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COVID-19 is hypothesized to be linked to the host’s excessive inflammatory immunological response to SARS-CoV-2 infection,
which is regarded to be a major factor in disease severity and mortality. Numerous immune cells play a key role in immune
response regulation, and gene expression analysis in these cells could be a useful method for studying disease states, assessing
immunological responses, and detecting biomarkers. Here, we developed a machine learning procedure to find biomarkers that
discriminate disease severity in individual immune cells (B cell, CD4+ cell, CD8+ cell, monocyte, and NK cell) using single-cell
gene expression profiles of COVID-19. The gene features of each profile were first filtered and ranked using the Boruta feature
selection method and mRMR, and the resulting ranked feature lists were then fed into the incremental feature selection
method to determine the optimal number of features with decision tree and random forest algorithms. Meanwhile, we
extracted the classification rules in each cell type from the optimal decision tree classifiers. The best gene sets discovered in this
study were analyzed by GO and KEGG pathway enrichment, and some important biomarkers like TLR2, ITK, CX3CR1, IL1B,
and PRDM1 were validated by recent literature. The findings reveal that the optimal gene sets for each cell type can accurately
classify COVID-19 disease severity and provide insight into the molecular mechanisms involved in disease progression.

1. Introduction

Since the outbreak of the novel coronavirus at the end of
2019, the novel coronavirus has spread to all regions of the
world in less than one and a half years, causing more than
156 million confirmed infections and 3.2 million deaths
worldwide, leading to the most severe viral pandemic world-
wide in the past 100 years [1]. After the outbreak, the new
coronavirus was first named 2019-novel coronavirus
(2019-nCoV); later, the International Committee on Taxon-
omy of Viruses (ICTV) classified it as severe acute respira-
tory syndrome coronavirus- (SARS-CoV-) related virus

and renamed it as SARS coronavirus-2 (SARS-CoV-2). The
World Health Organization (WHO) named the disease
caused by SARS-CoV-2 as coronavirus disease 2019
(COVID-19).

COVID-19 was first reported at the end of 2019. In early
January 2020, researchers had isolated and identified the
virus for the first time in the world, completed its whole
genome sequencing, and submitted the genome sequence
information of SARS-CoV-2 to the WHO. According to its
genome sequence information, the virus is a new type of
coronavirus, which is evolutionarily similar to the SARS
coronavirus that caused “SARS” in 2003, and belongs to
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the β-coronavirus genus of the coronavirus family [2].
SARS-CoV-2 has a 79% sequence consistency with SARS
coronavirus and a 50% sequence consistency with the Mid-
dle East Respiratory syndrome coronavirus (MERS-COV)
[3]. Similar to other β-coronaviruses, SARS-CoV-2 is a
single-stranded positive-strand RNA virus. Its genome is
composed of a 30 kb positive-stranded RNA and contains 6
functional open reading frames (ORF), encoding replicase
(ORF1a/ORF1b), spike protein (S protein), envelope protein
(E protein), membrane protein (M protein), and nucleocap-
sid protein (N protein) [4].

According to a large-scale cohort study conducted by the
Chinese Center for Disease Control and Prevention
(CCDC), more than 19% of patients diagnosed with
COVID-19 will develop severe or critical illness [5]. The
clinical symptoms of SARS-CoV-2 infection include fever,
pneumonia, sepsis, respiratory disorders, acute respiratory
distress syndrome (ARDS), multiple organ damage, and so
on [6]. In addition, there are also many reports of impaired
taste and smell all over the world [7]. Patients infected with
SARS-CoV-2 may also have no pathogenic symptoms, such
as presymptomatic patients and asymptomatic patients.
Although most patients only show mild symptoms, the con-
dition of COVID-19 develops rapidly, especially in the
absence of adequate medical and nursing care. Several
COVID-19 infection-related signatures and rules at different
omics levels have been reported by machine learning, which
may contributed to exploring the pathology, improving the
diagnosis accuracy of COVID-19 and finding new targets
for vaccine design [8–11].

