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Themembers of the tribe Brassiceae share a whole-genome triplication (WGT), and one proposed model for its formation is

a two-step pair of hybridizations producing hexaploid descendants. However, evidence for this model is incomplete, and the

evolutionary and functional constraints that drove evolution after the hexaploidy are even less understood. Here, we report

a new genome sequence of Crambe hispanica, a species sister to most sequenced Brassiceae. Using this new genome and three

others that share the hexaploidy, we traced the history of gene loss after the WGT using the Polyploidy Orthology

Inference Tool (POInT). We confirm the two-step formation model and infer that there was a significant temporal gap be-

tween those two allopolyploidizations, with about a third of the gene losses from the first two subgenomes occurring before

the arrival of the third. We also, for the 90,000 individual genes in our study, make parental subgenome assignments, in-

ferring, with measured uncertainty, from which of the progenitor genomes of the allohexaploidy each gene derives. We

further show that each subgenome has a statistically distinguishable rate of homoeolog losses. There is little indication

of functional distinction between the three subgenomes: the individual subgenomes show no patterns of functional enrich-

ment, no excess of shared protein–protein or metabolic interactions between their members, and no biases in their likeli-

hood of having experienced a recent selective sweep. We propose a “mix and match” model of allopolyploidy, in which

subgenome origin drives homoeolog loss propensities but where genes from different subgenomes function together with-

out difficulty.

[Supplemental material is available for this article.]

Fifty years ago, Ohno (1970) published a forceful opus on the role
of gene duplication, and in particular of genome duplication (i.e.,
polyploidy), in evolutionary innovation. Since then, evidence
both of polyploidy’s ubiquity (Wolfe and Shields 1997; Van de
Peer et al. 2009, 2017; Soltis and Soltis 2012) and of its role in evo-

lutionary innovations such as yeast aerobic glucose fermentation,
the organization of the retinas of teleost fishes, and in plant defen-
sive compounds, has continued to accumulate (Conant andWolfe
2007; Merico et al. 2007; van Hoek and Hogeweg 2009; Edger et al.
2015; Sukeena et al. 2016). Preeminent among the polyploid line-
ages are the flowering plants, in which more than 180 ancient
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polyploidies are known (One Thousand Plant Transcriptomes
Initiative 2019).

When a new polyploid genome is created by the merging of
similar but not identical progenitor species, it is referred to as an
allopolyploid. Among allopolyploidies, the preferential retention
of gene copies (homoeologs) from one of the parental subge-
nomes, known as biased fractionation, has been observed in yeast,
maize, cotton, monkeyflower, Arabidopsis, Brassica, and nema-
todes (Thomas et al. 2006; Conant and Wolfe 2008a; Cheng
et al. 2012; Parkin et al. 2014; Renny-Byfield et al. 2015; Edger
et al. 2017; Emery et al. 2018; Schoonmaker et al. 2020).
Allopolyploids also show a tendency for genes fromone of the sub-
genomes to be more highly expressed, and silencing or loss of
genes from the remaining subgenomes is correspondingly more
likely (Thomas et al. 2006; Schnable et al. 2011; Yoo et al. 2014).
A number of sources of these biases have been proposed, from var-
iations in transposon silencing (Freeling et al. 2012; Woodhouse
et al. 2014; Zhao et al. 2017; Alger and Edger 2020), to the disrup-
tion of organelle-nucleus communication (Sharbrough et al. 2017;
Costello et al. 2020) and epigenetic changes attributed to the geno-
mic shock of polyploidy (McClintock 1984; Bird et al. 2018;
Wendel et al. 2018). In this work, we sought to critically evaluate
one such proposal: that allopolyploids might bring together co-
evolved and conflicting copies of multiprotein complexes
(Codoñer and Fares 2008; Gong et al. 2012; Scienski et al. 2015;
Emery et al. 2018). In this framework, early random gene losses
from one subgenome that partly resolved these conflicts might
then set the polyploidy down a path favoring losses from that sub-
genome. A related proposal was made by Makino and McLysaght
(2012), who argued that selection to maintain dosage balance
among interacting genomic neighbors could produce local, and
eventually global, biases in fractionation.

It is also notable that not all homoeologs are equally likely to
revert to single copy after a polyploidy, regardless of the level of bi-
ased fractionation. Duplicated genes coding for transcription fac-
tors, ribosomal proteins, and kinases are over-retained after
independent polyploidies in flowering plants, yeasts, ciliates,
and vertebrates (Seoighe and Wolfe 1998; Blanc and Wolfe 2004;
Maere et al. 2005; Aury et al. 2006; Makino and McLysaght
2010). These patterns are best explained by a need tomaintain dos-
age balance among highly interacting genes (Birchler et al. 2005;
Hakes et al. 2007; Birchler and Veitia 2012, 2014; Conant et al.
2014). There are also genes that prefer not to be duplicated: genes
for DNA repair and those targeted to organelles have returned to
single copy rapidly after genome duplication (De Smet et al.
2013; Conant 2014).

The Brassiceae are the most morphologically diverse tribe in
the family Brassicaceae (Cheng et al. 2014) and contain important
crops such as broccoli, cabbage, kale, mustard, and canola. This
tribe experienced a hexaploidy (i.e., whole-genome triplication
[WGT]) between 5 and 9 million years ago after its divergence
from Arabidopsis thaliana (Wang et al. 2011). This Brassiceae
WGT is a valuable system for studying all the aforementioned phe-
nomena because the triplication allows us to explore each in un-
usual detail. This polyploidy was originally inferred with
comparative linkage mapping (Lagercrantz 1998; Lukens et al.
2004; Parkin et al. 2005; Schranz et al. 2006) and confirmed by
chromosomepainting (Lysak et al. 2005; Lysak 2009). The patterns
of biased fractionation observed in the genome of Brassica rapa
suggested that the triplication “event”was actually two separate al-
lopolyploid hybridizations involving three distinct diploid pro-
genitor species, with the merger of the two currently highly

fractionated ancestral subgenomes occurring first, followed by
the subsequent addition of a third subgenome, which currently
possesses the most retained genes (Cheng et al. 2012; Tang et al.
2012). However, this proposal is worth revisiting as it rests on in-
ferences from a single genome: a phylogenetically broader analysis
of the genomes that descend from the hexaploidy would more
firmly ground our descriptions of its early history. At themoment,
we lack genomes from early diverging lineages with the hexaploi-
dy, such as those in the genus Crambe, which is sister to the genus
Brassica (Arias and Pires 2012). Biologically,Crambe species are not
only important industrial oilseed sources because of their high eru-
cic acid content (Lazzeri et al. 1997; Warwick and Gugel 2003;
Carlsson et al. 2007) but also could serve as resources for Brassica
crop development (Rudloff and Wang 2011).

