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SUMMARY

Animals require an immediate response to oxygen
availability to allow rapid shifts between oxidative
and glycolytic metabolism. These metabolic shifts
are highly regulated by the HIF transcription factor.
The factor inhibiting HIF (FIH) is an asparaginyl
hydroxylase that controls HIF transcriptional activity
in an oxygen-dependent manner. We show here
that FIH loss increases oxidative metabolism, while
also increasing glycolytic capacity, and that this
gives rise to an increase in oxygen consumption.
We further show that the loss of FIH acts to accel-
erate the cellular metabolic response to hypoxia.
Skeletal muscle expresses 50-fold higher levels of
FIH than other tissues: we analyzed skeletal muscle
FIH mutants and found a decreased metabolic
efficiency, correlated with an increased oxidative
rate and an increased rate of hypoxic response.
We find that FIH, through its regulation of oxidation,
acts in concert with the PHD/vHL pathway to
accelerate HIF-mediated metabolic responses to
hypoxia.

INTRODUCTION

In eukaryotes, oxygen is the terminal electron acceptor in respi-

ration and is essential for the synthesis of both cellular machin-

ery and signaling molecules. Hypoxia-inducible factors (HIFs)

are key regulators of the transcriptional response to shifts in

oxygenation (Semenza and Wang, 1992). Many metabolic pa-

thologies arise from inappropriate changes in HIF activity (Gir-

gis et al., 2012), underscoring the need for regulation of HIF

function.

The activity of the heterodimeric HIF transcription factor com-

plex depends on both the abundance (Wang and Semenza,
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1993) and the transactivational capacity of the alpha subunits

(HIF-a) (Mahon et al., 2001). Their abundance is regulated by

prolyl hydroxylases (PHDs) 1–3, which hydroxylate proline resi-

dues on HIF-a (Epstein et al., 2001), enabling the von Hippel-

Lindau (vHL) ubiquitin ligase complex to target HIF-a (Jaakkola

et al., 2001) for proteasomal degradation (Maxwell et al., 1999).

Oxygen is absolutely required for hydroxylase activity. As oxy-

gen levels drop, HIF-a escapes vHL-mediated degradation and

accumulates (Min et al., 2002).

HIF-a transactivational capacity is controlled by an aspara-

ginyl hydroxylase (factor inhibiting HIF, or FIH) (HIF-1AN), acting

on Asn803 in the C-terminal domain (C-TAD) of the HIF-1a pro-

tein. The hydroxylation of this residue prevents HIF from recruit-

ing the transcriptional coactivator and histone acetyltransferase

p300/CBP to the HIF-a C-TAD (Dames et al., 2002; Lando et al.,

2002). Repression of FIH activity under hypoxia is both neces-

sary and sufficient for disinhibition of HIF-1a C-TAD activity

(Lando et al., 2002;McNeill et al., 2002; Zhang et al., 2010).While

there are three major PHD isoforms, there is only one known FIH

isoform (Elkins et al., 2003; Mahon et al., 2001), and in its

absence, no hydroxylation of the Asn803 residue occurs (Zhang

et al., 2010).

FIH and the PHDs share some enzymatic properties, including

cofactors and by-products (Hewitson et al., 2002); this has led to

the assumption that PHDs and FIH are functionally redundant in

their regulation of HIF. It has also been difficult to account for

FIH’s distinct evolutionary history as an oxygen sensor (Hamp-

ton-Smith and Peet, 2009; Taylor and McElwain, 2010): FIH

was present in the very earliest stages of the evolution of animal

oxygen sensing, but is absent in a few intermediate forms,

including some arthropods, while preserved in most others,

including all vertebrates.

An interesting dilemma in understanding the role of FIH

contra the PHD/vHL pathway is that FIH has a lower Km for ox-

ygen than the PHD enzymes (Ehrismann et al., 2007; Tarhon-

skaya et al., 2015). An additional complexity is the data that

indicate that the HIF-1a isoform is more susceptible to FIH

modification than the other major HIF isoform, HIF-2a (Bracken

et al., 2006; Koivunen et al., 2004). HIF-1a is the HIF-a isoform
. Published by Elsevier Inc.
commons.org/licenses/by/4.0/).
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that directly regulates expression of many of the enzymes that

control metabolism (Keith et al., 2012); thus, a differential con-

trol of HIF-1a by FIH could potentially trigger specific shifts in

metabolic response. However, the fact that FIH is still an active

hydroxylase at lower oxygen levels than those that would

trigger HIF accumulation indicates that FIH could be particu-

larly relevant where a rapid onset of hypoxia outstrips the

process of HIF-1a accumulation (by PHD inhibition). In other

words, the FIH pathway could serve as a failsafe for when

an inappropriate, relative deficiency of HIF places the cell at

a metabolic disadvantage.

We have shown that FIH nullizygous mice have an increased

lean muscle mass and an increased mass-specific VO2 (Zhang

et al., 2010). This was surprising, as other data showed that

HIF-a overexpression via loss of vHL or PHD1 results in

decreased oxygen consumption in cells (Aragones et al., 2008;

Fukuda et al., 2007; Kim et al., 2006; Papandreou et al., 2006;

Zhang et al., 2008) and animals (Yaqoob and Schwerte, 2010).

Animals with HIF overexpression via the PHD/vHL pathway

also show impaired aerobic exercise capacity (Aragones et al.,

2008; Formenti et al., 2010; McClain et al., 2013), despite

increased muscle capillarization (Karsikas et al., 2016; Lijkwan

et al., 2014).

The roles of FIH in cellular metabolism have thus to date been

unclear. Hypoxic cells express a preference for anaerobic meta-

bolism, which can lead to a catabolic state (Frezza et al., 2011)

depending on the cell’s nutrient status. Indeed, pan-PHD dele-

tion (Duan et al., 2014), and singular PHD1 (Aragones et al.,

2008), PHD2 (Minamishima et al., 2009), or vHL loss (Hervouet

et al., 2005; Wise et al., 2011; Zhang et al., 2007) all give rise to

the classical cellular response to hypoxia, i.e., decreased mito-

chondrial activity, increased glycolysis, and glycogen and lipid

accumulation.

In this study, we demonstrate that FIH has a specific role in the

control of metabolism, a role essential for potentiation of meta-

bolic responses to shifts in oxygenation. This role diverges

from the role of the PHD/vHL pathway, acting to accelerate the

rate of oxygen consumption, and we propose that this can

increase the rapidity and magnitude of the hypoxic response.
Figure 1. FIH Is a Non-redundant Regulator of Metabolic Parameters a

(A) Heatmap analysis of microarray data: each row denotes a sample, while eac

normalized to column means. Red indicates that a transcript has been significant

total of 5,000 genes that varied the most with genotype are depicted here.

(B) Scatterplot analysis of microarray data: fold change in gene expression that res

mRNA transcript. Fold change expression following FIH loss (x axis), and fold ch

concomitantly knocking out vHL and FIH together compared with single FIH loss

with metabolic Kyoto Encyclopedia of Genes and Genomes annotations are high

(C) qRT-PCR analysis of control MEFs and KOMEFs. Dark red shading indicates

shading indicates a downregulation. A two-way ANOVA analysis was performed

significant interaction between time exposed to hypoxia and genotype (p < 0.00

effect on gene expression (p < 0.0001). The leftmost column in each section reflect

to the effect of genotype and indicated duration of hypoxic exposure.

