
Original Paper

Stuck in a State of Inattention? Functional
Hyperconnectivity as an Indicator of
Disturbed Intrinsic Brain Dynamics in
Adolescents With Concussion: A Pilot Study

Angela M. Muller1 and Naznin Virji-Babul1

Abstract

Sports-related concussion in youth is a major public health issue. Evaluating the diffuse and often subtle changes in structure

and function that occur in the brain, particularly in this population, remains a significant challenge. The goal of this pilot study

was to evaluate the relationship between the intrinsic dynamics of the brain using resting-state functional magnetic resonance

imaging (rs-fMRI) and relate these findings to structural brain correlates from diffusion tensor imaging in a group of adoles-

cents with sports-related concussions (n¼ 6) and a group of healthy adolescent athletes (n¼ 6). We analyzed rs-fMRI data

using a sliding windows approach and related the functional findings to structural brain correlates by applying graph theory

analysis to the diffusion tensor imaging data. Within the resting-state condition, we extracted three separate brain states in

both groups. Our analysis revealed that the brain dynamics in healthy adolescents was characterized by a dynamic pattern,

shifting equally between three brain states; however, in adolescents with concussion, the pattern was more static with a

longer time spent in one brain state. Importantly, this lack of dynamic flexibility in the concussed group was associated with

increased nodal strength in the left middle frontal gyrus, suggesting reorganization in a region related to attention. This

preliminary report shows that both the intrinsic brain dynamics and structural organization are altered in networks related to

attention in adolescents with concussion. This first report in adolescents will be used to inform future studies in a larger

cohort.
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Introduction

Approximately 42 million people worldwide are diag-
nosed with concussion (also referred to as mild trau-
matic brain injury [mTBI]) every year (Gardner and
Yaffe, 2015). The typical consequences of concussion
are deficits in working memory, executive function,
and attention in addition to symptoms such as head-
aches, dizziness, fatigue, and sleep disturbances. Most
adults who sustain a single concussion recover fully
within days; however, children and adolescents take
longer to recover and may be more vulnerable to the
effects of a sports-related concussion (Anderson et al.,
2009; Barlow et al., 2010).

A major challenge in understanding the effects of con-
cussion stems from gaps in knowledge about the relation-
ship between symptoms, cognitive function, and the
evolving changes in the brain. Conventional clinical neu-
roimaging tools (such as computed tomography and
magnetic resonance imaging [MRI]) cannot detect the
widespread and often subtle changes in structure and
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function that occur in the brain following concussion. In
addition, the diffuse and continually evolving secondary
changes that are the hallmark of concussion require tools
that can dynamically probe the changing state of the
brain. Diffusion tensor imaging (DTI), which detects
changes in the white matter microsturecture, shows that
the stretching and tearing of the brain tissue caused by
the acceleration and deceleration forces acting upon the
head during impact results in a diffuse disconnection pat-
tern affecting the entire white matter architecture of the
brain (Hellyer et al., 2013; Caeyenberghs et al., 2014; Iraji
et al., 2016; Hayes et al., 2017).

Structural alterations, no matter how subtle and
diffuse, are invariably associated with changes in physi-
ology and altered brain function. Resting-state functional
magnetic resonance imaging (rs-fMRI) investigating the
intrinsic fluctuations of the blood oxygen-level dependent
(BOLD) signal is particularly sensitive to changes in brain
function following concussion. These studies show that
concussion changes the intrinsic connectivity networks
(ICNs) of the brain and alters the functional connection
strength between different brain regions. In particular, the
default mode network (DMN) and the salience network
frequently show impaired inter and intranetwork activity
following a brain injury (Bonelle et al., 2011; Mayer et al.,
2011; Bonelle et al., 2012; Sours et al., 2013; Hillary et al.,
2014; Sharp et al., 2014; Sours et al., 2015). A prominent
feature of concussion is a diffuse increase in functional
connectivity or hyperconnectivity (Johnson et al., 2012;
Borich et al., 2015; Czerniak et al., 2015; Caeyenberghs
et al., 2017; Militana et al., 2016; Newsome et al., 2016;
Churchill et al., 2017).

Hyperconnectivity represents a deviation from the
healthy state and is usually interpreted as maladaptive
plasticity resulting from the brain injury (Johnson et al.,
2012; Newsome et al., 2016; Churchill et al., 2017), par-
ticularly when associated with impaired cognition.
Hyperconnectivity has also been observed with preserved
or recovered cognitive performance and may represent
positive functional plasticity as a compensation for per-
sistent structural alterations (Shumskaya et al., 2012;
Bharat et al., 2015; Burianová et al., 2015; Czerniak
et al., 2015; Marstaller et al., 2015; Olsen et al., 2015;
Agarwal et al., 2016; Harris et al., 2016; Iraji et al.,
2016); however, little is known about the nature of the
underlying processes of this pattern or its functional
significance.

Hillary et al. (2014) suggest that brain regions demon-
strating functional hyperconnectivity as a consequence of
concussion almost always belong to a group of brain
regions forming the so-called rich club. The rich club of
the brain is constituted of a specific group of brain
regions that are all highly interconnected with themselves
and build the structural white matter backbone of the
brain (van den Heuvel and Sporns, 2011). In addition,

recent DTI studies (Gollo et al., 2015; Betzel et al.,
2016) show that these rich club regions are particularly
involved in driving the intrinsic brain dynamics. Due to
these relationships between hyperconnectivity and rich
club nodes, and between rich club nodes and intrinsic
brain dynamics, we felt it was important to gain a
better understanding of which underlying structural
changes are associated with hyperconnectivity in the con-
cussed brain and how these structural changes might
affect the intrinsic brain dynamics.

We have previously reported on the changes in rs-
fMRI and diffusion MRI data in a group of adolescent
athletes with concussion and healthy matched controls.
Our rs-fMRI analysis revealed altered intraconnectivity
in the DMN and increased connectivity strength or
hyperconnectivity in two frontal regions (Borich et al.,
2015); analyses of the DTI data revealed a whole brain
increase in fractional anisotropy (FA) and a decrease in
mean diffusivity (MD) in the concussion group compared
with the healthy controls (Virji-Babul et al., 2013). In
particular, we found increased FA in frontal tracts, pre-
dominantly in the anterior corona radiata in the con-
cussed group (Borich et al., 2013). In this previous
work, we evaluated the changes in brain structure and
function separately. We felt it was important to now
investigate the relationship between brain function and
the associated structural correlates.

The vast majority of studies using rs-fMRI (including
our own) implicitly assume temporal stationarity of the
ICNs. However, this assumption is an oversimplification.
ICNs are not stationary but are dynamic and switch
between different brain states within a single scanning
session. The strength as well as the directionality of the
connections between brain regions vary over short time
scales from seconds to minutes, and brain regions might
belong to different ICNs at different time points (Chang
and Glover, 2010; Jones et al., 2012; Hutchison et al.,
2013). When shorter time windows are analyzed, even
the DMN and the dorsal attention network that are char-
acterized by strong anticorrelations when their time
courses are averaged over the entire length of the data
acquisition show periods of synchronized activity (Chang
and Glover, 2010).