SARS-CoV-2 infection will cause a series of physiological
and pathological changes in the body, including the stimula-
tion of innate immunity and adaptive immunity. On the one
hand, innate immunity and inflammation can produce anti-
viral effects and further stimulate adaptive immunity, help-
ing the body to resist viral infections; on the other hand,
excessive innate immunity and inflammatory response can
lead to immune overload, inflammatory factor storms, and
microthrombosis, which is considered to be one of the main
pathogenic causes of ARDS and multiple organ damage
caused by SARS-CoV-2 [12]. COVID-19 induces the pro-
duction of a large number of inflammatory factors in
patients, and its disease process and severity are closely
related to the degree of immune response. The infection of
COVID-19 can affect the immune cells and inflammation
levels in the body including inflammatory factors, chemo-
kines, growth factors, metabolites, and lipids. For example,
Xu et al. [13] collected blood samples from COVID-19
patients and found that compared with healthy volunteers,
20 types of cytokines, chemokines, and growth factors
(CCGFs) were increased in the plasma of patients with mild,
severe, and dead COVID-19 patients. Moreover, there were
16 kinds of CCGFs, including HGF, CXCL8/IL-8, CCL7/
cP-3, CCL2/McP-1, CXCL9/MIG, CXCL10/IP-10, IL-6, IL-
18, IL-2, M-CSF, IL-1Rα, IL-2Rα/CD25, IFN-γ, CC L3/
MIP-1α, FGF, and SCF which were abnormally elevated in
patients who died from COVID-19. COVID-19 patients
with different disease severity exhibit significantly altered
plasma proteins which can be used as biomarkers to predict

different clinical outcomes of COVID-19 patients, such as
from severe disease to death, from mild disease to severe dis-
ease, and from severe or mild disease to recovery. A recent
research conducted proteomic systematic analysis of plasma
protein in patients with COVID-19 death, severe, and mild
disease progression and found a large number of unique
protein changes in patients with different clinical outcomes,
involving a variety of physiological and pathological path-
ways, such as platelet shedding, complement and coagula-
tion system, and metabolism [14]. To further explore the
variation of various immune cells in blood of COVID-19
patients, here we incorporated single-cell profiles of periph-
eral blood mononuclear cells (PBMC) from 14 healthy con-
trols (HC) and 33 single-cell profiles of COVID-19 patients
including 3 moderate patients, 5 severe patients, and 25 crit-
ical patients and identified the decision rules and genes that
clearly distinguish the immune cells in HC and COVID-19
patients of different severity, to figure out the complex
immune process of SARS-CoV-2 infection and discover the
immune response variation in patients with different sever-
ities, by which we hope to provide insight into the potential
pathogenesis, diagnosis, and prognosis of COVID-19.

2. Materials and Methods

2.1. Study Design. The machine learning-based workflow in
this study is shown in Figure 1, which has three main sec-
tions: (1) data collection for five types of immune cells, (2)
features of each dataset are filtered and ranked using Boruta
and mRMR, and (3) identifying key biomarkers and classifi-
cation rules using incremental feature selection method and
performing biofunction analysis.

2.2. Datasets. The expression profiles of five cell types (B cell,
CD4+ T cell, CD8+ T cell, monocytes, and NK cell) were
retrieved from the GEO database with accession
GSE161918 (https://www.ncbi.nlm.nih.gov/geo/query/acc
.cgi?acc=GSE161918) [15]. These expression profiles include
three groups, COVID-19 critical, COVID-19 severe, and
healthy control, and the sample size for each group in each
profile is provided in Figure 2(a). Furthermore, each expres-
sion dataset contains 473 gene attributes, and we will employ
a computational workflow to extract the optimal gene set
from these gene features that distinguishes COVID-19 states
for a specific cell type.

2.3. Boruta Feature Filtering. Boruta is a random forest-
based feature selection algorithm [16]. To begin, it intro-
duces randomness to the dataset by generating shadow fea-
tures from the original features. It then uses the extended
dataset to train a random forest classification model and
assesses the importance of each feature. It analyzes whether
a real feature is more important than the best shadow feature
in each iteration, removing features it finds trivial. The algo-
rithm comes to a halt after all features have been confirmed
or rejected. This work utilized the Boruta tool from https://
github.com/scikit-learn-contrib/boruta_py with default
parameters.

2 BioMed Research International

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE161918
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE161918
https://github.com/scikit-learn-contrib/boruta_py
https://github.com/scikit-learn-contrib/boruta_py


2.4. mRMR. Based on the results of Boruta feature filtering,
mRMR [17] was applied to rank the retained features
according to maximum relevance with the category and
the minimum redundancy between features and features.