(D) Heatmap analysis of 1H-nuclear magnetic resonance (NMR) data. Red indicate

while green indicates downregulation. Each column denotes an independent cell c

are shown.

(E) Heatmap of 1H-NMR data performed in MetaboAnalyst: aqueous metabolites

(F) Principal component analysis (PCA) of 1H-NMR data performed in MetaboAna

genotype is demarcated by a 95% confidence interval (oval).

(G) PCA of 1H-NMR data performed in MetaboAnalyst: each data point denotes

See also Figure S1.
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RESULTS

Quantitative Effects of FIH Loss on the Metabolic
Transcriptome
Microarray analysis of an FIH/vHL null cell dataset (GEO:

GSE20335) (Figure 1A) from mRNA derived from murine embry-

onic fibroblasts (MEFs) (Figure S1A) under normoxic culture

shows that FIH loss affects the transcriptome differently than

vHL loss. In an analysis of individual gene changes, FIH is able

to act both as an inducer and a suppressor of a variety of genes,

including genes that have Kyoto Encyclopedia of Genes and Ge-

nomes annotations in metabolic pathways (Figure 1B), and there

is a clear differentiation between the effects of FIH deletion and

vHL deletion across the metabolic transcriptome. Deletion of

both factors, as in the broader transcriptome, has differentiable

effects from either single deletion.

In Figure 1B, there appears to be no relation between fold

change in gene expression in vHL null cells and fold change in

FIH null cells (left panel), but a reasonable correlation between

the effect of FIH inactivation in vHL null cells and that of vHL inac-

tivation in FIH null cells (right panel). One explanation would be

that FIH and vHL have concordant effects in the presence of

large amounts of HIF protein, but that FIH has additional or

different actions when HIF levels are low. It has been noted

that the N termini of FIH and vHL interact with HIF-1a at distinct

sites (Mahon et al., 2001) to recruit different HDACs. When

HIF-1a is abundant, it could scaffold the interaction of FIH and

vHL, such that the inactivation of either influences the other.

Metabolic Differences in FIH and vHL Null Cells
To determine how hypoxia affects FIH regulation of metabolic

genes, a qRT-PCR study of selected transcripts in MEFs was

carried out. We found that FIH acting alone in cells at 21% oxy-

gen levels again differentiates these two post-translational regu-

lators of HIF expression (Figure 1C). At 0 hr (normoxia), vHL loss

increases expression of most glycolytic genes, while causing

decreased levels of a range of genes controlling oxidative meta-

bolism. These changes in expression continue into the early time

points of hypoxic (1% oxygen) conditioning. FIH loss increases
nd Metabolic Gene Expression

h column denotes a gene transcript; net fold changes in gene expression are

ly upregulated relative to the column mean; green indicates downregulation. A

ults from acute FIH versus vHL deletion inMEFs. Each data point represents an

ange expression following vHL loss (y axis) for the first plot, and the effect of

(x axis), and compared with single vHL loss (y axis) for the second plot. Genes

lighted in red.

an upregulation of the gene transcript relative to control MEFs at 0 hr; light blue

, to dissect the contributions of genotype and time to expression. ^ Denotes a

01) on gene expression, while * denotes that genotype alone has a significant

s genotypic comparisons between normoxic cells, whereas the other data refer

s that a metabolite has been significantly upregulated relative to the rowmean,

ulture sample. Only aqueousmetabolites with the highest absolute abundance

in whole MEF lysates.

lyst: each data point denotes an independent cell culture media sample. Each

an independent sample of whole-cell lysates.



glycolytic gene expression over 8–72 hr of hypoxia, but clamps

oxidative gene expression in normoxia and early hypoxia, rather

than suppressing it. Note specifically that there are significant

differences in FIH and vHL regulation of cox4i1/2 and cox7i1/2

transcripts; their expression is known to be sensitive to prevail-

ing oxygen levels (Fukuda et al., 2007; Hwang et al., 2015). Sub-

unit 4, in particular, is rate-limiting for complex IV assembly and

function, with implications for cell survival and ATP levels in hyp-

oxia (Li et al., 2006).

To determine how these gene expression changes act on

cellular metabolism, a 1H-nuclear magnetic resonance metabo-

lomics analysis was performed on extracellular metabolites from

media samples following 48 hr of cell culture (Figure 1D; Tables

S2 and S3), and on cell lysates (Figure 1E). There is a clear

separation of FIH null, vHL null, and control aqueous metabolite

profiles, with lactate, alanine, glucose, and glutamine showing

significant fold changes (Figure 1F). Intracellular aqueous me-

tabolites of FIH null and control cells weremorewidely separated

(Figure 1G) than between vHL null and control cells, indicating

significant and distinct metabolic differences in cells with and

without FIH.

FIH Modulates a Hypoxic Metabolic Shift
vHL and vHL/FIH double null MEFs show increases in lactate

production and glucose uptake relative to wild-type (WT) cells,

but FIH null cells do not (Figures S2A and S2B). However, loss

of FIH increases both lactate production and glucose uptake

by these cells during prolonged exposure to 1% oxygen over

72 hr (Figures 2A and 2B). This indicates that FIH has a role in

modulating hypoxic response even at levels of oxygen as low

as 1%, in keeping with the high oxygen affinity of the FIH

enzyme. Elevated ATP levels seen in FIH null cells in normoxia

(Figure 2C) are lost after 48 hr of exposure to hypoxia.

In sum, the loss of FIH increases both lactate production and

glucose uptake over prolonged exposure to 1% O2, but not un-

der 21% O2. Nevertheless, in Figure 2C, FIH knockout (KO)

MEFs have elevated ATP levels at normoxia. We speculate that

this is the result of certain oxygen-dependent, anaplerotic path-

ways becoming hyperactive when FIH is lost, thus permissive for

high ATP levels in the cell (albeit with a normal ATP:AMP ratio,

i.e., energy supply/demand is balanced). When oxygen is

limiting, these pathways are thrust into glucose dependence,

or redirected into lactate-producing pathways.

Interestingly, vHL null cells also show an elevated level of ATP

relative to WT MEFs; this is not seen in FIH/vHL null cells (Fig-

ure 2D). The overall ratio of ATP:AMP is greatly reduced in vHL

null cells, but is not reduced significantly in either FIH null or

FIH/vHL null cells (Figure 2E), indicating that, coupled to the

higher levels of ATP in vHL null cells, there is also a greater

rate of ATP turnover. This indicates that there are likely higher

cellular energetic demands in vHL null MEFs, and that these

are reduced when FIH is also deleted. These data, taken

together, argue for an energetically complementary function of

these two negative regulators, a synergy that is acting to balance

metabolic function during hypoxic response. Further evidence

for this comes from cell survival rates: under normoxia, vHL

null MEFs have an increased rate of apoptosis, and FIH/vHL

null MEFs have an even higher rate of cell death (Figure 2F),

whereas the opposite is the case in hypoxia, where FIH null
MEFs have a higher rate of apoptosis, and FIH/vHL null MEFs

have a significant survival advantage (Figure 2G).