The aim of this pilot study was to investigate how
concussion alters the temporal dynamics of resting-state
networks and how these alterations are associated with
the alterations in the structural organization of the brain.
Specifically, we hypothesize (a) that hyperconnectivity or
the prolonged synchronization of parts of the intrinsic
network architecture will be evident as a disruption of
the highly dynamical interplay between the different
ICNs in adolescents with concussion compared with
healthy controls and (b) that the disrupted intrinsic
brain dynamic will be associated with the structural integ-
rity of the rich club brain regions.
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Methods

Participants

We reanalyzed the structural and task-free fMRI data of
six adolescent athletes (mean age¼ 15.5 years) with a
clinical diagnosis of subacute concussion (�2 months
prior) and six healthy adolescents matched for age, level
of physical activity, and motion during MRI acquisition.
The study sample is part of a larger data set that was
acquired in our laboratory from 2011 to 2012. We
excluded 10 participants from the original sample due
to rigorous control for motion. Table 1 provides demo-
graphic information about all participants. Additional
information can be found in Virji-Babul et al. (2013)
and Borich et al. (2015). The adolescents’ parents gave
written informed consent for their children’s participa-
tion under the approval of the ethics committee of the
University of British Columbia and in accordance with
the Helsinki declaration.

Data

The MRI data were collected at the University of British
Columbia’s 3 T Research Facility on a Philips Achieva
3.0 T MRI scanner (Philips Healthcare, Andover, MD)
using an eight-channel sensitivity encoding head coil
(SENSE factor 2.4) and parallel imaging. The following
images were acquired: (a) A T1 weighted TFE-SENSE
sequence with repetion time (TR)¼ 8ms, echo time
(TE)¼ 3.7ms, flip angle y¼ 6

�

, field of view (FOV)
256� 256� 160mm3, isotropic voxel size¼ 1�
1� 1mm3, 160 slices per volume, acquisition duration

335 s. (b) A whole-brain high-angular imaging resolution
diffusion imaging sequence with two diffusion-weighted
scans performed with a single-shot echoplanar imaging
sequence of TR¼ 7013ms, TE¼ 60ms, FOV¼ 224�
224mm, 70 slices, isotropic voxels 2.2� 2.2� 2.2mm3,
time of acquisition¼ 7min. Diffusion weighting was per-
formed across 60 different noncollinear orientations
(b¼ 700 s/mm2). Ten minimally weighted (b¼ 0) diffusion
images were also acquired. (c) A task-free BOLD signals
single shot whole-brain echoplanar imaging sequence
with a TR¼ 2000ms, TE¼ 30ms, flip angle¼ y¼ 90

�

,
FOV¼ 240� 143� 240mm3, isotropic voxels
3� 3� 3mm3 ascending acquisition with 1mm3 gap, 36
slices per volume, acquisition time 8.2min, 240 volumes.
Participants were instructed to relax and to lie as motion-
less as possible while keeping the eyes fixed on a target
and thinking of nothing in particular.

Preprocessing of the Functional Data

All preprocessing steps of the fMRI data are listed in the
following and were performed using the SPM12 software
(http://www.fil.ion.ucl.ac.uk/spm) running on MATLAB
(MATLAB R2016a, The Math Works Inc.). Figure 1
shows a visual representation of the processing and ana-
lysis steps for the fMRI data.

First, the first 10 volumes of the task-free fMRI data
were discarded allowing for T1 saturation effects, leaving
230 volumes for the analysis and then realigned in a two-
pass procedure to correct for potential head movements
during the task-free scan. Second, the fMRI time series
were slice time corrected for the ascending acquisition.
Third, the T1 weighted anatomical image was coregistered

Table 1. Demographics of the Participants.

ID Sex Age Total score on SCAT2 Number of concussions Days after injury

Con_001 M 14 90 1 30

Con_002 F 17 79 3 17

Con_006 M 17 76 2 24

Con_008 M 15 86 1 30

Con_009 M 15 92 3 30

Con_011 M 16 89 2 31

5 M/1F M¼ 15.67 M¼ 85.33 M¼ 2 M¼ 27

HC_001 F 16 85 – –

HC_002 M 14 96 – –

HC_003 M 16 93 – –

HC_005 M 17 92 – –

HC_006 M 16 88 – –

HC_008 M 16 87 – –

5 M/1F M¼ 15.83 M¼ 90.17 –

Statistics X2
¼ 0.0635; p< .881 X2

¼ 1.4474; p< .229

Note: SCAT2¼ Sport Concussion Assessment Tool 2. Version.
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to the mean functional image generated during the align-
ment step. Fourth, the T1 weighted anatomical images were
segmented into the three tissue classes, gray matter (GM),
white matter (WM), and cerebrospinal fluid (CSF) in native
space. Fifth, a study population-specific GM template
was generated using the Diffeomorphic Anatomical
Registration using Exponentiated Lie algebra (DARTEL)
procedure routine (Ashburner, 2007) implemented in
SPM12 that allows for a high-dimensional and nonlinear
registration of the anatomical and functional images and

their subsequent normalization to the Montréal
Neurological Institute (MNI) template. The functional
and the anatomical data subsequently used for the func-
tional analyses were resampled to a 2-mm isotropic voxel
size during this step. In the final step, the functional images
were smoothed using an isotropic Gaussian kernel full
width at half maximum (FWHM 6mm). To assess the
effect of motion on the quality of the functional data, we
controlled the output for the three translational and the
three rotational motion parameters to make sure that

Figure 1. Visual representation of the processing and analysis steps for the fMRI data.

fMRI¼ functional magnetic resonance imaging.
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none of the six parameters surpassed a displacement>1mm
(following the approach of Power et al., 2012, the rotational
displacements were calculated at a 50mm radius). In add-
ition, we performed an outlier detection using the Artifact
Detection Toolbox (ART) (http://www.nitrc.org/projects/
artifact_detect/) as implemented in the preprocessing pipe-
line of ConnVersion 17a (scan-to-scan global signal z value
threshold¼ 3; scan-to-scan composite motion thresh-
old¼ 0.5mm). Because the results of dynamical intrinsic
connectivity analyses are much more susceptible to head
motion in comparison with static connectivity analyses
(Laumann et al., 2017), we used a very rigorous threshold
to control for motion artifacts. Only participants who
showed less than 5% outliers over the 230 analyzed func-
tional volumes were selected for this pilot study (average
number of outlier volumes over all included partici-
pants¼ 5.91; SD¼ 3.17; Max¼ 11; Min¼ 2). In a final
step, we tested for potential significant differences in
number of outliers between the adolescents with concussion
and the healthy controls using a two-sample t test. The two-
sided t test revealed no significant differences in outliers
between the concussed and the healthy group, t(10)¼ .
026; p¼ .799.