Using a new genome sequence fromCrambe hispanica, we an-
alyzed the Brassiceae WGT with our tool for modeling post-poly-
ploidy genome evolution: the Polyploidy Orthology Inference
Tool (POInT) (Conant and Wolfe 2008a). We sought to first con-
firm the two-step hexaploidymodel and its relationship to the ob-
served three subgenomes in the extant genomes. POInT, whichwe
recently extended to allow the analysis of WGTs (Schoonmaker
et al. 2020), is ideally suited to this task because it can model
homoeolog losses phylogenetically and test for biases in fraction-
ation without ad hoc assumptions. We then tested the proposal
that functional differences between the allopolyploid progenitors
contributed to the biases in homoeolog losses using functional hi-
erarchies, gene coexpression information, protein interaction cat-
alogs, and metabolic network data.

Results

A well-assembled and annotated genome of Crambe hispanica

The genome of Crambe hispanica was assembled using Pacific
Biosciences (PacBio) reads. This assembly had a contig N50 of 4.4
Mb across 1019 contigs with a total assembly length of 480 Mb.
Eleven terminal telomeres were resolved by the Canu assembler
(Koren et al. 2017). The assembly graph showed low heterozygos-
ity and fewassembly artifacts, with the exception of onemegaclus-
ter consisting of a high copy number LTR across 500 contigs and
spanning ∼30 Mb. The draft assembly was then polished using
Illumina paired-end data.We also used Hi-C proximity ligation se-
quencing data to scaffold the genome, which resulted in 18 scaf-
folds that include 99.5% of the original assembly with a scaffold
N50 of 32.6Mbp and scaffold N90 of 30.1Mbp. The annotated ge-
nome is of high quality: we compared its gene set against the
Benchmarking Universal Single-Copy Orthologs (BUSCO v.2)
(Simão et al. 2015) plant data set (embryophyta_odb9), finding
that 95.8% of these expected genes were present in our
annotation.

Inferring blocks of triple-conserved synteny in four

triplicated Brassiceae genomes and estimating an ancestral

gene order

Based on their phylogenetic placement and assembly quality, we
selected and retrieved from CoGe (Lyons and Freeling 2008;
Lyons et al. 2008a) three additional mesohexaploid genomes for
our analyses: those of Brassica rapa (version 1.5, CoGe id 24668)
(Wang et al. 2011), Brassica oleracea (TO1000 version 2.1, CoGe
id 26018) (Liu et al. 2014; Parkin et al. 2014), and Sinapis alba (ver-
sion 1.1, CoGe id 33284). For each of these four genomes, we
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inferred blocks of triple-conserved synteny (TCS), with the ge-
nome of Arabidopsis thaliana used as an unduplicated reference.
We thenmerged these blocks across all of the four genomes: we re-
fer to each such locus as a “pillar.” Each pillar consists of between
one and three surviving genes in each of the four genomes. As de-
scribed in Methods, we used both a set of TCS blocks inferred with
POInT containing 14,050 pillars (Ppillars) and a separate ancestral
genome reconstruction that estimates the gene order that existed
just before the WGT. The latter contains five reconstructed ances-
tral chromosomes involving 89 scaffolds with a total of 10,868 an-
cestral genes. When we match these genes to the TCS blocks
computedwith POInT, the result is 7993 ancestrally ordered pillars
(Apillars).

Inferring the evolutionary relationships of the four Brassiceae

genomes from gene loss patterns

We fit models ofWGT evolution (see below) to several different or-
derings of the 14,050 pillars in the Ppillars set and to the Apillars

(Supplemental Table S1). These orderings of the Ppillars differed in
their number of synteny breaks: we used the ordering with the
highest likelihood under theWGT 3rate G1Dommodel for our re-
maining analyses (see below). Similarly, we compared the fit of
three possible phylogenetic topologies to the pillars under this
model: the remainder of our analyses use the topology shown in
Figure 1, which has the highest likelihood. We note that one of
the other two topologies, although having a lower likelihood un-
der POInT’s models (Supplemental Fig. S1), is the phylogeny esti-
mated using plastid genomes (Arias and Pires 2012). Because the
Apillars give similar parameter estimates but comprise a smaller
data set, we will discuss our results in terms of the Ppillars.

The three subgenomes differ in their propensity for homoeolog

copy loss

POInT uses user-defined phylogenetic Markov models of gene loss
after WGT. These models have seven states (Fig. 2): the triplicated
state T, in which all three copies from the WGT are still present;
the “duplicated” states D1,2, D1,3, D2,3, in which one out of the
three gene copies has been lost, and three single-copy states, S1,
S2, and S3. Previous work suggested that the three subgenomes
that formed these hexaploids are distinct in their patterns of
gene preservation (Cheng et al. 2012; Tang et al. 2012), consisting
of a less fractionated (LF) genome, a subgenomewith intermediate
levels of gene loss (more fractionated 1 or MF1), and an even more
fractionated subgenome (MF2). We hence defined state S1 to cor-
respond to LF and S2 and S3 to MF1 and MF2, respectively.