The mutual information (MI) is defined as shown in the
following equation:

I x, yð Þ =∬p x, yð Þ log p x, yð Þ
p xð Þp yð Þ dxdy, ð1Þ

where pðx, yÞ represents the joint probabilistic density of x
and y and pðxÞ and pðyÞ represent the marginal probabilistic
densities of x and y, respectively.

Let Ω denotes the already selected gene features, f i or f j
represents a gene feature inΩ, and C is the dataset label. The
mRMR function is defined as follows:

mRMR =
1
Ωj j 〠f i∈Ω

I f i, Cð Þ − 1
Ωj j2 〠

f i f j∈Ω
I f i, f j
� �

, ð2Þ

where Ið f i, CÞ indicates the mutual information between
the f i gene feature and label C and Ið f i, f jÞ represents
mutual information between f i and f j.

The mRMR program was obtained from http://www
.home.penglab.com/proj/mRMR/ for this work and run with
the default settings.

2.5. Incremental Feature Selection. IFS constructs classifica-
tion models using the supervised algorithms to determine
the best number of features in each single cell profiles [18].
In this analysis, a series of feature subsets were created using
a step size of 5 based on the ranked feature list acquired from
mRMR. For example, the top 5 features are present in the
first feature subset, and the top 10 features compose the sec-

ond feature subset. For each subset, a classifier (e.g., random
forest (RF) [19]) is trained and tested by cross-validation on
the dataset that is made up of this feature subset. An optimal
feature subset is determined when it has the best perfor-
mance in candidate feature subsets, where the performance
is evaluated by tenfold cross-validation [20]. The classifier
with such a feature subset can be built and is referred to as
the optimum classifier.

2.6. SMOTE. Since the sample size for each category in each
dataset is greatly different, the SMOTE method was used to
balance the dataset [21]. This method uses the k-nearest
neighbor algorithm to linearly synthesize new sample data
for minority classes, resulting in an equal number of samples
for each class. During the tenfold cross-validation proce-
dure, these new data are utilized to train the classification
model and improve its performance. For this analysis, we
used the SMOTE tool from https://github.com/scikit-learn-
contrib/imbalanced-learn with default parameters.

2.7. Classification Algorithms

2.7.1. Random Forest. RF [9, 11, 19, 22–25] is a classification
or regression algorithm that uses the Bagging concept of
ensemble learning by incorporating many trees. In RF, the
original data is first resampled using the bootstrap method
to generate numerous sample datasets; next, for each sample
dataset, a decision tree prediction model is built, and the
final results are obtained by voting taken from the predic-
tions of each tree. The model can handle data with a lot of
dimensions and has a quick convergence rate and few
adjustment parameters. In this study, the random forest
function in Scikit-learn [26] is utilized with default
parameters.

ResultsData collection Feature selection Incremental feature selection

356642
samples

B cell dataset

CD4+ T cell
dataset

CD8+ T cell
dataset

Monocytes
dataset

NK cell dataset

Boruta feature
selection

mRMR

Feature lists

Feature subsets

Random forest

Decision tree

SMOTE

10-fold cross-valiadtion

Optimal genes

Optimal classifiers

Classification rules

GO enrichment
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Figure 1: Computational workflow for this study. First, we applied Boruta and mRMR methods to filter and rank features of expression
profiles for different immune cells (B cell, CD4+ T cell, CD8+ T cell, monocyte, and NK cell). Then, using the incremental feature
selection method, a series of feature subsets were generated, and training samples made up of these feature subsets were used to train
decision tree and random forest with 10-fold cross-validation. Based on the evaluation metrics of the model, the optimal number of
features under each cell type was determined, and the optimal classifiers and classification rules were established as well. The GO and
KEGG functional analyses were performed on these selected gene sets.

3BioMed Research International

http://www.home.penglab.com/proj/mRMR/
http://www.home.penglab.com/proj/mRMR/
https://github.com/scikit-learn-contrib/imbalanced-learn
https://github.com/scikit-learn-contrib/imbalanced-learn


0

50000

40000

30000

20000

10000

Class name

Sa
m

pl
e s

iz
e

CO
V

ID
-1

9
cr

iti
ca

l

19
68

1
53

68
2

49
20

6
15

97
1

27
40

8

CO
V

ID
-1

9
se

ve
re

45
91

23
12

9

10
05

8
44

47

98
33

H
ea

lth
y

co
nt

ro
l

88
50

44
43

3

84
26

17
55

5
17

35
7

B cell
Cell type

CD4+ T cell
CD8+T cell

Monocytes
NK cell

(a)