FIH Suppresses Hypoxia-Induced Mitochondrial
Reactive Oxygen Species Production
Key aspects of hypoxic adaptation include a shift of cytochrome

oxidase subunits (Aras et al., 2013; Fukuda et al., 2007) and the

induction of superoxide dismutase (Rasbach et al., 2010; Scor-

tegagna et al., 2003), both limiting the production of reactive ox-

ygen species (ROS). Loss of FIH does not affect mitochondrial

superoxide production at normoxia, but loss of vHL results in a

reduction of superoxide production, as measured by the Mito-

SOX assay (Figures 2H and S2C). Interestingly, further loss of

FIH eliminates this difference in ROS production seen in vHL

null MEFs, arguing that there is a compensating shift in ROS

handling caused by the double deletion. Prolonged culture in

hypoxia causes a marked increase in ROS production in WT

MEFs (Figures 2I and S2D). However, this increase in ROS under

hypoxia is significantly suppressed by the loss of FIH, again indi-

cating that FIH is regulatingmitochondrial activity, and indicating

as well that native FIH activity has not been completely sup-

pressed at 1% oxygen, even after 2 days of hypoxic culture.

Shift in Mitochondrial Membrane Potentials Is Induced
by vHL Loss, but Not FIH Loss
The increases in apoptosis in FIH null MEFs in hypoxia, and in

vHL and FIH/vHL null MEFs in normoxia, as well as changes

induced in mitochondrial ROS production, indicate that FIH

may play a role in regulating mitochondrial energetics that is

separable from the role played by vHL. As seen in Figures 3A

and S2E, loss of vHL significantly decreases mitochondrial

membrane potential in normoxia; loss of both FIH and vHL phe-

nocopies loss of vHL alone. This indicates that the PHD/vHL axis

has primary control over mitochondrial potential, unlike FIH,

which has little effect on mitochondrial potential in either nor-

moxia or hypoxia (Figures 3B and S2F). Thus, FIH modulates

ROS production without an effect on mitochondrial potential.

Mitochondrial Levels and Activity Differ in FIH and vHL
Null MEFs
There is a significant reduction in mtDNA in both vHL and FIH/

vHL null MEFs, with an almost 50% reduction in vHL null cells

(Figure 3C). This correlates with an overall reduction in citrate

synthase activity per cell in the vHL null cells (Figure 3D), with

no corresponding change in FIH null MEFs. In addition, culture

of FIH null MEFs in hypoxia accelerates the loss of mitochondrial

citrate synthase relative to the decline seen in WT cells (Fig-

ure 3E). This demonstrates that FIH loss accelerates the effects

of hypoxic exposure on mitochondria.

Loss of FIH Increases Mitochondrial Activity under
Normoxia
The data above demonstrate the role of FIH in preserving meta-

bolic hypoxic response when some oxygen is still available, e.g.,

at 1% oxygen, and indicates that complete loss of FIH function

accelerates a shift both to a glycolytic metabolism and to a

reduced level of mitochondrial functioning.

There is a tripling of cytochrome c oxidase (COX) activity in

FIH KOs relative to WT cells (Figure 3F). Normalized to citrate
Cell Metabolism 27, 898–913, April 3, 2018 901
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Figure 2. FIH Loss Promotes Glycolysis in Hypoxia, but Not Normoxia

(A) Enzyme-based colorimetric assay of culture media lactate.

(B) Enzyme-based colorimetric assay of culture media glucose.

(C) HPLC-based ATP measurements from cell lysates.

(D) HPLC-based ATP measurements from cell lysates.

(E) AMP:ATP ratio in cell lysates.

(F) 70-AAD flow cytometric apoptosis assay for cells cultured in atmospheric oxygen.

(G) 70-AAD flow cytometric apoptosis assay for cells cultured in 1% oxygen for 3 days.

(H) Flow cytometry; histogram of cell count versus MitoSOX (superoxide stain) fluorescence, with shaded graph representing unstained controls. Three

experiments were performed with two biological replicates each; the histogram provided is representative of one of these experiments.

(I) Flow cytometry; histogram of cell count versus MitoSOX fluorescence, with shaded graph representing unstained controls.

*p < 0.05, **p < 0.01. Data are represented as means ± SEM. For grouped data (A–C), a two-way ANOVA was used. For multiple comparisons (D–G), a one-way

ANOVA was used. For pairwise comparisons (H and I), a two-tailed Student’s t test was used. n = 3 independent cell culture samples per genotype, unless

otherwise specified. See also Figure S2.
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synthase activity, and thus to mitochondrial density, we see an

almost 4-fold increase in COX activity as a function of mitochon-

drial content (Figure 3G), which is reduced over 48 hr of exposure

to hypoxia (Figure 3H), and lessened as a function of mitochon-

drial density (Figure 3I). This indicates that the loss of FIH function

drives an increase in oxidative metabolism, although this is sub-

sequently lost as hypoxia drives additional adaptations. The loss

of FIH drives an increase in electron transport chain components

complex II and IV at baseline (Figure 3J), despite the preservation

of mitochondrial content shown earlier. Interestingly, in parallel

with the loss of mitochondrial activity with hypoxia, the differ-

ences in complex II/IV expression between WT and KO cells

diminish with prolonged exposure to hypoxia (Figure 3K).

Loss of FIH under Normoxia Selectively Increases
Glycolytic Reserve
To better map metabolic cellular responses of the two HIF post-

translational modification mutants, we analyzed proton genera-

tion and oxygen consumption in KO MEFs. Loss of FIH does

not change acidification rates relative toWT cells, demonstrating

that glycolytic rates in these cells are normal; however, the

glycolytic reserve is increased significantly (Figure 4A). This indi-

cates that loss of FIH can in some regard metabolically prepare

cells for hypoxic glycolytic metabolism. Further evidence of this

is seen in Figure 4B, where hypoxic FIH null cells have increased

glycolytic rates in addition to a preserved increase in glycolytic

reserve. This is compared with the changes in vHL null cells (Fig-

ure 4C), which demonstrate increases in both glycolytic reserves

and rates typically seen when the PHD/vHL axis is suppressed,

or when HIF-1a is overexpressed. Interestingly, although the

FIH/vHL KO cells are more glycolytic relative to WT cells (Fig-

ure 4D), there is no further increase seen when oligomycin is

added to inhibit the mitochondrial ATP synthase. Where both

FIH and vHL are fully suppressed, glycolytic activity is equivalent

to glycolytic capacity, i.e., the cells are maximally glycolytic,

deriving energy mostly from glycolysis as opposed to oxidation.

Loss of FIH under Normoxia Increases Oxygen
Consumption
The loss of FIH causes an overall increase in cellular basal respi-

ration (Figure 4E), and this effect is reversedwhen the FIH gene is
Figure 3. Differential Regulation of HIF Leads to Differential Regulatio

(A) Flow cytometry; histogram of cell count versus TMRM fluorescence, with shad

with two biological replicates each; this series of histograms is representative of

(B) Flow cytometry; histogram of cell count versus TMRM fluorescence, with shad

with two biological replicates each; this pair of histograms is representative of on

(C) mtDNA abundance in indicated cells.

(D) Citrate synthase activity measured in indicated cells.