POInT statistically assigned genes from each of the four mes-
opolyploid genomes to the LF, MF1, and MF2 subgenomes with
high confidence: 75% of the pillars have subgenome assignments
with posterior probabilities >0.84 (Supplemental Fig. S3). We ob-
serve clear signals of biased fractionation: although we estimate
that 2864 genes were lost from the LF subgenome along the shared
root branch (e.g., before the split of S. alba from the other three
species), the corresponding figures for MF1 and MF2 are 5373
and 6347, respectively (Fig. 1). These values are in qualitative
agreement with previous findings (Cheng et al. 2012, 2014; Liu
et al. 2014; Xie et al. 2019).

We assessed the statistical support for these estimated differ-
ences in the subgenomes’ rates of homoeolog loss using a set of
nested models of post-WGT gene loss. We started with a model
(WGT Null) that did not differentiate between the subgenomes,
meaning that the shared base transition rate from T to D1,2,

D1,3, or D2,3 is defined to be α (0≤α<∞) (Fig. 2). The transition
rate from D1,2, D1,3, or D2,3 to S1, S2, or S3 is scaled by σ; that is,
it occurs at rate α× σ. We compared this model to a more complex
one that allowed losses of both triplicated and duplicated genes to
be less frequent from a posited LF subgenome (WGT 1Dom) (Fig.
2). This model introduces a fractionation parameter f1 (0≤ f1≤1),
which potentially makes the transitions between T and D2,3 rarer
than the other T-to-D rates (α× f1) (Fig. 2). TheWGT 1Dommodel
fits the pillar data significantly better than does WGT Null (Fig. 2)
(P<10−10, likelihood ratio test with two degrees of freedom). We
next compared the WGT 1Dom model to a WGT 1DomG3 model
that gives MF1 and MF2 separate loss rates. Again, this model
gives a better fit to the pillar data than did WGT 1Dom (P<
10−10, likelihood ratio test with two degrees of freedom) (Fig. 2).
We hence confirm the presence of three subgenomes, distinguish-
able by their patterns of homoeolog loss. Our approach does not
require the identification of these three subgenomes a priori: the
probabilistic assignment of genes to subgenomes is an integral
part of the POInT orthology computation. As a result, the inherent
uncertainty in these assignments is accounted for in estimating
the various biased fractionation parameters. Our orthology
inferences can be explored visually with POInTbrowse (http://wgd
.statgen.ncsu.edu/).

Patterns of post-WGT gene loss support the two-step model

of hexaploidy

To test the hypothesis that the WGT proceeded in two steps
(Cheng et al. 2012; Tang et al. 2012), we used two approaches.
First, we applied an extended version of the WGT 1DomG3 model
inwhich eachmodel parameterwas allowed to take on distinct val-
ues on the root branch and on the remaining branches (Root-spec.
WGT 1DomG3) (Fig. 2). This extended model fits the pillar data
significantly better than does the original WGT 1DomG3 model
(P<10−10, likelihood ratio test with five degrees of freedom) (Fig.
2). The biased fractionation parameters for the root branch differ
from those of the remaining branches: the value of f1,3 on the
root is smaller than on later branches (0.6445 vs. 0.7368), whereas
f2,3 is larger (0.6766 vs. 0.4078). These values are consistent with a
two-step hypothesis: before the arrival of LF, there would have
been a number of losses fromMF1 andMF2, meaning that the rel-
ative preference for LF would be higher (smaller f1,3).

In our second approach, we developed a specific model of the
two-step hexaploidy (WGT 1DomG3+RootLF) (Fig. 2). This model
describes the transition from a genome duplication to a triplica-
tion. All pillars start in state D2,3: that is, the first allopolyploidy
has just occurred and the MF1 and MF2 genes are present but
not the LF ones. We then model the addition of LF as transitions
to either the T,D1,2, or theD1,3 states (with rates τ, β1,2, or β1,3, re-
spectively). State T is seen when no losses occurred before the ar-
rival of LF, the other states occur when either MF1 or MF2
experienced a loss before the arrival of LF. Any pillars that remain
inD2,3hadno corresponding gene arrive fromLF. Of course, at the
level of the individual pillar, we have insufficient data to make
such inferences; the utility of this model is to give global estimates
of the degree of fractionation seen in MF1 and MF2 before the ar-
rival of LF. Thismodel offers a significantly improved fit overWGT
1DomG3 (P<10

−10, likelihood ratio test with three degrees of free-
dom) (Fig. 2). More important, we can propose other versions of
this model in which either MF1 or MF2 is the last arriving subge-
nome; when we do so, the model fit is much worse than seen
with WGT 1DomG3+RootLF model (Supplemental Table S1).
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Hence, we can conclude that subgenomes MF1 and MF2 had al-
ready begun a process of (biased) fractionation before the addition
of the LF subgenome. These conclusions derive only from genes
that were inferred to be present in all three parental subgenomes,
a requirement of the POInT models.

A gap between the two allopolyploidies

This root-specific model also allows us to estimate the state of MF1
andMF2 immediately before the arrival of LF. In particular, we can
estimate the percentage of pillars that had already experienced

Figure 1. Subgenome assignment and inference of gene loss after the shared WGT in four species. After the WGT, each ancestral locus could potentially
expand to three gene copies, but owing to biases in the loss events, the number of surviving genes from the subgenomes are unequal. Our analyses
(Results) indicate the presence of a less fractionated (LF) subgenome and two more fractionated ones (MF1 and MF2). These inferences are based on
the gene losses observed across four genomes and along the phylogeny depicted. Shown here is a window of 16 post-WGT loci (of the total 14,050
such loci) in four species that share the WGT: Brassica rapa, Brassica oleracea, Crambe hispanica, and Sinapis alba. Each pillar corresponds to an ancestral
locus, and the boxes represent extant genes. Pairs of genes are connected by lines if they are genomic neighbors (e.g., in synteny). The numbers above
each pillar are the posterior probabilities assigned to this combination of orthology relationships relative to the other (3!)4−1=1295 possible orthology
states. The numbers above each branch of the tree give the number of genes in each subgenome surviving to that point, with the number of gene losses
in parentheses. The gene loss inferences made by POInT are probabilistic: because some gene losses cannot be definitively assigned to a single branch, the
resulting loss estimates are not integers. The numbers below the branches in the first subtree are POInT’s branch length estimates (αt).
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losses before LF’s arrival. About 28% of all theMF1 homoeologs in-
ferred to have been lost on the root branch were lost before the ar-
rival of LF, with the equivalent number ofMF2 losses being 38%. A
negligible 0.3% of pillars do not appear to have received a copy of
the LF homoeolog.