0.0

1.0

0.4

75,0.637
60,0.697

70,0.762
75,0.806

85,0.868
130,0.913

165,0.74 260,0.766
310,0.837

40,0.637

0.5

0.6

0.7

0.8

0.9

0.3

0.2

0.1

5 55 105 155 205
Number of features

W
ei

gh
te

d 
F1

255 305 355

DT B cell
DT CD4+ T cell
DT CD8+ T cell
DT monocytes
DT NK cell

RF B cell
RF CD4+ T cell
RF CD8+ T cell
RF monocytes
RF NK cell

(b)

Figure 2: Continued.
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2.7.2. Decision Tree. DT [9, 22, 27–29] is built based on the
“IF-THEN” tree structure. Starting with the root node, DT
judges the test of the node and assigns the instance to its
child nodes based on the judgment result, where each node
corresponds to a test of a feature, and so on, recursively,
until the instance is assigned to a leaf node. Furthermore,
DT can produce comprehensible classification rules that sta-
tistically characterize the pattern of feature expression. The
DT was run with default parameters using the Scikit-learn
software in this work.

2.8. Measurement. The classification model’s prediction abil-
ity was evaluated using the F1 score [30–32]. It is calculated
as follows:

F1 = 2 ×
precision × recall
precision + recall

,

precision =
TP

TP + FP
,

recall =
TP

TP + FN
,

ð3Þ

where TP stands for true positive, FP for false positive, and FN
for false negative. In amultiple classification task, the precision
and recall for each class are determined first, and then, the
sample weights are used to calculate the weighted F1 score.

2.9. Enrichment Analysis. In order to investigate the biolog-
ical significance of the selected optimal genes, we employed
ontology (GO) analysis to discover the roles of these genes
and applied Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway analysis to determine the essential path-
ways. The clusterProfiler package [33] in R was used to per-
form GO and KEGG enrichment analyses, with a threshold
of p = 0:05.

3. Results

3.1. Results of Feature Selection. To identify key features in
each single-cell expression profile, irrelevant features were
first eliminated using Boruta, and then, mRMR was used
to rank the retained features according to their importance,
and the results are shown in Table S1. The lengths of the
feature lists for B cell, CD4+ T cell, CD8+ T cell,
monocytes, and NK cell were 229, 401, 263, 401, and 368,
respectively, and these feature lists would be fed into the
IFS method to identify the optimum number of features.

3.2. Results of IFS Method with DT and RF Classifiers. The
IFS method was integrated with the RF and DT classifiers
to find the best number of features and build the best classi-
fication models based on the feature lists provided by
mRMR. During the training process, SMOTE was used to
increase the amount of minority class samples, and tenfold
cross-validation and weighted F1 scores were used to assess
the model’s performance. Table S2 contains the weighted
F1 scores for each classifier in several immune cell types
with a various number of attributes. IFS curves (Figure 2
(b)) were drawn using the number of features as the x-axis
and the weighted F1 scores as the y-axis to make the
presentation easier. As can be seen from the picture, the
RF outperforms DT in each cell dataset. Under the first 85,
70, 260, 130, and 310 features, B cell, CD4+ T cell, CD8+ T
cell, monocytes, and NK cell have the best performance,
with weighted F1 values of 0.87, 0.76, 0.77, 0.91, and 0.84,
respectively. The RF that is developed using these features
is considered to be the best classifier in each cell dataset.
And the ability to distinguish the COVID-19 disease
severity at the B cell and monocytes is excellent. All of
these optimal RF classifiers perform well, demonstrating
the efficacy of the computational methods we devised in
this study.
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3.3. Classification Rules Extracted by Optimal DT Classifier.
When using the first 165, 75, 40, 75, and 60 features, B cell,
CD4+ T cell, CD8+ T cell, monocytes, and NK cell created

the best DT classifier (Figure 2(b)). DT was able to produce
interpretable classification rules that provide the basis for
quantitative gene expression. We used the best DT classifier
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Figure 3: Results of GO and KEGG enrichment analyses in different immune cell types.
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for each dataset to extract classification rules, which are
listed in Table S3. The number of rules for different disease
states in each cell type is shown in Figure 2(c). It is
obvious that the number of rules related to disease states is
high in all cell types, which will benefit the diagnosis of
COVID-19. Some important rules would be described in
Discussion.

