs along the medial-lateral axis of human ventral

temporal cortex, there are putative functional differences along the

posterior-anterior axis of ventral temporal cortex (Silson et al., 2019;

Steel et al., 2021; Weiner et al., 2017). Future studies may combine

our approach and ultra-high field fMRI, focusing on population tuning

functions of neurons near the boundary of category specific regions,

to further study how human ventral temporal cortex is partitioned and

organized on a fine-scale along the posterior-anterior axis.

In general, there have been several models of how object repre-

sentations are organized in the ventral visual pathway. Most notably,

ventral temporal cortex is composed of discrete patches specializing

in individual visual category (Reddy & Kanwisher, 2006). The oppo-

site hypothesis propose that objects are coded via a distributed neural

system across the ventral visual cortex (Haxby, et al., 2001; Tanaka

et al., 1991). However, ample behavioral and neuroimaging evidence

indicated that neither the modular organization nor the distributed

model alone could account for the complicated neural machinery of

object representation. For this reason, a hybrid modular-distributed

organization model of object representation was proposed, suggest-

ing that objects were represented by a series of highly dedicated and

distributed category-selective clusters, and that weakly selective or

nonselective voxels outside of these clusters were also involved in

neural coding (Cohen & Tong, 2001; O’Toole et al., 2005; Shehzad &

McCarthy, 2018; Weiner & Grill-Spector, 2010). Our data, on the one

hand, confirmed the highly selective and invariant response properties

of the FFA, indicating that neural representations of faces utilized a

dedicated cortical area. On the other hand, responses of ROIs on the

PPA side were modulated not only by low-level visual features (i.e.,

contrast) but also by the concurrently presented face image, suggest-

ing that face neurons may also existed outside the face-selective area,

in line with a more distributed organizational scheme. Taken together,

our results suggest that potentially different computations were per-

formed by distinct category-selective clusters, supporting the hybrid

organization model, which incorporated both dedicated modules and

relatively distributed elements (Bell et al., 2011; Cohen & Tong, 2001;

Kriegeskorte et al., 2008; O’Toole et al., 2005; Shehzad & McCarthy,

2018;Weiner &Grill-Spector, 2010).

5 CONCLUSION

Compared with highly selective and invariant response properties

of the FFA, activities of the PPA are more susceptible to changes

in low-level visual features (i.e., contrast) and a concurrently pre-

sented stimuli (i.e., faces). In addition, response properties of ROIs

across the boundary between the FFA and PPA are asymmetrical from

face-selective to house-selective relative to from house-selective to

face-selective. These results convergently suggest distinct response

properties between the FFA to faces and the PPA to houses, support-

ing a combination of specialized modules and relatively distributed

organization of object representation in ventral temporal cortex (Bell

et al., 2011; Cohen & Tong, 2001; O’Toole et al., 2005; Weiner &

Grill-Spector, 2010). Consequently, theories of object representation

mapping in category-selective areas should perhaps consider a series

of dedicated category-selective clusters and minimally overlapping

distributed systems.
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