(E) Citrate synthase activity in FIH KO compared with control MEFs over prolong

(F) FIH, but not vHL KO cell lysates show higher mitochondrial cytochrome c oxi

(G) Cytochrome oxidase activity of FIH KO MEFs normalized to citrate synthase

(H) FIH KO MEFs have higher cytochrome oxidase activity than control cells in a

(I) The trends described in (H) persist even when the cytochrome oxidase activity

(J) Western blot of control versus FIH KO MEFs with lamin B as a loading contro

transport chain complex content in MEF lysates.

(K) Western blot of mitochondrial complex content in control versus FIH KO MEF

*p < 0.05, **p < 0.01, ***p < 0.001. Data are represented asmeans ± SEM. For pairw

comparisons (C, D, F, andG), a one-way ANOVAwas used. For grouped data (E, H

per genotype, unless otherwise specified.
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restored via transfection to FIH null cells (Figures S3A and S3B).

This unexpected result is in contrast to the expected change in

cellular oxygen consumption caused by the loss of vHL (Fig-

ure 4F). In vHL null cells, there is essentially an elimination of

the spare respiratory capacity. This is consistent with previous

studies of vHL null cells where mitochondrial mass is decreased

(Haase, 2012; Hervouet et al., 2005; Zhang et al., 2007), and

confers the functional advantage of suppressing respiration in

an oxygen-poor environment. vHL/FIH KO MEFs (Figure 4G)

differ from both single FIH and vHL KOs, with a lower basal respi-

ration rate, as well as a reduced spare respiratory capacity. The

loss of both of these negative regulators of HIF response has the

capacity to switch cells almost fully to a highly glycolytic state,

yet interestingly, double deletion also appears to allow a greater

sparing of respiratory capacity.

The effect of FIH loss on respiration is essentially eliminated

by culture at 1% oxygen for 72 hr (Figure 4H). This indicates

that the increased basal respiration and increased respiratory

capacity are suppressed by hypoxic response; interestingly,

the respiratory response seen in these cells is essentially iden-

tical to that seen in FIH/vHL null cells under normoxic condi-

tions in Figure 4G. This would argue that the chief modulators

of metabolic change in respiration under hypoxia are these

two negative regulators of the HIF pathway. As seen in Figures

4B and 4D, the glycolytic shift is more complex in this regard,

although another interpretation of this would be that a full

equivalence between glycolytic rate and glycolytic reserve

would require an even lower degree of hypoxia than 1% oxy-

gen conditions provide.

The increased oxygen consumption in FIH null MEFs is not due

to an increased capacity for fatty acid oxidation (Figure 4I), as

FIH null cells in fact have lower basal respiration and lower oxida-

tive reserve capacity than control cells when supplied solely with

palmitate as a substrate for oxidation. This experiment indicates

that FIH null cells are unable to fully switch to fatty acid oxidation.

In addition, when both glucose and palmitate are absent, FIH null

cells have the same spare respiratory capacity asWT cells, but a

lower basal oxygen consumption. This means that WT cells are

oxidizing a substrate in the basal state that FIH null cells cannot,

a substrate that cannot be used by the mutant cells to increase

spare respiratory capacity.
n of Mitochondrial Parameters

ed graph representing unstained controls. Three experiments were performed

one of these experiments.

ed graph representing unstained controls. Three experiments were performed

e of these experiments.

ed exposure to hypoxia.

dase activity (p = 0.049) than control MEFs.

activity.

tmospheric oxygen, but this effect is blunted over hypoxic exposure.

of FIH KO and control MEFs is normalized to citrate synthase activity levels.

l and rat heart mitochondria as a positive control; demonstrates total electron

s, with progressive hypoxic exposure.

ise comparisons (A and B), a two-tailed Student’s t test was used. For multiple

, I, and K), a two-way ANOVAwas used. n = 3 independent cell culture samples
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These data indicate that FIH null cells have a block in fatty acid

oxidation and likely oxidation of other substrates. This, coupled

to the data in Figure 4A, argues that FIH null cells channel as

much glucose as possible through pyruvate to the mitochondria

due to this block, and thus have a lower rate of lactate production

as a result at baseline than, for example, vHL null cells. However,

when respiration is blocked by oligomycin, the increase in lactate

production reveals the higher rate of glycolysis in these cells.

Despite a low capacity for fatty acid oxidation, the finding

that FIH null cells maintain higher ATP levels with preserved

ATP:AMP ratios suggests that the alternate oxidative pathways

FIH null cells channel their large glycolytic reserve into, and

use to make up for their diminished fatty acid oxidation, are

energetically favorable.

Loss of FIH in Skeletal Muscle Demonstrates Its Role in
the Potentiation of Hypoxic Metabolic Shifts
Based on the data above, we postulated that tissues experi-

encing rapid and dynamic fluxes in oxygenation, and that need

to rapidly adjust their metabolic activity in response to those

fluxes, would be those most sensitive to the loss of FIH function.

Indeed, there is significant variation in FIH expression across tis-

sues of the mouse, with by far the highest levels of expression

found in skeletal muscle (Figure 5A). These elevated levels are

restricted to skeletal muscle, not being seen in intestinal smooth

muscle or cardiac muscle.

Interestingly, FIH expression is uniformly high in both fast and

slow twitch muscle, whereas among the PHD isoforms, PHD3

levels are highest in predominantly fast twitch muscles, and

PHD2 in the soleus, a predominantly oxidative, slow twitch mus-

cle (Figure 5B). These data support HIF-1a’s role in regulating

skeletal muscle metabolism (Mason et al., 2004, 2007). To deter-

mine the relationships between FIH and metabolic function

in vivo, we carried out studies of treadmill regulated running on

mice deficient in FIH/vHL.

To understand basal roles of FIH in exertion-induced meta-

bolic shifts, we first analyzed FIH global deletion animals. As

previously shown, these animals had a higher basal metabolic

rate (Zhang et al., 2010), seen here during the initiation of exer-

tion (Figure 5C). This elevated metabolic rate is also evident

over increasing speeds in an uphill treadmill protocol (Fig-

ure 5C). Global deletion of vHL is not compatible with post-
Figure 4. FIH Specifically Determines Glycolytic Reserve and Uncoupl

(A) Glycolytic stress test on FIH KO MEFs in 21% oxygen. The area under the cu

polygon represents the response to glucose supplementation after a period of glu

the glycolytic reserve, unmasked upon ATP synthase inhibition.

(B) Glycolytic stress test repeated on FIH KO MEFs under 1% oxygen after 3 da

(C) Glycolytic stress test, on vHL-KO MEFs in 21% oxygen.

(D) Glycolytic stress test on vHL-FIH double-KO MEFs.

(E) Oxidative stress test. The AUC for each genotype was compared with a two-

purple polygon is proportionate to ATP-coupled oxygen consumption. The gree

FCCP addition.

(F) Oxidative stress test. Uncoupled VO2 is in contrast reduced in vHL KO MEF p

(G) Oxidative stress test. vHL/FIH double-KO MEFs resemble vHL KO MEFs in t

(H) Oxidative stress test repeated under 1% oxygen after 3 days of hypoxic cultu

(I) Modified oxidative stress test using a glucose-depleted, palmitate-abundant s

*p < 0.05, **p < 0.01, ****p < 0.0001. OCR and ECAR data are represented as me

every three readings (represented by a single polygon) was computed, and a two

Figure S3.
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natal viability, and so could not be assayed in the same

manner.