3.4. Analysis of Biological Functions. To conduct functional
analysis of the selected optimal feature subsets, we used GO
and KEGG pathway enrichment analyses with the top 85 (B
cells), 70 (CD4+ T cell), 260 (CD8+ T cell), 130 (monocyte),
310 (NK cell) gene features, and all results are shown in
Table S4. The main GO terms and KEGG pathways enriched
in the different gene sets are provided in Figure 3. Among
them, GO terms mainly contain three parts, biological
process, molecular function, and cellular component.

4. Discussion

It has been reported that SARS-CoV-2 infection can produce
cytokine storm or cytokine release syndrome (CRS) in some
patients, which can be reflected in the increased inflamma-
tory response and increased levels of a series of inflamma-
tory factors in the blood [34]. Therefore, our study is
aimed at finding the discriminative genes and rules between
various immune cells (B cell, CD4+ T cell, CD8+ T cell,
monocytes, NK cell) in healthy control, severe, and critical
COVID-19 patients to shed new light on the immune
response changes during the infection and development of
COVID-19. We concentrated on several top features and
decision rules because they have a vital influence on the clas-
sification. Then, we performed functional enrichment analy-
sis in each cluster to explore the biological function and
discussed them further through a wide literature publication
to demonstrate our findings are trusted and convincing.
Some key genes for next analysis are listed in Table 1.

4.1. Discriminative Genes and Rules in B Cell. The top Gene
Ontology (GO) terms in B cells include interferon-gamma-
mediated signaling pathway (GO:0060333), cellular response

to type I interferon (GO:0071357), immune response-
activating signal transduction (GO:0002757), and positive reg-
ulation of cytokine production (GO:0001819) indicating the
alterant immune response in B cell belonging to HC, moder-
ate, severe, and critical COVID-19 patients. KEGG pathways
in B cells include antigen processing and presentation
(hsa04612), TNF signaling pathway (hsa04668), and NF-
kappa B signaling pathway (hsa04064) which represents that
the immune alterations may occur through TNF and NF-
kappa B signaling pathway. Therefore, based on the GO and
KEGG functions, we concentrated on the related genes.

TLR2 belongs to Toll-like receptors (TLRs) family which
are the primary receptors for innate immunity and can rec-
ognize a variety of microbial-associated molecular patterns
(MAMPs). Moreover, TLRs have specific MAMPs. For
example, the ligands of TLR2, TLR4, and TLR5 are lipid
membrane acid of Gram-positive bacteria, lipopolysaccha-
ride of Gram-negative bacteria, and flagellin of bacterial,
respectively [35]. TLRs participate in the activation of
mature B lymphocytes. The activation of B cell proliferation
and immune globulin secretion by CpG-DNA and lipopoly-
saccharide of bacterial is known to be mediated by TLR9 and
TLR4 [36, 37]. Similarly, the recognition of bacterial lipo-
proteins by TLR2 has been reported to trigger the activation
of B lymphocytes [38, 39]. The latest study found that con-
trary to the effect of TLR4 in activating T cells, TLR2 is
involved in preventing/delaying the maturation of B cells.
Simultaneous addition of TLR2 and TLR4 ligands in
in vitro experiments revealed the antagonistic effect between
these stimuli [40]. Therefore, TLR2 plays an important role
in B cell maturation and may be treated as a potential ther-
apeutic target in the treatment of COVID-19.

BCL2A1 encodes a member of BCL2 family which is a
group of heterodimers that play key roles in the regulation
of various cellular activities, such as the development of
embryonic development, homeostasis, and tumorigenesis.
The BCL2 protein is a direct transcription target of the
NF-kappa B family. It is also upregulated by various extra-
cellular signals including inflammatory cytokine TNF and
IL-1. Therefore, it is supposed that BCL2 acts as a cytopro-
tective protein which is involved in lymphocyte activation

Table 1: Essential genes involved in Discussion.