Mixed evidence for differences in selective constraint between

subgenomes

In our data set there are 218 loci that have retained triplicates in all
four genomes andhave subgenome assignment confidence≥95%.
For each locus we calculated the selective constraints acting on the
group of 12 genes using codeml (Yang 2007), allowing the genes

from each subgenome to have a different
dN/dS value. On average, among these re-
tained triplets, genes from the LF subge-
nome show slightly smaller dN/dS values
than do those from MF1 and MF2, but
these differences are not statistically sig-
nificant (Wilcoxon rank-sum tests LF to
MF1: P=0.300, LF to MF2: P=0.079)
(Supplemental Fig. S4).

Single-copy genes from multiple

subgenomes are enriched in genes

functioning in DNA repair

GO overrepresentation tests were per-
formed with the Arabidopsis orthologs of
genes returned to single copy by the end
of the root branch fromeach subgenome.
Similar to previous findings (De Smet
et al. 2013), we found that single-copy
genes are enriched in biological processes
such as DNA repair andDNAmetabolism
(Supplemental Fig. S5). More specifically,
single-copy genes from the LF subge-
nome are enriched in base-excision re-
pair, whereas MF1 single-copy genes are
enriched in nucleotide-excision repair,
non-recombinational repair, and dou-
ble-strand break repair (Supplemental
Fig. S5A). Single-copy genes from both
LF andMF1 showoverrepresentedmolec-
ular functions in endo- and exodeoxyri-
bonuclease activities (Supplemental Fig.
S5B). LF single-copy genes are also en-
riched in RNA interference processes,
suggesting that such interference, target-
ed to the MF1 and MF2 subgenomes,
couldbeonemechanismbywhichbiased
fractionation was driven.

Genes from the same subgenome are not

overly likely to physically or

metabolically interact

For genes with high subgenome assign-
ment confidence (≥95%), we mapped
those assignments (LF, MF1, or MF2)
and the duplication status at the end of
the root branch onto the nodes (gene
products) of the A. thaliana protein–pro-

tein interaction (PPI) network (Methods). For comparative purpos-
es, we also produced a mapping of an extant network, based on
the gene presence/absence data and subgenome assignments in
B. rapa. In the “ancient” network inferred at the end of the com-
mon root branch, there are a relatively large number of nodes
(1952) associated with surviving triplicated loci; these nodes were
connectedbya total of 2384 triplet-to-triplet edges. TheB. rapa-spe-
cific network contains fewernodeswith retained triplets (662), and
there were 263 edges connecting these nodes (Fig. 3A).

The dosage constraints that affect surviving gene copies post-
polyploidy will tend to result in the retention of genes involved in
multiunit complexes or in the same signaling pathways (Birchler
and Veitia 2007, 2012; Conant et al. 2014). Thus, we expected to

Figure 2. POInT’s models for inferring WGT. Five different models of post-WGT evolution and their ln-
likelihoods are shown. In each model, the colored circles represent different states. The brown circle rep-
resents the triplicated state (T); the pink circles are duplicated states (D1,2, D1,3, and D2,3); the blue,
green, and yellow circles are three single-copy states (S1 for the LF subgenome, S2 for the MF1 subge-
nome, and S3 for the MF2 subgenome). The transition rates between states are shown above the arrows:
(α) transition rate from triplicated state to duplicated states; (ασ) transition rates from duplicated states to
single-copy states; (f) fractionation parameters; (β and τ) root model parameters. Red arrows connect
pairs of models compared using likelihood ratio tests (Methods). In the WGT Null model, transition rates
are the same across three subgenomes, modeling the scenario of no biased fractionation. In the WGT
1Dom model with the biased fractionation parameter f1 (0≤ f1≤1), the MF1 and MF2 subgenomes
are more fractionated than LF subgenome. In the WGT 1DomG3 model, two fractionation parameters
f1,3 and f2,3 were introduced, distinguishing the three subgenomes: MF2 is more fractionated than
MF1, andMF1 ismore fractionated than LF. The Root-spec.WGT 1DomG3model is similar to the previous
model, but with two sets of parameters, one set for the root branch and the other for the remainder of the
branches. The WGT 1DomG3+ Root model is a two-step hexaploidy model created by starting each pillar
in an intermediate state D2,3. This state represents the merging of the MF1 and MF2 subgenomes as the
first step of the hexaploid formation. The T, D1,2, and D1,3 states represent the second allopolyploidy,
with either no prior homoeolog losses (T) or a loss fromone of the twoMF subgenomes before that event
(D1,2, or D1,3).
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see that the retained triplets showed higher network connectivity.
And indeed, our permutation tests reveal that the retained triplets
on the root branch are significantly overconnected to each other
in the PPI network (P=0.018) (Supplemental Fig. S6). We also hy-
pothesized that proteins coded for from the same subgenome
would bemore likely to be connected because of preferential reten-
tion of genes from a single complex from the same subgenome. To
test this idea, we partitioned the gene products based on their sub-
genome of origin. The LF subgenome contains more genes and
thus more exclusive connections (Fig. 3B). When considering
only genes that had returned to single copy by the end of the
root (Fig. 3C), we identified 188 LF-LF edges among 886 single-
copy LF genes, with fewer edges exclusive to MF1 and MF2 genes
(30 and 3, respectively). We used randomization (Methods) to
test whether the numbers of such subgenome-specific edges dif-
fered from what would be expected by chance. When considering
the network as awhole, we found that therewere significantly few-
er LF-LF edges than expected (P= 0.022) (Supplemental Fig. S6).
However, when we considered only the single-copy genes in the
network, the number of subgenome-specific edges did not differ
from that seen in random networks for any of the three subge-
nomes (P=0.286 for LF-LF edges) (Supplemental Fig. S6), suggest-
ing that the original dearth of such edges was a statistical artifact
resulting from the excess of triplet-to-triplet edges.