We then generated mice with skeletal muscle-specific dele-

tions of FIH, vHL, or both, via employment of an Myf6-pro-

moter-driven cre recombinase transgene (Haldar et al., 2008;

Keller et al., 2004) (Figure S4A). The use of this cre recombinase

was necessary because deletion of vHLwith the striatedmuscle-

specific myosin creatine kinase (CKMM) cre recombinase leads

to mid-gestational lethality in vHL muscle-specific mutants (data

not shown), likely because vHL loss from cardiac muscle (car-

diac deletion occurs to a certain extent in the CKMM cre strain)

has deleterious effects (Lei et al., 2008). Analysis of singular FIH

and vHL mutants showed no specific constitutive shifts in

basal metabolic rate, although FIH skeletal muscle mutants

had a higher nocturnal VO2, when activity of mice is highest,

and vHL mutants tended toward higher VCO2 nocturnally (Fig-

ures S4B–S4E).

During exercise, loss of FIH specifically in skeletal muscle cre-

ates an increase in VO2, analogous to the effects of global FIH

loss (Figure 5D). Loss of skeletal muscle vHL, conversely, causes

a decreased VO2 (Figure 5E), and loss of FIH/vHL causes a sharp

fall-off in VO2 at higher running speeds (Figure 5F). Conversely,

there is a steeper rise in respiratory exchange ratio (RER) with

running speed in vHL and FIH/vHL KO groups, suggesting that

they are more acutely dependent on carbohydrate conversion,

as opposed to fatty acid oxidation, for power output (Figure S4F).

These data draw analogies between metabolic alterations

described above in MEFs and resultant effects on whole-animal

metabolism during exercise in tissue-specific mutants: that loss

of FIH increases oxygen uptake, loss of vHL suppresses it, and

the loss of both causes an accelerated response that dramati-

cally reduces oxidative metabolism.

There are anatomic effects of the loss of both vHL and FIH in

skeletal muscle: while the loss of each singly has no discern-

able effect on fiber type, the loss of both shifts fiber type

identity in superficial quadriceps away from type IIb, or fast

twitch, and toward type I and type IIa, and thus more oxidative

fiber types (Figure 5G). This shift is less marked in skeletal mus-

cle, which is already mainly oxidative, e.g., deep quadriceps

(Figure S4G). Furthermore, vHL loss increases myoglobin

expression in skeletal muscle, regardless of its FIH status

(Figure 5H). Both these changes are in contrast to the role of
ed Oxygen Consumption

rve (AUC) for each genotype was compared with a two-tailed t test. The blue

cose starvation, i.e., baseline glycolysis. The green polygon is proportionate to

ys in hypoxic culture.

tailed t test. The blue polygon represents baseline oxygen consumption. The

n polygon is proportionate to uncoupled oxygen consumption, unmasked on

opulations in normoxia.

hat they also have reduced uncoupled VO2 values.

re.

ubstrate medium.

ans ± SEM. n = 3 independent cell culture samples per genotype. The AUC for

-tailed Student’s t test was applied for each pair of AUCs compared. See also
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FIH/vHL loss in suppressing oxidative metabolism, and may be

compensatory.

FIH Loss Accelerates Hypoxic Adaptation in Skeletal
Muscle
FIH skeletal muscle deletion mutants have an increased oxygen

debt post-exercise, whereas both vHL and FIH/vHL mutants

have a decreased debt (Figure 6A). This again is correlated

with the increased oxidative metabolism of FIH skeletal muscle

null mutants.

The loss of FIH gives rise to an increase in VO2max relative to the

baseline VO2,whereas this trends toward a decrease in vHL skel-

etalmusclemutant animals and a significant decrease in FIH/vHL

mutants (Figure 6B). In these analyses, loss of FIH is correlated

with FIH mutant mice achieving VO2max at a lower speed than

control mice do, and although this was not seen in vHL mutants,

it was seen in FIH/vHL null mutants (Figure 6C). This may allow

FIH null muscle to conserve glycogen stores at lower exercise in-

tensities, in favor of deploying them at higher exercise intensities,

where anaerobicmetabolismwouldbemoreuseful. Interestingly,

while loss ofmuscle FIH causes a decreased oxygen efficiency at

lower exercise intensities, it does not reduce endurance in a long-

distance running protocol (Figure 6D). This is in contrast with loss

of vHL and FIH/vHL, which both reduce endurance significantly

relative to control littermates.

Two improvements in hypoxic adaptation could serve tomain-

tain exercise performance in the FIH skeletal muscle mutant,

despite the decreased efficiency observed. There is a specific

increase in relative COX activity ratios in FIH mutant muscle

extracts (Figure 6E). Furthermore, Doppler imaging of muscle

perfusion (Figure 6F) revealed that, following exercise to exhaus-

tion, loss of FIH causes an increase in overall perfusion of the

exposed muscle compared with littermate control animals—

part of apotentiated response to themetabolic stress of exercise.

Comparing exercise at moderately low and moderately high

exercise intensities, while the loss of FIH leads to a high VO2 at

11 m/min, this VO2 is more quickly suppressed in mutants as ex-

ercise intensity is increased to 18 m/min (Figure 6G). This sug-

gests that the loss of FIH creates first an increase in VO2 during

exercise, but subsequently acts to suppress oxygen uptake, al-
Figure 5. In Vivo Effects of FIH Loss in Mouse Skeletal Muscle Mirror I

(A) Representative immunoblot of FIH in whole organ lysates in a WT mouse, de

(B) Representative immunoblot of molecular oxygen sensors in whole muscle lysa

male WT mice: the predominantly fast twitch extensor digitorum longus (EDL), pre

twitch fibers. Cardiac muscle was sampled separately.

(C) FIH nullizygous mice show increased oxygen consumption (VO2) and carbon

(D) VO2 and VCO2 measured during an incremental uphill exercise protocol in FIH

intensities, suggesting oxygen inefficiency. In contrast, the VCO2 curve was not

curves fitted separately to control and mutant mice measurements.

(E) vHL skeletal muscle mutant mice did not show the qualitative VO2 difference

(F) vHL/FIH muscle double-KO mice show a fall-off in VO2 measurements at low

(G) Fiber type composition in cross-sections of frozen mouse superficial quadrice

deep quadriceps toward slow twitch, more oxidative fiber types. Six frozen sect

(H) The loss of vHL leads to an increase in myoglobin expression in whole-quadrice

no discernible effect.

*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001; n.s., not significant. Data are rep

with male littermates as controls. n = 7 mice/genotype, unless otherwise stated.

pairwise comparisons (C–F), a two-tailed Student’s t test was used. After curve-fitt

also Figure S4.
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lowing anaerobic metabolism at higher exercise intensities. This

acceleration of metabolic response is also evident in the finding

that mice lacking skeletal muscle FIH have a significantly greater

increase in serum lactate levels following exercise to exhaustion

(Figure 6H). This is correlated with a greater increase in serum

creatine kinase in these mice, indicative of increased anaerobic

stress (Figure S5A). Interestingly, there is a greater shift in the

lipidmetabolome in FIHmutantmuscle than in the overall metab-

olome post-exercise (Figure S5B), suggesting that differential

effects on lipid metabolism likely underlie the metabolic shifts

seen in the mutants, and are potentially facilitating the oxidative

shifts seen.