Cell type Gene symbol Description

B cell

TLR2 Toll-like receptor 2

BCL2A1 BCL2-related protein A1

CD79A CD79a molecule

CD79B CD79b molecule

NR4A1 Nuclear receptor subfamily 4 group A member 1

CD4+ T cell
ITK IL2 inducible T cell kinase

HPGD 15-hydroxyprostaglandin dehydrogenase

CD8+ T cell
CX3CR1 C-X3-C motif chemokine receptor 1

TNFAIP3 TNF alpha-induced protein 3

Monocyte
IL1B Interleukin 1 beta

IFITM3 Interferon-induced transmembrane protein 3

NK cell PRDM1 PR/SET domain 1
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and cell survival. Sochalska et al. [41] constructed a BCL2A1
conditional knockdown model and demonstrated that
BCL2A1 is a target of several key kinases that regulate the
B cell receptor’s survival signals. These enzymes include
the Brutons tyrosine kinase and the spleen tyrosine kinase.
It is believed that BCL2A1 could be utilized as a therapeutic
target for the treatment of certain B-cell-related pathologies.

CD79a and CD79b located on the surface of B cells and
functions as antigen receptor helper molecules. In the
immune system, B lymphocytes mediate humoral immunity
through the production of antibodies by plasma cells to
destroy antigens. CD79a and CD79b play an important role
in the transduction of antigen stimulation signals. Both of
them are members of the immunoglobulin superfamily and
are composed of extracellular regions, transmembrane
regions, and relatively long cytoplasmic regions. CD79a
and CD79b formed a dimer by disulfide bonding in the
extracellular region near the membrane. Both CD79a and
CD79 have polar amino acids in the transmembrane region,
which form stable BCR complexes with Ig through electro-
static interaction. The cytoplasmic regions of CD79a and
CD79b contain immunoreceptor tyrosine-based activation
motif (ITAM), which can recruit downstream signal mole-
cules to transduce signals generated by the binding of spe-
cific antigens and BCR into B cells. In addition, CD79a
protein is present throughout the life course of B cells and
is not present in other healthy cells, so it is regarded as a
marker molecule of B cells.

NR4A1 is a member of nuclear hormone receptor NR4A
family and has a main expression in immune cells. NUR77
(encoded by NR4A1), NURR1 (NR4A2), and NOR1
(NR4A3) constitute NR4A family, and they are known to be
involved in the development of B cells [42]. Immature B cells
in bonemarrow exhibit low levels of NR4A1 and increase con-
sistently during the transitional stages of the development pro-
cess. In mature B cells, the expression value of NR4A1 reaches
its peak. Park et al. [43] carried on the detailed explanation of
the function of the NR4A1 in B cell. They found that the
NUR77-deficient mice have elevated levels of all four class
antibodies, which can trigger autoimmune response and
exhibited an increase in CD38hi memory B cells and GL7+
germinal center B cells. Also, B cells in NUR77-deficient mice
that were stimulated with anti-CD40 and anti-IgM survived
better than those B cells in C57BL/6 wild-type mice. In conclu-
sion, NUR77-/- mice exhibited an autoimmunogenic B cell
response, and NUR77 plays an important role in B cell sur-
vival and activation.

4.2. Discriminative Genes and Rules in CD4+ T Cell. KEGG
pathway analysis of discriminative genes in CD4+ T cell
leads to an important term, coronavirus disease—COVID-
19 (hsa05171), directly supporting the reliability of our clas-
sifier that identified features highly related to COVID-19
infection. Hsa05171 pathway refers to that SARS-COV-2
infects alveolar epithelial cells, mainly alveolar epithelial type
2 (AEC2) cells, through angiotensin converting enzyme 2
(ACE2) receptor. And after SARS-COV-2 occupies ACE2,
serum free angiotensin II (Ang II) levels increase due to
decreased ACE2-mediated degradation, which promotes

NF-κB pathway activation via Ang II type 1 receptor (AT1R)
and finally leads to the overproduction of proinflammatory
cytokines. Therefore, COVID-19 infection may induce the
alteration of CD4+ T cell effector function and lead to aberrant
secretion of cytokines which are discussed further below.

The Tec family tyrosine kinase, ITK, mainly expressed
in T cells, is essential for the production and development
of CD4+ T cell effector function. Signal transducing by
TCR results in the activation of ITK and the combination
with multimolecular complexes including SLP-76, LAT,
Gads, Grb2, and PLC-γ1 [44, 45]. It has been proved by
several researches that the deficiency of ITK impairs the
TCR signal pathway. In ITK-deficient T cells, the phos-
phorylation and activation of PLC-γ1 tyrosine, intracellu-
lar calcium mobilization, MAP kinase activation, and
NFATc nuclear translocation are blocked [46–49]. There-
fore, under the TCR stimulation, the ITK−/− CD4+ T cell
has a decreased secretion of cytokines such as IL-2, IL-4,
IFN-γ, and FasL [46, 48, 49].