Computation of a Stationary Spatial Independent
Component Analysis

For the independent component analysis (ICA), we used the
MATLAB-basedGroup ICA of the fMRI Toolbox (GIFT)
v4.0 a (http://mialab.mrn.org/software/gift/). ICA is a stat-
istical method of blind signal source separation. Assuming a
generative model and a linear mixture of independent
sources, it works with higher order statistics to maximize
the spatial or temporal independence of the data and to
identify the independent components hidden in the signal
(Calhoun et al., 2001). The Minimum Description Length
(MDL) criteria were applied to estimate the number of inde-
pendent components in our data (mean MDL over all sub-
jects¼ 41.75; SD¼ 4.02). Next, a subject-specific Principal
Component Analysis (PCA) using the expectation maxi-
mization algorithm was computed retaining 63 components
for data reduction on subject level, and then an ICA using
the Infomax algorithm (repeated 100 times in ICASSO
(Himberg et al., 2004) using random initial conditions to
improve the stability of the final decomposition) was com-
puted to extract 42 components on study sample level. To
map the sample spatialmaps back into the subject space and
to compute the subject-specific time courses, the GICA1
algorithmwas applied that uses the projection matrices gen-
erated by combining the group-level unmixing matrix cre-
ated during the ICA with the subject-level matrices derived
during the PCA (Calhoun et al., 2001; Cole et al., 2010). For
visual inspection and classification, the group spatial maps
were thresholded at z¼ 2. The 42 components were then
evaluated using the following criteria: location of the

component’s peak voxel in graymatter; highest power accu-
mulated on the left side of the component time-course power
spectrum, that is, <0.01Hz; no activations in the ventricles
or white matter or near and following blood vessels; no
motion artifacts (activity pattern resembling a halo
around the brain). Twenty-four of the 42 extracted compo-
nents were identified as neurobiologically meaningful, that
is, representing ICNs known from the literature, and used
for the subsequent sliding window analysis (SWA).

Dynamical Intrinsic Connectivity Analysis Using a
Sliding Windows Approach on Network Level

The time courses were preprocessed by detrending (linear,
quadratic, and cubic trends) and despiking (for the removal
of potential residual motion artifacts, which are not wholly
removed by the linear regression of the six motion param-
eters; Power et al., 2012). The time points identified as out-
liers by ART were not censored but effectively removed by
dummy coding them during the regression of the motion
parameters. This approach has the advantage that the con-
tinuity of the time series is still preserved, which is an
important assumption for the subsequent low-pass filtering
with a high-frequency cutoff of 0.15 Hz and also for the
SWA explained in the following section.

For the SWA, we used the following parameters:
tapered windows (Gaussian s¼ 3 TR) of 30 volumes
(¼60 s) were moved forward in 1 TR steps resulting in
200 windows for each participant. A k-means cluster ana-
lysis using the L1 distance function was applied to iden-
tify the recurring patterns of intrinsic connectivity (or
brain states) between the 24 components identified as rep-
resenting meaningful ICN. The number of clusters to
extract from the data was previously estimated by using
the silhouette algorithm (Rousseeuw, 1987). The silhou-
ette coefficient measures how similar an object is to its
own cluster compared with all the others clusters, when
all objects have a high silhouette value, the clustering
configuration is a good fit for the underlying data struc-
ture. The silhouette algorithm revealed three common
brain states over all participants as an appropriate fit.

We used a t test to test for significant groupwise dif-
ferences of the time that each group spent in each of the
three brain states during the functional scan.

Preprocessing of the DTI Data

The ExploreDTI toolbox (Leemans et al., 2009) was used
to preprocess and analyze the DTI data. Figure 2 shows a
visual representation of the processing and analysis steps
for the DTI data.

First, the raw data were converted to NIFTI files using
the dcm2nii tool included in the MRIcron toolbox.
Second, the data of each participant were loaded into
ExploreDTI and visually inspected for quality control.
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Next, the data were corrected for subject motion and
eddy current-induced geometric distortions (Leemans
and Jones, 2009). Tensor estimation was applied using
the robust estimation of tensors by outlier rejection
approach (Chang et al., 2005). For the reconstruction
of the WM subject-specific tracts, starting seed points
were uniformly placed through the data at 2mm reso-
lution. The trajectory propagation was terminated as
soon as the FA values decreased below a cutoff threshold
of <0.2 or the angle between two consecutive steps was
higher than 45 degrees.

Graph Theoretical Analysis of the White
Matter Architecture

Graph theoretical analysis (GTA) is a mathematical
branch that analyses and describes complex network

structures like the brain using two basic elements: nodes
(or vertices) and links (or edges) connecting the nodes of
the network. GTA measures account for different quali-
ties of these two elements and characterizes and quantifies
a large number of network-specific features on whole net-
work level as well as on single-node level. This type of
analysis provides key information about how a specific
network architecture might be more efficient than other
configurations or how the change in a single node may
affect the entire whole network structure.

The first step of every GTA is to define the nodes and
the links. We used 90 macroanatomical regions as defined
by the Automatic Anatomic Labelling Atlas (AAL;
Tzourio-Mazoyer et al., 2002) to structurally parcellate
the brain into nodes, and the FA values of the white
matter tracts connections between these 90 regions to
define the links.

Defining the Rich Club Members and Node
Selection for Further GTAs

Previous studies (Gollo et al., 2015; Betzel et al., 2016;
Deco et al., 2016) have shown that a specific subgroup of
nodes, the so-called rich club nodes, are particularly vital
for the intrinsic functional dynamics of the brain. The
term rich club describes brain regions that are proper
connector hubs, that is, nodes that are characterized by
a high degree (k) of connections in relation to other nodes
but also play a central role in the regulation of the infor-
mation flow because they are mainly interconnected with
other connector hubs displaying the same qualities as
themselves (van den Heuvel and Sporns, 2011). For this
reason, we identified the rich club nodes in the white
matter architecture of the healthy controls by computing
the rich club distribution using the algorithm for weighted
rich clubs from the BCT toolbox (Rubinov and Sporns,
2010). Because random networks can also exhibit rich
club formations by chance, an important step for the
identification of the rich club nodes in the human brain
is the standardization of the empirical rich club distribu-
tion by the rich club distribution computed for equivalent
random networks. Only nodes whose rich club coefficients
surpass a threshold of 1 after the standardization process
qualify as biologically meaningful rich club nodes. For
this purpose, we generated 500 random networks that
preserved the original distribution of the weighted con-
nections or nodal strength of the empirical network using
the randomization algorithm with 30 iterations from the
BCT toolbox (Rubinov and Sporns, 2010) and then com-
puted the rich club distribution for these 500 random
networks. As a final step, after identifying the rich club
nodes in the healthy controls, we computed the rich club
distribution for the adolescents with concussion and used
a one-sided nonparametric Wilcoxon–Mann test to deter-
mine k levels for which the rich club coefficient of the

Figure 2. Visual representation of the processing and analysis

steps for the DTI data.