As eccentric exercise utilizes glycolytic muscles more inten-

sively (Nardone and Schieppati, 1988), we compared the perfor-

mance of FIHmuscle mutant and control mice on downhill tread-

mill running. VO2 in FIH mutants was more blunted than VCO2 in

comparison with controls (Figure 6I). This differed significantly

from that seen in uphill (concentric) running. Consistent with

FIH’s role in accelerating hypoxic adaptation, RER of FIH KO

animals had a steeper relationshipwith running speed in downhill

exercise (Figure S5C) than in the uphill exercise protocol

described above.

Further support for a model wherein FIH loss accelerates

metabolic adaptation was seen from studies in which mice exer-

cised in 12% oxygen. While the loss of FIH increases VO2 under

normoxia, under inhalational hypoxia this is suppressed, with a

decrease in VO2 during exercise (Figure 6K). This result demon-

strates that the loss of FIH accelerates the inhibition of oxidative

metabolism seen in hypoxic muscle tissue. This is analogous to

the suppression of spare respiratory capacity shown in Figure 4,

where FIH null cells exposed to prolonged hypoxia consume

as little oxygen as hypoxic control cells. The mechanism of this

is elusive; given its oxygen sensitivity it likely encompasses

changes in mitochondrial gene expression (Figure S5D), but it

is unrelated to gross mitochondrial structure (Figure S5E).

DISCUSSION

Metabolic shifts in response to changes in energy demand

are complicated by oxygen availability within tissues. HIF
ts Metabolic Roles in Cells

monstrating different levels of FIH in different tissues.

tes taken from aWTmouse. Various hindlimb muscle samples were taken from

dominantly slow twitch soleus, and quadriceps comprising both fast and slow

dioxide production (VCO2) rates on an incremental uphill treadmill protocol.

skeletal muscle mutant versus control littermate mice over a range of exercise

significantly altered. A two-tailed Student’s t test was applied to equations of

s observed in FIH muscle-specific mutants.

exercise intensities. In contrast, their VCO2 is not altered.

ps from each genotype. Concurrent loss of FIH and vHL shifts fiber identity in

ions were analyzed per mouse.

ps lysates of vHL KOmuscle and vHL/FIH double KO, while the loss of FIH has

resented as means ± SEM. Only male mice were used for in vivo experiments,

For multiple comparisons (A, B, G, and H), a one-way ANOVA was used. For

ing, best-fit equationswere comparedwith an extra sum-of-squares F test. See
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transcription factors modulate this relationship between meta-

bolic response and oxygen partial pressures. There are two

key post-translational mechanisms that regulate HIF activity in

a directly oxygen-dependent manner; we show here that these

pathways act synergistically to modulate metabolism.

Previous studies suggested that FIH impairment upregulates

glycolytic genes (Sakamoto et al., 2011, 2014; Wang et al.,

2014), although not in normoxia (Bracken et al., 2006). In line

with this, we show that cells lacking FIH have a greater capacity

than control cells to increase glycolysis when oxidative meta-

bolism is compromised. We also show that FIH null cells do

not have the same capacity as WT cells for fatty acid oxidation,

indicating that increased glycolysis is likely channeled more

exclusively to pyruvate and not to lactate in these cells as part

of a compensatory metabolic shift. The increase in respiratory

capacity caused by FIH loss is more surprising, given the well-

documented suppression of aerobic metabolism and perfor-

mance with vHL/PHD loss (Fukuda et al., 2007; Kim et al.,

2006). This indicates that FIH plays a fundamentally different

role in regulating metabolic responses than that played by the

PHD/vHL axis of HIF control.

Our cells lacking FIH show no significant increase in glucose

uptake, despite an increase in glycolytic reserve that almost

matches that seen in cells lacking vHL. There is strong evidence

to show that oxidative activity increases when certain steps of

glycolysis are inhibited selectively, e.g., immediately after

hexokinase is inhibited with 2-deoxyglucose (Wu et al., 2006).

Other potential mechanisms for increased oxidative meta-

bolism include shifts in metabolic gene expression. This could

conceivably happen through a threshold-dependent aspect of

HIF-driven gene expression, first toward, and then away from,

oxidative metabolism, or through novel substrates that straddle

metabolic pathways (Cockman et al., 2006; Scholz et al., 2015;

Wilkins et al., 2012; Yang et al., 2013).

Our data indicate that FIH loss accelerates specific metabolic

adaptations to hypoxia.We showed that animals without skeletal

muscle FIH have lower rates of oxidative metabolism when exer-

cising in environmental hypoxia, and when under the glycolytic

stress of downhill running. In these animals, a loss of FIH has

clearly exaggerated a suppression of oxidative metabolism.
Figure 6. Effects of FIH Loss on Specific Oxidative Parameters in Male

(A) Oxygen debt in male mice of genotypes indicated, following a running protoco

were compared with an extra sum-of-squares F test.

(B) Normalized VO2,max values in male mice of genotypes indicated, following an

(C) FIH muscle mutant male mice and vHL/FIH double-KO male mice achieve VO

(D) Endurance performance on a distance running protocol.

(E) Cytochrome oxidase (COX) activity in gastrocnemius muscle lysates from ma

(F) Local quadriceps perfusion measured by Doppler imaging before and after an

(G) Changes in VO2 with running intensity within an uphill running protocol.

(H) Relationship between blood lactate levels in resting mice and genotype. Blood

following an incremental uphill treadmill protocol where mice were run to exhaus

(I) Downhill running protocol. Relationships between VO2 and VCO2 measurem

compared with an extra sum-of-squares F test.

(J) Changes in VO2 with running intensity within a downhill running protocol.

(K) Relationship between running speed and VO2 or VCO2, when running under 1

equations of curves fitted separately to control and mutant mice. After curve-fitt

*p < 0.05, **p < 0.01, ***p < 0.001; n.s., not significant. Data are represented as

littermates as controls. n = 7 mice/genotype, unless otherwise stated. For multipl

(A, I, and K), a two-tailed Student’s t test was used. For grouped data (F–H and
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This leads to a unifyingmodel for FIH function: loss of FIH activity

speeds up oxidative processes; this reduces intracellular levels

of oxygen, acting to potentiate PHD inhibition, and thus HIF-1a

accumulation. An accelerated hypoxic metabolic adaptation

then, ultimately, suppresses oxidative metabolism via HIF accu-

mulation. As the FIH enzyme is thought to have a higher oxygen

affinity than the PHD enzymes, ordinarily the loss of PHD activity

and loss of FIH activity should occur sequentially, and in the

wrong order to support this model. However, the differential af-

finities of the PHD enzymes and FIHmight be less relevant where

oxygen levels drop suddenly, a situation in which HIF levels need

to be elevated as rapidly as possible. In such a case, whatever

remaining oxygen there is in the cell would need to be removed

for the cell to remain oxidative as long as possible, and then to as

rapidly as possible accumulate HIF and effect a shift to glycol-

ysis. It could as well be possible that FIH inhibition uses mito-

chondria as oxygen sinks, to propagate the cycle of oxygen

depletion and a subsequent PHD/HIF response spatially, e.g.,

to the muscle cell surface, where some oxygen reserves remain

on myoglobin even under significant hypoxia (Takahashi and

Asano, 2002).