We also explored the association of between genes’ role in
metabolism and their pattern of post-hexaploidy evolution using
theA. thalianametabolic network (Methods). However, again con-
sidering the state of each pillar at the end of the root branch,we did
not find an excess of shared metabolic interactions between tripli-
cated or single-copy genes in this network (Supplemental Fig. S6).

Finally,weaskedwhether genes fromthe same subgenomeare
more likely to be coexpressed. We constructed a B. rapa coexpres-

sion network from the RNA-seq data described in Methods. In
this network, edges connect pairs of genes that are highly correlat-
ed in their expression (Methods). The inferred coexpression net-
work contains 3933 nodes (e.g., genes) from the LF subgenome,
2310 nodes fromMF1, and 1982 from MF2. We then counted the
number of edges connecting pairs of nodes from the same subge-
nome. To assess whether there was an excess of such shared subge-
nome coexpression relationships, we randomly rewired the
network 100 times and compared the edge count distributions
from these randomized networks to those of the real network
(Pérez-Bercoff et al. 2011). We found that the real network did
not show a significant excess of shared edges between genes from
the same subgenomewhen compared to the randomized networks
(LF-LF, P=0.36; MF1-MF1, P=0.82; MF2-MF2 P=0.08) (Fig. 4A–F).

Subgenome of origin does not affect the propensity to have

experienced a selective sweep

We tested for associations between genes’ subgenome of origin
and their propensity to experience recent selective sweeps. Data
on these sweeps was taken from a recent scan in B. rapa by Qi
et al. (2021). No subgenome had either an excess or a deficit of ob-
served sweeps relative to the other two (Supplemental Fig. S7).
Genes from the MF1 subgenome showed slightly negative associ-
ation with selective sweeps (P=0.0089, χ2 test).

Discussion

The combination of the new genome sequence of Crambe hispan-
ica and our modeling of the post-WGT evolution of the four
Brassiceae genomes using POInT allowed us to draw a number of
conclusions regarding the Brassiceae WGT. We confirmed

B CA

Figure 3. Protein–protein interaction networks after the WGT. (A) The Arabidopsis PPI network at the root branch (bottom), and the same PPI network
colored by the Brassica rapa gene retention status (top). The dark purple nodes represent retained triplets (Supplemental Code). (B) The PPI network par-
titioned by subgenome assignment at the root branch: (LF) red, 4249 nodes and 8454 edges; (MF1) green, 3379 nodes and 6442 edges; (MF2) blue, 3073
nodes and 4961 edges. (C) A subset of the PPI network where only nodes encoded by single copies genes and connected to other single-copy nodes are
shown. Red nodes are from the LF subgenome, green nodes are from the MF1 subgenome, and blue nodes are from the MF2 subgenome.
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previous work (Cheng et al. 2012; Tang et al. 2012) arguing that
these genomes derive from a pair of ancient allopolyploidies:
more subtly, we also show that, as had been proposed, the least
fractionated subgenome (e.g., the one with the most retained
genes) is very likely the genome that was added last. To these pro-
posals, we add the newobservation that these hybridization events
were likely not particularly closely spaced in time: our model pre-
dicts that on the order of one-third of the gene losses from subge-
nomes MF1 and MF2 that occurred on the root branch occurred
before the arrival of the LF subgenome. Of course, one should
not take this result to necessarily imply a very large number of cal-
endar years between the events; gene loss immediately after poly-
ploidy can be quite rapid (Scannell et al. 2007; De Smet et al. 2013).
In the future, it will be interesting to further refine the timing of
these events; the problem, however, is a challenging one because
the allopolyploid nature of the events means that molecular clock
approaches will tend to estimate speciation times for the allopoly-
ploid ancestors rather than hybridization times.

Many forces shape genome evolution after polyploidy. A ten-
dency for genes that operate inmultiunit complexes or that are in-
volved in signaling cascades to remain duplicated post-polyploidy
is best explained by the presence of dosage constraints driven by a
need to maintain the stoichiometry and kinetics of assembly for
such functional units (Birchler et al. 2005, 2016; Birchler and
Veitia 2007, 2012; Conant et al. 2014). On the other hand,
genes involved in functions such as DNA repair very often return
rapidly to singleton status after duplication (Freeling 2009; De
Smet et al. 2013). Our results illustrate the importance of these dos-
age effects, with genes whose products interact with many other
gene products in A. thaliana being overly likely to be retained in
triplicate in these Brassicae genomes. This pattern is not observed
for metabolic genes, a result we interpret as illustrating metabo-
lism’s dynamic robustness to gene dosage changes (Kacser and
Burns 1981).

We had previously argued that one force driving the biased
fractionation that distinguishes the LF,MF1, andMF2 subgenomes
might be selection tomaintain coadapted complexes from a single
parental subgenome (Emery et al. 2018). That such coadapted
complexes exist and respond to polyploidy is suggested by the
gene conversions seen after the yeast polyploidy among the dupli-
cated ribosomal and histone proteins (Evangelisti and Conant
2010; Scienski et al. 2015). However, these examplesmaybe excep-
tions rather than the rule, meaning that pressure to maintain co-
adapted complexes is not a significant driver of biases in
fractionation. We found that although there was some degree of
functional distinction for single-copy genes from the LF subge-
nome (e.g., enrichment in biological processes such as DNA repair
and RNA interference), more generally speaking, there was no sig-
nificant evidence of functional incompatibilities between single-
copy genes from different subgenomes. Thus, genes from the
same subgenome were not more likely to interact with each other
physically, nor were the genes returned to single copy on the com-
mon root branch functionally subdivided among the subgenomes.
Even the DNA repair enzyme genes that rapidly returned to single
copy appear to derive from at least two of the three subgenomes. It
hence appears that the original hypothesis of De Smet et al. (2013)
that these genes may be prone to dominant negative interactions
may best explain their preference for a single-copy state.