GTA¼ graph theoretical analysis; DTI¼ diffusion tensor imaging;

FA¼ fractional anisotropy.
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healthy controls was significantly higher than the rich
club coefficient of the concussed athletes.

To minimize the number of necessary corrections for
multiple comparisons, only the 36 nodes of the healthy con-
trols were chosen for the subsequent GTA analyses. To be
selected for the final GTA, these 36 nodes had to be qualified
as biologically meaningful rich clubmembers by displaying a
standardized rich club coefficient higher than 1, and their k
levels were also in the k level range where the rich club coef-
ficient of the two groups had shown significant differences.

Selection of the GTA Measures

We used the algorithms in the BCT toolbox (Rubinov and
Sporns, 2010) to compute the GTA measures of nodal
strength and betweenness centrality for the 36 rich club
members.Nodal strength is the sum of all weighted positive
connections of a node (Rubinov and Sporns, 2011) and
takes into account the strength of the connections.
Betweenness centrality characterizes a node’s importance
for an effective information flow. A high value in between-
ness centrality indicates that it is an important connector
hub. Betweenness centrality quantifies a node’s/region’s
number of the shortest path lengths that cross that
region. Shortness of path length is not defined by the
actual anatomical distance between two brain regions/
nodes but by the minimal number of nodes that must be
passed to connect region/node A with region/node B.
Short path lengths are associated with decreased wiring
cost, energy consumption, and time delay.

Modeling the Relationship of the Intrinsic Functional
Brain Dynamics and White Matter Architecture

When evaluating the intrinsic functional brain dynamics,
it is critical to evaluate the length of time spent in each

brain state. This is referred to as dwell time. A brain that
smoothly switches between the different brain states such
that equal time is spent in each of the brain states has a
different dynamic profile than a brain that remains in one
of the brain states for a prolonged time frame. We calcu-
lated the number of 60-s windows in each of the three
brain states. We then correlated these numbers with the
betweenness centrality and nodal strength values of the
subjects’ 36 rich club nodes using Spearman correlation
as none of the variables displayed a normal distribution.

Results

Spatial Stationary ICA

From the 42 components that were extracted by the ICA,
24 components were identified to represent biologically
meaningful ICNs (Table 2; Figure 3).

Sliding Windows Analysis

We computed 200 windows of 30 TRs¼ 60 s length for
each of the 12 participants, that is, overall 2,400 windows,
and extracted three common brain states using k-mean
clustering.

Brain State 1 (Figure 4(a)) occurred 634 times or
during 26% of the analyzed 2,400 windows. Its network
constellation is characterized by a coupling or positive
correlation between the five visual networks (PrimVis,
HighVis, Ling, inferior occipital gyrus, and Precun), by
a positive coupling of four networks representing a func-
tional interface between primary in- and output functions
(vision, hearing, motion, and visceral sensation) and
attention (pIns, supplementary motor area, dorsal atten-
tion network, and frontoparietal network) and a positive
coupling of three higher order networks (Lang, left

Table 2. Identification of the Elected Components.

Component Identification Component Identification

C02 Bilateral rolandic operculum network (RolOp) C21 Anterior DMN (aDMN)

C03 Posterior DMN (pDMN) C23 Higher visual network (HighVis)

C04 Bilateral paracentral network (Paracent) C24 Left executive-control network (LECN)

C05 Language network (Lang) C25 Precuneus network (Precun)

C06 Primary visual network (PrimVis) C26 Bilateral inferior frontal gyrus network (bilIFG

C07 Anterior cingulate network (ACC) C28 Dorsal attention network (DAN)

C08 Bilateral supplementary motor area (SMA) C29 Frontoparietal network (FPN)

C09 Bilateral auditory network (Aud) C30 Bilateral posterior middle temporal gyrus network (pMTG)

C11 Bilateral sensorimotor network (SM) C31 Right pars triangularis network (rTriang)

C12 Right executive-control network (RECN) C32 Bilateral middle frontal gyrus network (bilMFG)

C17 Bilateral posterior insula network (pIns) C38 Bilateral inferior occipital gyrus network (IOG)

C20 Bilateral fusiform gyrus network (Fus) C39 Bilateral lingual gyrus network (Ling)

Note. DMN¼ default mode network.
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executive-control network [LECN], posterior DMN) with
the anterior DMN. There is a decoupling or negative
correlation between the networks representing the in-
output-attention interface and the higher order networks
represented by LECN, Lang, Fus, aDMN, and pDMN.

Brain State 2 (Figure 4(b)) was the most frequent state
with 1,100 occurrences or during 46% of the total win-
dows. It is characterized by a positive coupling of the five
visual networks and by a positive coupling of the motor
networks (RolOp, SM, and Paracent) with each other
and with the auditory network. The auditory network

shows also a positive coupling with the networks repre-
senting the in-output-attention interface whose constitu-
ent networks also show a higher positive coupling with
each other than with the other networks. The higher
order networks LECN, Fusi, Lang, aDMN, and
pDMN are likewise coupled with each other and form
a separate subconfiguration that is segregated from the
in-output-attention interface by anticorrelations.

Brain State 3 (Figure 4(c)) occurred 656 times or in
27% of the analyzed 2,400 windows. This brain state dis-
plays a network constellation that is characterized by a

Figure 3. The 24 ICA components selected for the SWA. Figure 3 shows the 24 ICA components that were used for the subsequent

SWA grouped by their subsystem membership. The ICs forming the primary-perception-production subsystem are highlighted by blue-

colored labels in the figure: C06¼ primary visual network (PrimVis); C23¼ higher visual network (HighVis); C39¼ bilateral lingual gyrus

network (Ling); C38¼ bilateral inferior occipital gyrus network (IOG); C25¼ precuneus network (Precun); C11¼ bilateral sensorimotor

network (SM); C04¼ bilateral paracentral network (Paracent); C02¼ bilateral rolandic operculum network (RolOp); C09¼ bilateral

auditory network (Aud). The ICs forming the In-Output-Attention interface are highlighted by orange-colored labels in the figure:

C07¼ anterior cingulate network (ACC); C17¼ bilateral posterior insula (pIns) network; C08¼ bilateral supplementary motor area

(SMA); C28¼ dorsal attention network (DAN); C29¼ frontoparietal network (FPN); C31¼ right pars triangularis network (rTriang);

C26¼ bilateral inferior frontal gyrus network (bilIFG); C32¼ bilateral middle frontal gyrus network (bilMFG). The ICs constituting the

higher cognition functions subsystem are highlighted by recolored labels in the figure: C12¼ right executive-control network (RECN);

C24¼ left executive-control network (LECN); C05¼ language network (Lang); C20¼ bilateral fusiform gyrus network (Fus);

C30¼ bilateral posterior middle temporal gyrus network (pMTG); C03¼ posterior DMN (pDMN); C21¼ anterior DMN (aDMN).