This model would predict that tissues with the greatest need to

retard hypoxic response as long as possible, but then activate it

as rapidly as possible, would also be those that express themost

FIH. As we have shown, skeletal muscle has by far the highest

levels of FIH protein found in the body. Considered alongside

high HIF levels in fast twitch fibers (Pisani and Dechesne, 2005),

and lower HIF levels in slow twitch fibers, successful clamping

of HIF activity could also underlie differential HIF activation in

muscle metabolism. Consistent with this, our group has shown

that FIH expression is significantly higher in athletes undergoing

endurance training (Lindholm and Rundqvist, 2016; Lindholm

et al., 2014). Furtherwork in this areamayshow relevance toother

aspects of human physiology, e.g., certain FIH polymorphisms

being enriched in populations at altitude (Ji et al., 2012). It is

also interesting tonote that theexercise intolerancenoted inChu-

vash polycythemia patients (Formenti et al., 2010) is analogous to

those seen in skeletal muscle vHL deletion mice.

A corollary of our findings and this model would be that, under

conditions of rapid reoxygenation, a rapid suppression of FIH
Mouse Skeletal Muscle

l of fixed length. n = 5 mice per genotype. After curve-fitting, best-fit equations

incremental uphill running protocol.

2,max at lower exercise intensities compared with controls.

le mice of various genotypes.

uphill running protocol where male mice were run to exhaustion.

lactate levels rose more significantly in FIH muscle-specific mutant male mice,

tion.

ents and downhill running speed. After curve-fitting, best-fit equations were

2% oxygen versus under room air. A two-tailed Student’s t test was applied to

ing, best-fit equations were compared with an extra sum-of-squares F test.

means ± SEM. Only male mice were used for in vivo experiments, with male

e comparisons (B–E), a one-way ANOVA was used. For pairwise comparisons

J), a two-way ANOVA was used. See also Figure S5.



activity could be critical in re-establishing oxidative metabolism

in the presence of accumulated HIF. An acceleration of oxygen

consumption could itself temper the consequences of reoxyge-

nation, e.g., by maintaining a basal, protective level of HIF activ-

ity. Future experiments will address this; one could imagine this

would be key in understanding metabolic adaptations during

ischemia and reperfusion.

Limitations of Study
In this study, we have not delineated catalytic versus non-cata-

lytic actions of FIH; future studies will endeavor to determine

how the hydroxylase acts in an oxygen-dependent manner to

induce the metabolic roles of FIH, and the extent to which, for

example, protein-protein interactions via the JmjC domain are

responsible. In addition, the role of such interaction in seques-

tering FIH may be key in understanding how its hydroxylase ac-

tivity could be restricted within cells.

A key concern here is the overall role of the hydroxylation of

HIF, and thus the direct role played by oxygen. Functions of

FIH outside of its activity as a hydroxylase will need to be fully

explored, as these will illustrate the degree to which it is acting

in an oxygen- and HIF-dependent manner. In the context of hy-

droxylation, there is some disagreement as to the actual oxygen

affinity of the FIH enzyme in in vivo, and, here, defining the spatial

and sub-cellular distribution of FIH will be critical, particularly if

that differs substantially from tissue to tissue. Finally, non-HIF

targets of FIH have been suggested by a number of researchers,

and thus a final definition of the mechanisms of FIH action on

oxidative metabolism will require a detailed inclusion or exclu-

sion of putative FIH targets with a potential metabolic function.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit polyclonal anti-alpha tubulin, 1:2000 Cell Signalling Cat#2144; RRID: AB_1968816

Mouse monoclonal anti-beta actin, 1:2000 Sigma Cat#A5316; RRID: AB_476743

Rabbit polyclonal, anti-FIH, 1:1000 Abcam Cat#ab36814; RRID: AB_869843

Rabbit polyclonal, anti-Hsp90, 1:1000 Cell Signalling Cat#4874; RRID: AB_2121214

Rabbit polyclonal, anti-mTOR, 1:1000 Cell Signalling Cat#2983; RRID: AB_2105622

Rabbit polyclonal anti-PGC1a, 1:1000 Santa Cruz Biotechnology Cat#sc-13067; RRID: AB_2166218

Rabbit polyclonal anti-PHD1 1:1000 Bethyl Laboratories Cat#A300-326; RRID: AB_2096867

Rabbit polyclonal anti-PHD2, 1:1000 Novus Biologicals Cat#NB100-2219; RRID: AB_578125

Rabbit polyclonal anti-PHD3, 1:1000 Novus Biologicals Cat#NB100-303; RRID: AB_350220

Mouse monoclonal anti-VHL, 1:500 BD Pharmingen Cat#556347; RRID: AB_396376

Anti-mouse IgG-HRP Donkey, 1:5000 Santa Cruz Biotechnology Cat#sc-2314; RRID: AB_641170

Anti-rabbit IgG-HRP Donkey, 1:5000 R&D Systems/ ThermoScientific Cat#SA1-200; RRID: AB_325994

Goat polyclonal anti-FIH (overexpression experiments), 1:200 Santa Cruz Biotechnology Cat#sc-26219; RRID: AB_2117262

Goat polyclonal anti-FIH (for mitochondrial complex profiling),

1:500

Santa Cruz Biotechnology Cat#sc-26219; RRID: AB_2117262

Mouse monoclonal anti-paxillin (5H11) (overexpression

experiments), 1:1000

Upstate Biotechnology/Millipore Cat#05-417; RRID: AB_309724

Mouse monoclonal anti-lamin B1 (B-10), 1:500 Santa Cruz Biotechnology Cat#sc-374015; RRID: AB_10947408

Bacterial and Virus Strains

Ad-GFP Vector Biolabs Cat#1060

Ad-Cre-GFP Vector Biolabs Cat#1700

Chemicals, Peptides, and Recombinant Proteins

7’-aminoactinomycin D eBioScience Cat#00-6993-50

MitoSOX Thermo Fisher Scientific Cat#M36008

Tetramethylrhodamine methyl ester Thermo Fisher Scientific Cat#T668

RNase A Qiagen Cat#19101

Perchloric acid, 60% Sigma Cat#311413

Potassium phosphate monobasic Fisher Cat#P2853

Potassium phosphate dibasic Fisher Cat#P290500

Tetrabutylammonium-bisulfate Sigma Cat#T7158

HPLC-grade chromatography water Fisher Cat#AC268300025

L-carnitine Roche Cat#11242008001

Sodium palmitate Sigma Cat#P9767

(+)-Etomoxir sodium salt hydrate Sigma Cat#E1905

Seahorse XF modified DMEM media Agilent Technologies Cat#102365-100

Seahorse XF assay calibrant Agilent Technologies Cat#100840-000

Calcein AM dye Life Technologies Cat#C3100MP

Amersham ECL Western Blotting Detection Reagent GE Healthcare Cat#GERPN2124

CelLytic M (previously Cell Lysis M Reagent) Sigma Cat#C2978

Nitro-blue tetrazolium Sigma Cat#11585029001

Critical Commercial Assays

Glucose oxidase assay Merck/Calbiochem, Cat#CBA086

Lactate dehydrogenase assay Cayman Chemical Cat#600450

Citrate synthase activity assay Sigma Cat#CS0720

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Cytochrome c oxidase activity assay BioVision Cat#K287-100