HPGD gene is located on chromosome 4q34.1 with a
length of 31 kb and consists of 7 exons. It encodes the cata-
lytic enzyme, hydroxyprostaglandin dehydrogenase 15-
(NAD) (HPGD), which catalyzed the dehydrogenation of
prostaglandin E2 (PGE2). PGE2 signaling can increase the
ratio of naive CD4+ T cells differentiating into helper T
(Th) 1 cells [46]. According to the research of Schmidleith-
ner et al. [50], Hpgd conditional knockout in mouse Treg
cells leads to the deposition of Treg cells which has func-
tional defect in visceral adipose tissue and triggers an auto-
immune response, indicating the important role of HPGD
in naive CD4+ T cells differentiation.

4.3. Discriminative Genes and Rules in CD8+ T Cell. Accord-
ing to the discriminative genes in CD8+ T cell, the top Gene
Ontology (GO) terms and KEGG pathways consist of T cell
activation (GO:0042110), Th17 cell differentiation
(hsa04659), and Th1 and Th2 cell differentiation
(hsa04658). Therefore, we suspect that the infection of
COVID-19 may influence the differentiation of T cell and
so we place emphasis on these genes.

CX3CR1 encodes a functional protein with 1065 nucleo-
tides and 355 amino acids, which is a specific and high affin-
ity receptor for the chemokine CX3CL1 and can induce
phosphorylation of downstream genes and participate in
corresponding signal transduction. Expression of CX3CR1
has been recently found to represent a subset of memory T
cell [51]. Memory T cell is a long-lived cell differentiated
from effector CD8+ T cells, and it can be divided into three
types according to the specific expression of phenotypic
markers such as KLRG1, CD127, CD27, and CX3CR1.
CX3CR1+ memory T cell is an effector memory phenotype
and has unique abilities in tumor therapy including with-
standing the toxicity of chemotherapy and proliferating
when using chemoimmunotherapy [51]. What is more,
CX3CR1+ memory T cell plays a major killing role in sec-
ondary infection, while CX3CR1- memory T cell has almost
no cytotoxicity [52]. Therefore, we can infer that the magni-
tude and duration of T-cell immune response form the
changes in expression levels of CX3CR1.
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The tumor necrosis factor alpha-induced protein 3
(TNFAIP3), as a ubiquitinated editing protein, has been
identified as a dual inhibitor of NF-κB activation and cell
death. The basic expression of TNFAIP3 was very low, but
it was quickly induced after NF-κB activation and gave rise
to the disintegration of the K63-linked polyubiquitin from
the adapter protein RIP1 replaced by the K48-linked polyu-
biquitin chain, leading to the inhibition of TNF-induced NF-
κB activation, which could be regarded as a negative feed-
back regulator of NF-κB [53]. TNFAIP3 is associated with
the development of multiple inflammatory pathologies.
Giordano et al. found that [54] TNFAIP3 selective knockout
mice exhibited robust antigen sensitivity and cytotoxicity in
CD8 T cells, with an increased generation of IL-2 and IFNγ.
Meanwhile, in vivo experiment showed more forceful antitu-
mor activity in TNFAIP3 knockout CD8 T cells.

4.4. Discriminative Genes and Rules in Monocyte. GO terms
of discriminative genes in monocyte includes positive regu-
lation of cytokine production (GO:0001819), regulation of
mononuclear cell proliferation (GO:0032944), antigen pro-
cessing and presentation of peptide or polysaccharide anti-
gen via MHC class II (GO:0002504), and negative
regulation of immune system process (GO:0002683).
SARS-CoV-2 can activate the innate immune system, trig-
gering the overproduction of proinflammatory cytokines
and the “cytokine storm,” which results in systemic inflam-
matory response syndrome and multiple organ failure.
Monocyte is an important component of the innate immune
system. Due to the infection of COVID-19, distinct changes
have taken place in monocytes including the proliferation
and function.