SWA¼ sliding windows analysis; ICA¼ independent component analysis; ICs¼ independent components.
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coupling of the visual, motor, and auditory networks
with the networks representing the in-output-attention
interface. In addition, it shows a clear decoupling from
the higher order networks represented by right executive-
control network, LECN, Lang, aDMN, and pDMN,
which show a strong positive coupling with each other.

A subsequent t test aimed to elucidate potential group-
specific differences of the intrinsic functional brain
dynamics in patients and healthy controls. While the
healthy controls spent approximately the same time in
each of the three brain states (between 35 and 45 win-
dows), the concussed group spent most of the time in
Brain State 2 (about 65 windows) and clearly less time
(around 20 windows) in the Brain States 1 and 3. The
t test revealed groupwise significant differences between
the dwell times for Brain States 2 and 3. The concussed
group spent significantly more time in Brain State 2
(t¼ 2.62; p¼ .0254) than the healthy controls, and the
latter spent significantly more time in Brain State 3
(t¼ 2.532; p¼ .0302) than the concussed group (Figure 5).

GTA Analysis of the White Matter Architecture

Using the criteria described in the Methods section (see
Figure 6 for illustration and Table 3 for the statistics), we
identified 36 nodes as representing the rich club nodes in
the healthy controls (Figure 7(a) and Table 4). The indi-
vidual dwell times of the brain states were correlated with
the corresponding values of nodal strength and between-
ness connectivity. Thirteen nodes showed a significant cor-
relation before correction for multiple comparisons
(Table 4); however, only one association of individual
dwelling time in Brain State 3 and nodal strength in the
most rostral part of the left middle frontal gyrus (MFG;
the node labeled Frontal_Mid_Orb in the AAL—Tzourio-
Mazoyer et al., 2002, see Figure 7(b)—describes an ana-
tomical region in the orbital part of the left middle frontal
gyrus (MFG)—Rolls et al., 2015) was high enough to
survive the subsequent correction of 108 (36 nodes, 3
brain states) simultaneous comparisons by applying the
false discovery rate correction (Spearman’s r¼�.86).

Figure 4. The three brain states. (a–c) The different network

configurations of the three brain states that were extracted using

k-mean clustering of the 2,400 windows (200 windows of 30

TRs¼ 60s length for each of the 12 participants) that were

analyzed in the context of the SWA. The cluster matrixes show the

24 ICs arranged in three groups; group membership is indicated by

colored bars on the left side (blue¼ ICs representing primary

perception [auditory and visual] and production [motion] net-

works, orange¼ ICs representing attention networks, and red

representing higher order cognitive network). Red rectangles

highlight positive correlations or coupling between networks/ICs,

Figure 4. Continued

and blue rectangles highlight negative correlations or decoupling

between the networks/ICs. Further, positive correlations between

networks/ICs and subsystems are coded in warm/red colors, and

negative correlations between networks/ICs and subsystems in

cold/blue colors.

SWA¼ sliding windows analysis; IC¼ independent components;

IOG¼ inferior occipital gyrus; ACC¼ anterior cingulate;

SMA¼ supplementary motor area; DAN¼ dorsal attention net-

work; FPN¼ frontoparietal network; LECN¼ left executive-con-

trol network; RECN¼ right executive-control network;

aDMN¼ anterior default mode network; pDMN¼ posterior

default mode network; MTG¼middle temporal gyrus.

(continued)
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Discussion

In this present pilot study, we set out to investigate the
consequences and implications of hyperconnectivity in
fMRI resting-state networks and to determine how the
injury-related structural changes are associated with the
functional phenomenon of hyperconnectivity in a group
of adolescents with concussion.

For this purpose, we reanalyzed a subsample of a data
set from our previous studies that showed hyperconnec-
tivity in adolescents diagnosed with concussion (Borich
et al., 2015) as well as diffuse axonal injuries (Virji-Babul
et al., 2013) and formulated two hypotheses: (a)
Hyperconnectivity or the prolonged synchronization of
parts of the intrinsic network architecture will be evident
as a disruption of the highly dynamical interplay between
the different ICNs in the adolescents diagnosed with con-
cussion compared with network dynamics of the healthy
controls, and (b) the structural integrity of brain regions
belonging to the so-called rich club will be associated with
the disrupted intrinsic brain dynamic in adolescents with
concussion.

By using a SWA to model three common brain states
or network-configurations for the concussed and the
healthy adolescents, we confirm our first hypothesis. We
show that concussed adolescents spent the majority of
time in Brain State 2 within the context of resting state

Figure 5. Mean dwell time versus brain states. Illustration of the

group-specific differences in dwell time. While the healthy controls

spent about the same time in each of the brain states, the con-

cussion group spent most of the time during the resting-state scan

in Brain State 2 and clearly less time in the Brain States 1 and 3. The

t test revealed groupwise significant differences between the dwell

times for Brain States 2 and 3. The concussion group spent sig-

nificantly more time in Brain State 2 (t¼ 2.62; p¼ .0254) than the

healthy controls, and the latter spent significantly more time in

Brain State 3 (t¼ 2.532; p¼ .0302) than the concussion group.

TBI¼ traumatic brain injury; HC¼ healthy control; SEM¼ standard

error of the mean.

Figure 6. Weighted rich club distribution of the adolescents diagnosed with concussion and the healthy controls.

RC¼ rich club.
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and therefore seemed to be quasi stuck in this brain state.
In contrast, healthy adolescents switched dynamically
and smoothly between three brain states and spend
approximately the same time in each state. In addition,
while the adolescents with concussion spent significantly
more time in Brain State 2 than the healthy adolescents,

the latter spend significantly more time in Brain State 3
than the concussed group.

We also confirm our second hypothesis by using GTA
(nodal strength, betweenness centrality), DTI, and FA as
the diffusion characteristics describing the integrity of the
structural brain connectivity to model the rich club mem-
bers. We found that the nodal strength of a rich club node
in the most rostral part of the left MFG was negatively
associated with the length of time or dwell time that the
adolescents spent in Brain State 3. As the SWA had pre-
viously revealed that the adolescents with concussion
spent significantly less time than their healthy counter-
parts in Brain State 3, we interpret this finding to mean
that the higher nodal strength in this left frontal region is
associated with less time spent in Brain State 3, and this
may be related to the persistent, injury-related axonal
changes. These axonal changes may inhibit the smooth
and dynamic transition from one brain state to another.
In particular, switching from Brain State 2 to brain state
3 seems to be more affected by the consequences of type
of injury.