It remains to be seen if the “mix and match” pattern of sub-
genome retention observed here represents the dominant mode
of evolution for allopolyploidies. Of course, whether or not subge-
nome conflicts exist may be partly a question of the preexisting
differences between the progenitor species, and amore general sur-
vey of allopolyploidies that includes estimates of the progenitor
genomes’ divergence before the polyploidy events would be
most enlightening. If the pattern holds, however, the implications
would be significant, because hybridization represents an impor-
tant means of adaption (Paterson 2005; Hollister 2015; Alix et al.

B CA

E FD

Figure 4. Subgenome-specific edge counts for 100 rewired Brassica rapa coexpression networks compared to those from the actual network. (A)
Distribution of the number of edges connecting pairs of B. rapa genes from the LF subgenome in 100 rewired networks. (B) Distribution of the number
of edges connecting pairs of genes from the MF1 subgenome. (C ) Distribution of the number of edges connecting pairs of genes from the MF2 subge-
nome. (D) Distribution of the number of edges connecting LF genes to MF1 genes. (E) Distribution of the number of edges connecting LF genes to MF2
genes. (F) Distribution of the number of edges connecting MF1 and MF2 genes. In each panel, the dark gray dashed line shows the number of edges with
that set of subgenome assignments for the true network. See Supplemental Code.
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2017; Blanc-Mathieu et al. 2017; Smukowski Heil et al. 2017).
Adding the effects of hybridization to polyploidy’s known associ-
ation with innovation (Edger et al. 2015) and to the tendency of
dosage sensitive genes to remain duplicated for the longer periods
needed for such innovations (Blanc and Wolfe 2004; Conant and
Wolfe 2008b; Conant et al. 2014; Zhao et al. 2017; Liang and
Schnable 2018; Qiu et al. 2020)makes a strong case for considering
polyploidy a critical source of material for innovation at the geno-
mic level.

Methods

Crambe hispanica (PI 388853) sample preparation and genome

sequencing

Leaf tissue was harvested from36 dark treated inbred plants (selfed
for nine generations; PI 388853). Dark treatment was performed to
reduce chloroplast abundance and involved leaving the plants in a
dark room for 3–4 d. After treatment, 5 g of tissue was collected
across 36 plants. This process was repeated three times, allowing
us to obtain a total of 15 g of tissue. This tissue was then sent to
the University of Delaware Sequencing and Genotyping Center
at the Delaware Biotechnology Institute for highmolecular weight
DNA isolation and library preparation before PacBio and Illumina
sequencing. Libraries were prepared using standard SMRTbell pro-
cedures, followed by sequencing of 11 PacBio SMRT cells on a
PacBio sequel and one PacBio SMRT cell of RSII sequencing.
Paired-end 150-bp reads were generated on an Illumina HiSeq
2500 system. For Hi-C scaffolding, 0.5 g tissue sample was sent
to Phase Genomics.

Crambe hispanica v1.1 genome assembly and annotation

The assembly of the Crambe hispanica v1.1 genomewas performed
usingCanuv1.6 (Koren et al. 2017). In total, 3.9million rawPacBio
reads spanning 48 Gb were used as input for Canu. The following
parameters were modified for assembly: minReadLength=1000,
GenomeSize = 500 Mb, corOutCoverage =200 “batOptions=-dg 3
-db 3 – dr 1 -ca 500 -cp 50”. All other parameterswere left as default.
TheassemblygraphwasvisualizedusingBandage (Wicket al. 2015)
to assess ambiguities in the graph related to repetitive elements and
heterozygosity. The draft Canu assemblywas polished reiteratively
using high-coverage Illumina paired-end data (82 million reads)
with Pilon v1.22 (Walker et al. 2014). Quality filtered Illumina
reads were aligned to the genome using Bowtie 2 (v2.3.0)
(Langmead and Salzberg 2012) under default parameters, and the
resultingBAMfilewasusedas input for Pilonwith the followingpa-
rameters: ‐‐flank 7, ‐‐K 49, and ‐‐mindepth 8. Pilon was run recur-
sively three times using the updated reference each time to
correct the maximum number of residual errors.

A Proximo Hi-C library was prepared as described (Phase
Genomics) and sequenced on an Illumina HiSeq 2500 system
with paired-end 150 bp reads. The de novo genome assembly of
Hi-C library reads were used as input data for the Phase Genomics
Proximo Hi-C genome scaffolding platform.

The genome was annotated using MAKER (Campbell et al.
2014), using evidence of protein sequences downloaded from
the Araport 11 and Phytozome 12 plant databases (Goodstein
et al. 2012; Cheng et al. 2017) and C. hispanica transcriptome
data. The transcriptome data for genome annotationwas extracted
frombud, root, and leaf tissues under standard daylight conditions
using the Thermo Fisher Scientific PureLink RNAMini Kit. Library
prep was done using Illumina TruSeq DNA PCR-free and se-
quenced for nonstranded mRNA-Seq 2×250 on Illumina HiSeq.
C. hispanica transcriptomic data were assembled with StringTie

(Pertea et al. 2015). Repetitive regions in the genome were masked
using a custom repeat library and Repbase Update (Bao et al. 2015)
through RepeatMasker Open-4.0 (Smit et al. 2015). Ab initio gene
predictionwas performed using SNAP (Korf 2004) and AUGUSTUS
(Stanke and Waack 2003). The resulting MAKER gene set was fil-
tered to select gene models with Pfam domain and annotation
edit distance (AED) <1.0. Then, the amino acid sequences of
predicted genes were searched against a transposase database
using BLASTP and an E-value cutoff of 10−10 (Campbell et al.
2014). If >30% of a given gene aligned to transposases after the re-
moval of low complexity regions, that gene was removed from the
gene set.