IL1B gene is located on chromosome 2 and encodes
interleukin-1β (IL-1β) which is mainly expressed in acti-
vated monocytes [54]. IL-1β is derived from the interleukin
1β protein precursor (proIL-1β), which is synthesized when
monocytes are stimulated [54]. ProIL-1β has few biological
functions, and through intracellular inflammasome or extra-
cellular proteases, it can be converted to mature IL-1β by
proteolytic processing [55]. As an inflammatory cytokine
with multiple effects, IL-1β plays a role in a series of inflam-
matory responses and immune regulation in the body and is
closely related to the occurrence of chronic inflammation
and the occurrence and development of tumors.

IFITM3 is a member of interferon-induced transmem-
brane proteins (IFITMs), a family of small molecule homol-
ogous proteins located in the cytoplasm and lysosomal
intima, which enable cells to develop resistance to a variety
of viruses. IFITM3 is a broad-spectrum host limiting factor,
highly induced by type I and type II interferon, and shows
antiviral activity against a variety of viruses including influ-
enza A virus (IAV), HIV-1, Ebola, SARS coronavirus, and
dengue virus. Wellington et al. [56] used CyTOF to measure
the expression level of IFITM3 in individual cell types of
human adult blood samples. It shows that IFITM3 has a
highest expression in CD16+ monocytes which can be
inferred that IFITM3. Other studies have shown that after
viral infection, IFITM3 is induced by type I interferon and
promotes the degradation of IFN regulatory factor 3 (IRF3)

by enhancing IRF3 autophagy and migration to autophago-
some, thus negatively regulating the RIG-I-like receptor-
(RLR-) mediated signaling pathway of type I interferon pro-
duction [57].

4.5. Discriminative Genes and Rules in NK. GO and KEGG
analyses of discriminative genes in NK cell both point to
the functions associated with virus infection including
response to virus (GO:0009615), viral life cycle
(GO:0019058), and viral protein interaction with cytokine
and cytokine receptor (hsa04061). NK cells are an important
part of the innate immune system and play a crucial role in
the early stage of antitumor and antivirus. There are many
ways for NK cells to kill target cells, such as directed exocy-
tosis and specific secretion of lysosomes, which are called
cytotoxic particles containing perforation protein, granzyme,
and Fas ligand [58]. Another way is to secrete INK-γ to
enhance the cytotoxicity of NK cells after encountering sus-
ceptible target cells or stimulated by IL-2, IL-12, IL-15, and
IL-18 released by other cells [58, 59]. PRDM1 is a transcrip-
tion inhibitor and acts as a key negative regulator of NK
function. It synergistically inhibits TNF-α, TNF-β, and
IFN-γ by directly binding to multiple conserved regulatory
regions. Downregulated expression of PRDM1 causes
increased expression of TNF-α and IFN-γ, whereas upregu-
lated expression blocks cytokine generation [60].

Collectively, in various immune cells (B cell, CD4+T cell,
CD8+T cell, monocyte, NK cell), the top identified discrimi-
native feature genes and settled rules between patients with
different disease severity have been confirmed to play a cru-
cial role in individual cell clusters, demonstrating that our
method is reliable and convincing. Our results are consistent
with a previous systematic proteomic analysis of plasma in
different disease processes of patients with death, severe,
and mild diseases of COVID-19 that demonstrated that a
large number of plasma proteins have changed in COVID-
19 patients with different clinical outcomes [13]. Therefore,
based on the single-cell expression profiles from blood sam-
ples of HC, moderate, severe, and critical COVID-19
patients, our newly presented computational approach pro-
vides a new perspective for exploring the mechanism of
COVID-19 and predicting different clinical outcomes in
patients with COVID-19.

5. Conclusions

In summary, to distinguish COVID-19 disease severity at
the immune cell level, we used Boruta and mRMR methods
to filter and rank features of the expression profiles for each
immune cell type. After that, using incremental feature
selection, the optimal number of features was identified,
and optimal classifiers and classification rules were con-
structed. Finally, the selected gene sets were subjected to
GO and KEGG functional analyses, and some of the key
genes were validated using recent literature. The findings
suggest that these gene features are important in differentiat-
ing disease severity in distinct immune cells, demonstrating
the validity of our computational method. The key gene
markers identified in this study can serve as potential targets
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in the clinical prognosis and treatment of COVID-19. Our
predictive model can be clinically applied into disease strat-
ification of large cohort of COVID-19 patients according to
the disease severity, which can contribute to providing
appropriate medical support for the predicted severe
patients to help improve the patient survival rate. Together,
this research provides a new perspective to explore the
mechanisms of COVID-19 and the ability to predict disease
outcome.
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