While our pilot study is the first study to focus on how
concussion-related hyperconnectivity affects the dynam-
ics of the intrinsic activity of the brain in adolescents, two
other studies have investigated this relationship in adults
with TBI that are important to mention. Mayer et al.
(2015) used the same analysis methods, that is, a station-
ary ICA to model the ICNs followed by a SWA, and the
same software, the Group ICA of fMRI Toolbox (GIFT;
http://mialab.mrn.org/software/gift/). However, there are
important differences between the two studies. Our study
sample was highly homogeneous (i.e., very small age
range, similar socioeconomic background and educa-
tional level, same physical activity level, and the injured
adolescents had sustained a concussion while playing ice
hockey). The study sample reported by Mayer et al.
(2015) was well powered with 48 patients and 48 healthy
controls; however, the concussed patients were recruited
from local emergency departments and had a much
more heterogeneous demographic. In addition, the two
studies differ in the time between injury and MRI data
acquisition. The cohort in the Mayer et al. (2015) study

Table 3. K-Level Range of Significant Differences in the Rich Club Distribution Between Healthy Controls and Patients.

K level K1 K2 K3 K4 K5 K6 K7 K8 K9 K10 K11 K12 K13 K14 K15

Wilcoxon W 36.0 33.0 38.0 37.0 32.0 32.0 29.0 28.0 23.0 21.0 24.0 27.0 27.000 29.0 26.0

Z �1.0 �.964 �.160 �.321 �1.123 �1.123 �1.604 �1.764 �2.567 �2.887 �2.406 �1.925 �1.925 �1.604 �2.085

Exact Sig.

(one tailed)

.500 .186 .452 .389 .145 .144 .063 .044* .004* .001* .008* .030* .030* .063 .019*

Note. Table 3 shows the results of the one-sided nonparametric Wilcoxon–Mann test to determine the k levels for which the rich club coefficient of the

healthy controls was significantly higher than the rich club coefficient of the patients. The bold letters indicate the k levels of the rich club distribution for

which we found significant differences between healthy and adolescents with concussion.

Figure 7. Illustration of the rich club members in the healthy

controls. (a) Localization of the analyzed rich club nodes in the

healthy controls. The red color indicates a rich club node, the size

of the red nodes relates to their degree. Yellow marks the node in

the most rostral part of left middle frontal gyrus whose value in

nodal strength value was significantly associated (Spearman’s

r¼�.86) with the subjects’ dwell time in Brain State 3. (b)

Localization (regions highlighted by red circle) of the node in the

AAL template.
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underwent the MRI examination in the first 21 days after
the injury (average time between injury and MRI¼ 14
days), while the MRI data of our adolescents were
acquired on average, 27 days after injury. Furthermore,
Mayer et al. (2015) proposed an a priori hypothesis,
expecting to find altered intrinsic dynamics in the DMN
and the subcortical regions of the brain in the concussed
group. They also used different outcome measurements,
as they computed the standard deviation across the slid-
ing windows correlation time series as a summary of tem-
poral variability, and following this rationale, a high
standard variation was interpreted as an indicator of a
variable or more less stable functional connections
between two ICNs (Mayer et al., 2015). To quantify the
intrinsic brain dynamics in a global and spatially invari-
ant way with a single parameter, the authors used an
additional measurement, the so-called DisCo-Z (Mayer
et al., 2015). They found reduced connectivity in the
static connectivity in the DMN in the TBIs before false
discovery rate correction and a trend for decreased
dynamic connectivity in patients across all ICNs mea-
sured by the DisCo-Z. After correcting for multiple com-
parisons, the authors did not find evidence for significant
group differences in the static connectivity measurement
nor in the computed dynamic parameters. Due to these
differences, the findings of our pilot study and those of
Mayer et al. (2015) cannot easily be compared.

Hellyer et al. (2015) conducted a study to evaluate the
importance of intrinsic metastability as an operating prin-
ciple of the brain. The term metastability describes a spe-
cific modus operandi of the brain in which neural
ensembles are able to coordinate rapidly, flexibly enga-
ging and disengaging without becoming locked into fixed
interactions (Hellyer et al., 2015). Metastability at rest
was found to be higher than during a focused cognitive
task (Hellyer et al., 2014). High metastability during rest
is thought to represent a state of the brain with large
variability in functional configuration. Therefore, high
metastability may be unfavorable during goal-driven
behavior and cognitive tasks as these require a specific
and stable configuration of task-related brain networks
(Hellyer et al., 2014). The condition after a TBI was
chosen by the authors in particular because it represents
a preeminent example of white matter disconnection dis-
order producing characteristic cognitive impairments by
affecting processing speed and cognitive flexibility
(Hellyer et al., 2015). For this purpose, the authors ana-
lyzed the resting-state fMRI and DTI data of 63 patients
(M age 37.4 years, the majority of the patient sample was
diagnosed with moderate to severe TBI) in the chronic
phase of TBI (on average 5.48 months after injury) and
27 controls. They found that the TBI group was charac-
terized by low general metastability and a widespread
reduction in FA across the white matter skeleton.

Table 4. Identification of the Rich Club Nodes in the Healthy Controls.

Node Degree <0.05 uncorr. Node Degree <0.05 uncorr.

Precuneus L 59 BS2-NS Frontal Sup L 38

Putamen L 57 Hippocampus R 38

Occipital Mid L 48 BS3-BC Occipital Sup L 38

Thalamus L 48 BS3-NS BS3-BC Temporal Inf R 38 BS1-BC

Frontal Sup R 47 Frontal Inf Orb L 37 BS2-NS

Putamen R 47 Frontal Inf Orb L 37 BS2-BC BS3-BC

Thalamus R 47 Caudate R 37 BS2-BC

Parietal Sup L 45 Frontal Sup Orb L 36

Precuneus R 45 Frontal Mid R 36

Temporal Mid R 44 BS1-BC Frontal Mid Orb L 36 BS3-NS*** BS3-BC

Occipital Mid R 44 Cuneus L 36

Frontal Mid Orb R 43 Occipital Sup R 36 BS2-BC

Frontal Sup Medial L 42 BS3-NS BS3-BC Occipital Inf R 36 BS2-NS BS2-BC

Temporal Mid L 42 Postcentral R 36

Frontal Sup Orb R 41 Temporal Pole Mid R 36

Insula L Lingual L 40 Hippocampus L 35

Lingual L 40 Calcarine R 35

Parietal Sup R 40 Pallidum R 35 BS2-NS

Note. List of the 36 rich club nodes in the structural brain architecture of the healthy adolescents arranged in descending order of their degree value.