Triple-conserved synteny reconstruction

We developed a three-step pipeline for inferring the conserved
synteny blocks created by polyploidy (Emery et al. 2018). For the
first step of this pipeline, we used Arabidopsis thaliana Col-0 ver-
sion 10.29 (CoGe genome id 20342) as a nonhexaploid outgroup
and identified homologous genes between it and each of the
four hexaploid genomes using GenomeHistory (Conant and
Wagner 2002). Geneswere defined as homologous if their translat-
ed products shared 70% amino acid sequence identity and the
shorter sequence was at least 80% of the length of the longer. In
the second step, we sought to place genes from each of the hexa-
ploid genomes into blocks of triple-conserved synteny (TCS) rela-
tive to their A. thaliana homologs. To do so, we inferred a set of
“pillars,” each of which contains a single gene (or group of tandem
duplicates) fromA. thaliana and between one and three genes from
the hexaploidy genome. Using simulated annealing (Kirkpatrick
et al. 1983; Conant and Wolfe 2006), we sought a combination
of pillar gene assignments and relative pillar order that maximized
the TCS. In the third and final step, we merged the pillars across
the four hexaploid genomes, using their A. thaliana homologs as
indices. We then sought a global pillar order that minimized the
number of synteny breaks across all of the hexaploid genomes
(Supplemental Fig. S2). These three steps resulted in a set of
14,050 ordered pillars, each with at least one surviving gene
fromeach of the four genomes (Fig. 1) and a corresponding “ances-
tral” gene from A. thaliana. Supplemental Table S1 shows that
POInT’s model inferences are consistent across a number of such
estimated ancestral orders.

An ancestral genome order reconstruction

As a verification of our POInT pipeline, we also sought an indepen-
dent inferenceof theorderof the genes in theparental subgenomes
just before the first step of the Brassica triplication. First, we used
CoGe’s SynMap (Lyons et al. 2008b) to identify homologs between
theA. thalianaandArabidopsis lyratagenomes and thosebetweenB.
rapa and B. oleracea. The SynMap algorithm was applied with a
chaining distance of 50 genes and a minimum of five aligned
gene pairs to identify likely orthologous genes in all pairwise com-
parisons of the four genomes. Paralogs were identified by self-com-
parisons of each of the two Brassica genomes with SynMap. Then
these orthologs and paralogs were grouped into 24,011 homology
sets with the OMG! program (Zheng et al. 2011). Every homology
set consists of one to three Brassica paralogs from each of the three
Brassicagenomesanda singleArabidopsisgene fromeachof the two
Arabidopsis genomes, representing one “candidate gene” in the re-
constructed ancestral genome. Among these, 2178 homology sets
contained the maximum of eight genes (one each from the two
Arabidopsis genomes and three each from the two Brassica
genomes).
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The homology sets were used to retrieve the ancestral gene or-
der from an adjacency graph using an efficient algorithm called
MaximumWeightMatching (MWM) (Zheng et al. 2013).We iden-
tified all the gene adjacencies in the four genomes, considering
only the genes in the homology sets. Each adjacency was then
weighted according to howmany of the eight possible adjacencies
were actually observed. The MWM produced an optimal set of
10,944 linear contigs containing all 24,001 putative ancestral
genes from the homology sets that included 13,057 of 45,982 total
adjacencies in the data set, with the remaining adjacencies being
inconsistent with this optimal set. We used the contigs in the out-
put of the MWM to reconstruct each of the five ancestral chromo-
somes. There were 34 contigs containing large proportions of
genes originating in two or more of the ancient chromosomes
that were discarded, as were any contigs containing four or fewer
genes from a Brassica genome. Although the 9712 contigs so omit-
ted represent 89% of all contigs, they represent only 55% of the
genes, leaving a small group of large contigs with strong synteny
relations in our ancestral reconstruction. We next identified adja-
cencies among the contigs themselves and applied a second itera-
tion of MWM on them, giving the optimal ordering of those
contigs. Combining these orders with the existing gene order in-
formation within each contig yields the position of all the genes
on each ancestral chromosome. This order was mapped to our
set of pillars of TCS, giving a subset of those pillars ordered by
this ancestral order estimate.

The phylogenetic relationships of the triplicated members of the

Brassicaceae

POInT fits the models shown in Figure 2 to the pillar data under
an assumed phylogenetic topology using maximum likelihood,
allowing us to use that likelihood statistic to compare different
phylogenetic relationships among these four hexaploid taxa.
POInT’s computational demands were too great to allow testing
all 15 rooted topologies of four species (POInT’s models are not
time reversible). However, by making the reasonable assumption
that B. rapa and B. oleracea are sister to each other, we were able to
test the three potential relationships of C. hispanica and S. alba to
the twoBrassicas. Figure 1 gives themaximum likelihood topology:
the two alternative topologies and their likelihoods are given in
Supplemental Figure S1.

Selective constraints of the retained triplets

We identified 218 pillars that retained triplicated genes across all
four genomes and for which the confidence in their subgenome
assignments was≥95%. For each such pillar, the 12 sequences
were aligned using T-coffee (Notredame et al. 2000). The clado-
gram for each such set of 12 genes consists of three subtrees group-
ing four sequences that belong to the same subgenome in the same
sister group (Supplemental Fig. S4). Using codeml in PAML (Yang
2007) withCodonFreq set to F3×4, we inferred three distinct dN/dS
ratios, one for each of the three subtrees deriving from the three pa-
rental subgenomes.

Functional analysis of single-copy genes from different

subgenomes

We performed functional analysis for genes where we have high
(≥95%) confidence that they returned to single copy along the
common root branch. Using the corresponding “ancestral” locus
fromA. thaliana,weperformed individual GeneOntology analyses
with PANTHER (Mi et al. 2019) overrepresentation tests (release
date 20190711) for genes from each subgenome. The background

list used in all cases was the loci that remained duplicated or trip-
licated at the end of the root branch.