BS¼ brain state; NS¼ nodal strength; BC¼ betweenness centrality. The three asterisks *** indicate the only node that showed a negative significant

association of nodal strength and dwell time in Brain State 3 after false discovery rate correction for multiple comparisons.
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Further, the global metastability was significantly asso-
ciated with the white matter integrity only in the TBI
group. This was particularly evident in the integrity of
the white matter tracts connecting the frontal cortex
with the thalamus (Hellyer et al., 2015). In combination
with the cognitive and behavioral results, Hellyer et al.
interpreted the general low metastability in the TBI group
as an indicator that their brain needs more time and is
less reliable when changing between different cognitive
states and has a generally smaller repertoire of brain
states to facilitate cognitive processes. In spite of the dif-
ferent methodological approaches and etiology of brain
injury, the main findings across these studies are similar:
Individuals across the spectrum from mild to severe TBI
show impaired temporal dynamics that is reflected as
impaired switching from one brain configuration to
another.

How this impairment or delayed switching impacts
cognition and behavior is still unclear. Because we have
no detailed neuropsychological data of our study sample,
we can only cautiously speculate based on the cognitive
and behavioral problems that are frequently reported in
the literature. We do this cautiously as we are well aware
that our adolescent cohort is undergoing a rapid phase of
brain development, especially in the white matter archi-
tecture, and findings from this age-group cannot easily be
generalized to other age-groups.

We found that the adolescents with concussion of our
study sample spent significantly more time in a brain state
whose network configuration pattern is characterized by
decoupling or segregation of the three subsystems, that is,
the visual, motor, and auditory network forming the pri-
mary-perception-production subsystem, the attentional
networks grouping together as an in-output-attention
interface and networks representing the higher order cog-
nitive subsystem. In contrast, the healthy controls spent
significantly more time in a brain state where the pri-
mary-perception-production subsystem and the atten-
tional subsystem showed a high positive coupling or
integration. Guided by these distinct differences of the
two brain states, we discuss the potential behavioral
and cognitive consequences of our findings.

Attention is a highly complex function that can be
divided into different cognitive operations that are
themselves quite complex. Attention has to be allocated
and the focus of attention has to be maintained during
the task at hand and irrelevant external distractions must
be disregarded. Simultaneously, the brain has to be
able to disengage efficiently and quickly to reallocate its
attentional focus as soon as it detects an unexpected or
salient external event to which it needs to react in a
behaviorally adaptive way (Corbetta et al., 2000;
Corbetta and Shulman, 2002). All these different cogni-
tive suboperations are accomplished in the brain by a
timely and fine-tuned interplay of different attention

networks with the visual and auditory networks as
input-processing systems and the motor network as a
(re)acting system (Corbetta et al., 2000; Corbetta and
Shulman, 2002).

Our findings suggest that the intrinsic functional archi-
tecture of adolescents with concussion appears to be
stuck in a network configuration that is quite distant
from the network configuration needed for attentional
processes. Specifically, these dynamics seem to gravitate
toward a configuration that is characterized by an inher-
ent functional segregation of the functional networks that
are required for attention. The necessary reconfiguration
to meet the demands of these attention operations as well
as the stable maintenance of this configuration over the
time are likely to be more time-consuming, energetically
costlier and more exhaustive for a brain recovering from
concussion than for a healthy brain.

We cautiously interpret our findings in light of findings
that show that transient cognitive problems in the
domains of executive-control, long-term memory, work-
ing memory, and processing speed in individuals with
concussion (Toledo et al., 2012; Howell et al., 2013;
Mayr et al., 2014; Barker-Collo et al., 2015). Each of
these cognitive functions contains an attentional compo-
nent, that is, either requiring focused concentration for a
prolonged period of time or the ability to quickly disen-
gage and reorient to a new stimulus.

The inability of the adolescents with concussion to
switch as quickly and smoothly as their healthy peers
into a more suitable network-configuration for attentional
processes seems to be associated with an injury-caused
white matter abnormality of a region underlying the
most rostral part of the left middle frontal gyrus
(MFG). Our structural graph theoretical analyses
revealed that the nodal strength of this region was signifi-
cantly negatively associated with the dwell time in Brain
State 3. Nodal strength is a graph analysis metric that not
only takes in account the number of connections of a
region but also weights the connections by their strength.
A high value in nodal strength can be caused either by the
number of connections, or by the strength of these con-
nections, or by the combination of both elements. We
used FA to model the strength of a connection. FA quan-
tifies the degree of directionality of diffusion of water in
the brain tissues. While water molecules can freely diffuse
in all directions in the cerebrospinal fluid and almost
unconstrained in the gray matter, that is, the diffusion is
isotropic, the white matter axons constrain the freedom of
the directionality of diffusion. The main diffusion direc-
tion in healthy, well-organized and fully myelinated white
matter is along the axons, that is, the diffusion is practic-
ally one-directional or anisotropic (Niogi and Mukherjee,
2010).

Although a high FA value is commonly interpreted as
indicator of white matter integrity and therefore an
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appropriate feature to describe connection strength,
abnormally elevated FA values, that is, higher FA
values than in the healthy controls in particular, are typ-
ically found in individuals with concussion during the
acute and subacute periods (Niogi and Mukherjee,
2010; Eierud et al., 2014). These elevated values are inter-
preted as the consequence of trauma-related axonal swel-
ling that transiently restricts the interstitial space, which
results in an increase in anisotropic diffusion and in
higher FA values in the regions of axonal swelling
(Niogi and Mukherjee, 2010). In line with this, we inter-
preted the higher nodal strength value found in the white
matter underlying the most rostral part of the left middle
frontal gyrus in the adolescents with concussion as caused
by the higher FA values in this region and as an indicator
of injury-related persistent axonal swelling.

Furthermore, we were able to identify this region as
a rich club member and by virtue of this membership as
a highly influential hub as well as a constituent region
of the structural backbone of the brain in our adoles-
cent study sample. It is still an open question how the
coherent and dynamically changing spatiotemporal pat-
terns of slow frequent (<0.1 Hz) spontaneous fluctu-
ations of the BOLD-signal, which we measure when
we acquire resting-state fMRI data, emerge from by
the underlying white matter architecture (Park and
Friston, 2013). While the underlying white matter
tracts certainly constrain the functional repertoire of
this intrinsic activity and a direct structural connection
predicts a functional connection (Hagmann et al., 2008;
Deco et al., 2016; Betzel et al., 2016), the opposite con-
clusion cannot be drawn. An existing structural connec-
tion is not at all necessary for the emergence of intrinsic
connectivity between two regions of the same network
(Betzel et al., 2016; Miŝić et al., 2016) and even less for
the existence of temporal and spatial dynamical inter-
actions between networks or single network regions (de
Pasquale et al., 2012; Karahanoğlu and Van de Ville,
2015; Betzel et al., 2016; Miŝić et al., 2016). Studies
investigating the question how the intrinsic dynamics
of the brain are related to the underlying anatomical
network (Gollo et al., 2015; Betzel et al., 2016; Deco
et al., 2016; Miŝić et al., 2016) agree that the white
matter configuration of densely interconnected brain
regions, which was dubbed rich club because of the
constituent regions’ tendency to mainly connect among
peers, that is, among similar highly influential hub
nodes than themselves (van den Heuvel and Sporns,
2011), is particularly important. These studies seem to
corroborate our argument that an injury-related struc-
tural impairment in only a single brain region can rea-
sonably be associated with the slowed-down dynamics
of several different resting-state networks that we estab-
lished as a characteristic functional feature in the brains
of the concussed group.

Limitations

The study presented here is a pilot study and was moti-
vated by our interest to gain a better understanding of
what hyperconnectivity means in concussion. Because the
research question of the former projects differed from our
current research interest, we did not have the neuropsy-
chological data necessary to directly relate our functional
and structural findings to the behavioral and cognitive
problems of our concussed group but had to associate
them to behavioral findings reported in the literature.

In addition, resting-state data are notoriously noisy,
and the results of resting-state analyses are highly sensi-
tive to motion artifacts. This problem is exacerbated
when dynamical analysis methods are used as we did.
As a consequence of our efforts to minimize all possible
corrupting confounds caused by motion artifacts as rigor-
ously as possible, we had to exclude 10 participants of the
original data set and ended up with only 6 participants in
each group.

One advantage of this small sample size is that we have
a highly homogeneous sample that was further matched
for all possible residual motion confounds that may have
survived our rigorous efforts to reduce them. Because of
this, we are confident that that our findings are directly
linked to the consequences of a concussion and not due to
other factors.

Conclusion

The consequences of concussion are still not very well
understood. We used a combination of recently devel-
oped analysis methods—dynamical resting-state analysis
and GTA—to better understand the changes in brain
structure and functions following a concussion and how
these changes relate to each other.

Our preliminary results reveal that concussion results
in specific changes in network dynamics that are charac-
terized by a lack of flexibility in shifting between two
brain states of which one is characterized by a clear seg-
regation of the primary-perception-production subsystem
from the attentional subsystem and the other by a clear
integration of the primary-perception-production subsys-
tem from the attentional subsystem. We suggest that the
lack of dynamic flexibility in the concussed group may be
due an increased nodal strength of a rich club node in the
most rostral part of the left MFG. We interpret the
increased nodal strength of this frontal region as an indi-
cator of changes in the axonal structure of the underlying
white matter structure, the left corona radiata, and cau-
tiously speculate that our findings may explain why ado-
lescents with concussion have difficulties with tasks that
require focused attention over a long time period or
switching the attentional focus when salient or unex-
pected new external stimuli require a reallocation of
attention. Longitudinal studies with a larger sample
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combined with specific cognitive measures will provide
further insights into the nature of these changes following
concussion.

Summary Statement

Adolescents with concussion show significant changes in brain

dynamics in the resting state characterized by a lack of dynamic

flexibility and associated changes in network structure. These alter-

ations in network organization may reflect attention deficits typic-

ally reported following concussion.
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Miŝić, B., Betzel, R. F., de Reus, M. A., van der Heuvel, M. P.,

Berman, M. G., McIntosh, A. R., & Sporns, O. (2016).

Network-level structure-function relationship in human neocor-

tex. Cereb Cortex, 26(6): 3285–3296.

Newsome, M. R., Li, X., Wilde, E. A., Ott, S., Biekman, B., Hunter,

J. V., Dash, P. K., Taylor, B. A., & Levin, H. B. (2016).

Functional connectivity is altered in concussed adolescents ath-

letes despite medical clearance to return to play: A preliminary

16 ASN Neuro



report. Front Neurosci. Advance online publication.

doi:10.3389/fneur.2016.00116.

Niogi, S. N., & Mukherjee, P. (2010). Diffusion tensor imaging of

mild traumatic brain injury. J Head Trauma Rehabil, 25(4):

241–255.

Olsen, A., Brunner, J. F., Indredavik Evensen, K. A., Finnanger, T.

G., Vik, A., Skandsen, T., Landrø, N. I., & Håberg, A. K.

(2015). Altered cognitive control activations after moderate-

to-severe traumatic brain injury and their relationship to injury

severity and everyday-life function. Cereb Cortex, 25(8):

2170–2180.

Park, H. J., & Friston, K. (2013). Structural and functional brain

networks: From connections to cognition. Science, 342,

12384111–12384118.

Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L., &

Petersen, S. E. (2012). Spurious but systematic correlations in

functional connectivity MRI networks arise from subject

motion. Neuroimage, 59(3): 2231–2240.

Rolls, E. T., Joliot, M., & Tzourio-Mazoyer, N. (2015).

Implementation of a new parcellation of the orbitofrontal

cortex in the automated anatomical labeling atlas.

Neuroimage, 122, 1–5.

Rousseeuw, P. J. (1987). Silhouettes: A graphical aid to the inter-

pretation and validation of cluster analysis. Comput Appl Math,

20, 53–65.

Rubinov, M., & Sporns, O. (2010). Complex network measures of

brain connectivity: Uses and interpretations. Neuroimage, 52,

1059–1069.

Rubinov, M., & Sporns, O. (2011). Weight-conserving character-

ization of complex functional brain networks. Neuroimage, 56,

2068–2079.

Sharp, D. J., Scott, G., & Leech, R. (2014). Network dysfunction

after traumatic brain injury. Nat Rev Neurol, 10(3): 156–166.

Shumskaya, E., Andriessen, T. M., Norris, D. G., & Vos, P. E.

(2012). Abnormal whole-brain functional networks in homoge-

neous acute mild traumatic brain injury. Neurology, 79(2):

175–182.

Sours, C., George, E. O., Zhou, J., Roys, S., & Gullapalli, R. P.

(2015). Hyper-connectivity of the thalamus during the early

stages following mild traumatic brain injury. Brain Imaging

Behav, 983, 550–563.

Sours, C., Zhou, J., Janowich, J., Arabi, B., Shanmuganathan, K., &

Gulapalli, R. P. (2013). Default mode network interference in

mild traumatic brain injury – A pilot study. Brain Res, 6(1537):

201–215.

Toledo, E., Lebel, A., Becerra, L., Minster, A., Linman, C., Maleki,

N., Dodick, D. W., & Borsook, D. (2012). The young brain and

concussion: Imaging as a biomarker for diagnosis and progno-

sis. Neurosci Biobehav Rev, 36(6): 1510–1531.

Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello,

F., Etard, O., Delcroix, N., Mazoyer, B, & Joliot, M. (2002).

Automated anatomical labelling of activations in spm using a

macroscopic anatomical parcellation of the MNI MRI single

subject brain. Neuroimage, 15(1): 273–228.

Van den Heuvel, M. P., & Sporns, O. (2011). Rich club organiza-

tion of the human connectome. J Neurosci, 31(44):

15775–15786.

Virji-Babul, N., Borich, M. R., Makan, T., Frew, K., Emery, C. A.,

& Boyd, L. A. (2013). Diffusion tensor imaging of sports-reated

concussion in adolescents. Pediatr Neurol, 48(1): 24–29.

Muller and Virji-Babul 17