Protein–protein interaction and metabolic network analysis

The A. thaliana protein–protein interaction (PPI) network was
downloaded from BioGRID (Arabidopsis Interactome Mapping
Consortium 2011; Stark et al. 2011). The root branch post-WGT
subgenome assignments for each “ancestral” locus represented
by an Arabidopsis gene were mapped onto the nodes (gene prod-
ucts) of the PPI network, so long as our confidence in those subge-
nome assignments was ≥95%. Similarly, for the extant B. rapa, we
took loci with high subgenome assignment confidence ≥95%
and mapped their A. thaliana orthologs onto network nodes. The
resulting PPI network (Fig. 3) was visualized using Gephi 0.9.2
(Bastian et al. 2009) with the Fruchterman Reingold and Yifan
Hu layout algorithms (Fruchterman and Reingold 1991; Hu
2006). To test whether gene products from the same subgenome
are overconnected in this network, we permutated the subgenome
assignments 1000 times, holding the network topology un-
changed. We then compared the actual number of edges connect-
ing single-copy genes from the same subgenome with the
distribution of this value seen in the randomized networks
(Supplemental Fig. S6). We also asked whether the ancestral genes
corresponding to retained triplets showedanexcess of connections
among themselves. Because the number of edges between retained
triplets and between single-copy genes are not independent, we
performed an additional set of permutations, in which we held
all the triplet rows constant and only shuffled the subgenome as-
signments of the remaining nodes.

We performed similar analyses using the AraGEM v1.2 meta-
bolic network from A. thaliana (de Oliveira Dal’Molin et al. 2010;
Bekaert et al. 2012). In this network, each node represents a bio-
chemical reaction, and pairs of nodes are connected by edges if
their respective reactions share a metabolite. For each A. thaliana
gene encoding an enzyme catalyzing one such reaction, we
mapped the root branch subgenome assignments (again requiring
≥95% confidence), assigning to that gene three presence/absence
variables (one per subgenome). Then, for each subgenome, we
counted the number of edges between pairs of nodes with at least
one pair of single-copy genes from a common subgenome. We as-
sessed significance by holding the network topology and
Arabidopsis gene assignments constant and randomizing the sub-
genome assignments 1000 times. We then compared the distribu-
tions of the single-subgenome edge counts from the simulations
with the actual values (Supplemental Fig. S6).

Brassica rapa coexpression network analysis

We generated a gene expression data set for Brassica rapa spanning
diverse experimental conditions, including the following: a cold
treatment in leaves (4 h and 28 h post), methyl jasmonate treat-
ment in leaves (4 h and 28 h post), anaerobic treatment in leaves
(4 and 8 h post), salt treatment in roots (4 h and 28 h post), and
a diurnal time course in leaves (every 4 h, six time points) in stan-
dard light-dark conditions but also in complete dark and complete
light conditions. Total RNAwas extracted from above organs using
the Invitrogen Purelink RNA Mini Kit (Thermo Fisher Scientific),
converted into a library using the Illumina TruSeq RNA kit,
and paired-end 100-bp reads were sequenced on the HiSeq 2000
instrument at the VJC Genomics Sequencing Laboratory at
the University of California, Berkeley. The NextGENe V2.17
(SoftGenetics) software package was used to remove low-quality
Illumina data, map reads to the B. rapa FPsc (v1.0, CoGe id
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20101) reference genome, and calculate normalized reads per kilo-
base of transcript per million (RPKM) values for all genes.

We filtered the data set to only include genes that were miss-
ing ameasured expression value for at most one of the 32 RNA-seq
libraries, leaving 24,907 B. rapa genes in it. The gene identifiers
used for the expression data set were from the B. rapa FPsc (v1.0,
CoGe id 20101) reference genome, so we translated these identifi-
ers to those from B. rapa Chiifu (v1.5, id 24668) using CoGe
SynMap (Lyons et al. 2008b). In so doing, we only used B. rapa
genes with one-to-one matches between the two references. For
any pair of genes in the expression data set, we calculated the
Spearman’s correlation coefficient of their RPKM values. A coex-
pression network was then constructed using highly correlated
gene pairs, for example, pairs having Spearman’s correlation coef-
ficients ≥0.9 (positive correlations), or ≤−0.9 (negative correla-
tions). Thus, the nodes of this coexpression network are B. rapa
genes, and the edges represent correlation in expression. The coex-
pression network was randomized 100 times by rewiring the edges
while holding the nodes and their subgenome assignments un-
changed. In other words, all edges were broken and randomly re-
connecting, preserving the degree of every node (Pérez-Bercoff
et al. 2011). The distributions of inter-subgenome and intra-subge-
nome edge counts are shown in Figure 4.

Association between recent selective sweeps in B. rapa and
subgenomes origin

B. rapa genes were divided into those in the regions of selective
sweeps detected by SweeD (Pavlidis et al. 2013) in either turnip,
toria, Indian sarson, pak choi, or Chinese cabbage (vegetable types
of B. rapa) and those showing no such signatures (Qi et al. 2017,
2021). We tested whether particular subgenomes (posterior prob-
ability ≥0.95) were unusually likely or unlikely to have experi-
enced a selective sweep using χ2 test. The association plot as
shown in Supplemental Figure S7 was visualized using the vcd
package version 1.4-4 in R 3.6.0 (Meyer et al. 2006; Zeileis et al.
2007; R Core Team 2019).

Data access

The assembled Crambe hispanica genome (v1.1) generated in
this study has been submitted to the NCBI BioProject data-
base (https://www.ncbi.nlm.nih.gov/bioproject/) under accession
number JABFOD000000000. Raw RNA-seq files from C. hispanica
have been submitted to the NCBI BioProject database under acces-
sion number PRJNA475309. The annotation of the Crambe hispan-
ica v1.1 genome is available from CoGe (https://genomevolution
.org/coge/) under accession number 58014. POInT input files,
the inferred ancestral gene orders, POInT models, and assumed
phylogenetic trees are included in the Supplemental Data and
are available from figshare (https://doi.org/10.6084/m9.figshare
.12277832) and from the POInTbrowse portal (http://wgd.statgen
.ncsu.edu/).
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