XF Mito Stress Test Kit Agilent Technologies Cat#103015-100

XF Glycolytic Stress Test Kit Agilent Technologies Cat#103020-100

Total OXPHOS Rodent WB Antibody Cocktail Abcam Cat#110413

Deposited Data

Affymetrix microarray data, FIH, VHL and

VHL/FIH null mouse embryonic fibroblasts

Zhang et al. (2010) GEO: GSE20335

Experimental Models: Organisms/Strains

Mouse: VHL fl/fl: C;129S-Vhl<tm1Jae>/J The Jackson Laboratory 004081

Mouse: MCK cre: B6.FVB(129S4)-Tg(Ckmm-cre)5Khn/J The Jackson Laboratory 006475

Mouse: Myf6 cre: B6;129-Myf6<tm2(cre)Mrc>/J The Jackson Laboratory 010528

Mouse: FIH nullizygous Zhang et al. (2010) N/A

Mouse: FIH fl/fl Zhang et al. (2010) N/A

Oligonucleotides

See Table S1 N/A N/A

Recombinant DNA

gBlock double-stranded DNA containing mouse FIH Integrated DNA Technologies N/A

Plasmid: pEF_IRES_puro6 Department of Biochemistry,

University of Adelaide

N/A

Software and Algorithms

NMR Suite 7.6 Chenomx http://www.chenomx.com/

GenePattern Suite The Broad Institute http://software.broadinstitute.org/

Fusion FX System (blot acquisition) Vilber Lourmat https://www.vilber.com/

FlowJo vX (flow cytometry acquisition) FlowJo, LLC https://www.flowjo.com/

XF Hypoxia Rate Calculator Program Agilent Technologies http://www.agilent.com/

FLPI, Laser Speckle Contrast Imager Moor Instruments http://moor.co.uk/

ImageJ NIH https://imagej.nih.gov/ij/

Waters Q-ToF Xevo acquisition software Waters Corporation http://www.waters.com/

Ultra Performance Liquid Chromatogram acquisition software Waters Corporation http://www.waters.com/

Others

SCI-tive Hypoxia Workstation Baker Ruskinn N/A

XF24-3 Analyzer Agilent Technologies N/A

Oxymax indirect calorimetry system with modular treadmill

setup

Columbus Instruments N/A
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to the Lead Contact, Randall S. Johnson (rsj33@

cam.ac.uk).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mice
Animal work was carried out under UK Home Office guidelines. Mice were housed in a pathogen-free animal facility, provided with

food and water ad libitum, (normal maintenance mouse chow from: SAFE Diets, catalog #A04), and maintained on a 12h light-dark

photoperiod at a regulated 21 degrees C. Mice were genotyped with DNA from ear biopsies, using either in-house PCR or commer-

cial Transnetyx qPCR assays. Mice carrying the FIH gene where exon 2 is flanked by loxP sites (FIHfl/fl) were described previously

(Zhang et al., 2010). Mice possessing loxP sites flanking the VHL promoter and exon 1 (VHLfl/fl) were acquired from The Jackson Lab-

oratory’s repository (JAX 004081). All micewere backcrossed into the C57/BL6J background over at least four generations. Breeding

pairs where both breeders were homozygous for either the floxed FIH (FIHfl/fl) or the floxed VHL allele (VHLfl/fl) were used to generate

FIHfl/fl and VHLfl/fl mice/embryos. FIHfl/fl and VHLfl/fl mice were crossed over three generations to derive FIHfl/flVHLfl/fl mice/embryos.
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FIHfl/fl or VHLfl/fl mice were crossed with transgenic mice expressing cre recombinase under the control of either the striated mus-

cle-specific creatine kinase CKMM promoter (JAX 006475) or the skeletal muscle-specific Myf6 promoter (JAX 010528), which were

also acquired from The Jackson Laboratory and 010528 respectively). As VHLfl/fl-CKMM cre mice did not survive to birth, VHLfl/fl-

Myf6 cre were likewise generated. Within three generations, skeletal muscle-specific FIH null (FIHfl/fl cre) or VHL null (VHLfl/fl) mice

were derived and used to set up experimental crosses. Only 3 month-old male mice were used in vivo exercise assessments.

Age-matched male littermates (FIHfl/fl, VHLfl/fl) were used as controls. FIHfl/flVHLfl/fl animals were generated in the C57/BL6J back-

ground by crossing FIHfl/fl and VHLfl/fl animals, and subsequently offspring across 2-3 generations carrying both floxed alleles. After

crossing the respective cre recombinase transgenes into the FIHfl/flVHLfl/fl lineage, experimental crosses were set up as follows:

FIHfl/flVHLfl/fl X FIHfl/flVHLfl/fl cre.

FIHD2/+ mice described previously by our group (Zhang et al., 2010) were reconstituted from cryopreserved sperm, and back-

crossed for four generations to the C57/BL6J background. FIHD2/+ heterozygous experimental crosses were used to derive sex-

matched FIH nullizygous (FIHD2/D2) males with male wildtype littermates as controls.

Derivation of Primary Mouse Cells
Primary mouse embryonic fibroblasts (MEFs) were isolated from macerated E12.5-13.5 embryos of the relevant genotypes (whole

litter of embryos used)(mixed cultures were created without selection for gender) and immortalized by stable transfection with

SV40 large T antigen at passage 3. Cells were then subcultured over seventeen more passages. Unless otherwise stated, MEFs

were cultured in a humidified 37�C atmosphere of 21% oxygen, 5% carbon dioxide, in high glucose DMEM (Invitrogen) supple-

mented with 10% fetal bovine serum (Gibco), penicillin and streptomycin.

Generation of an FIH Knockout MEF Cell Line Stably Overexpressing Mouse FIH
A gBlock double-stranded DNA containing mouse FIH with 40 bp complementary ends (Integrated DNA Technologies) was cloned

via Gibson assembly into a pEF_IRES_puro6 expression vector. FIH-/- MEFs cultured without penicillin and streptomycin in 100 mm

dishes were transfected at 90% confluency with 30 mg of either a pEF_IRES_FIH_puro6 or an empty vector. Two days after trans-

fection, cells were selected with 2 mg/ml puromycin for two weeks prior to analysis by western blotting and use in Seahorse assays.

METHOD DETAILS

Acute Deletion of Target Genes from MEFs
1x106 immortalized VHLfl/fl FIHfl/fl MEFs were plated briefly, then infected overnight with 100 pfu/cell of adenovirus expressing under

the control of a CMV promoter either eGFP alone (Vector Biolabs), or both eGFP and cre recombinase (Vector Biolabs). After washing

in DPBS, infected cells were trypsinized. The cell population was enriched for eGFP-positive cells using a MoFlo cell sorter

(DakoCytomation). For this study, knockouts were only compared to control cell populations derived from the same parent ‘floxed’

cell population. One passage post-infection, total genomic DNA was purified from a sample of cultured cells using a DNeasy kit

(Qiagen) with RNaseA treatment. Deletion efficiency was quantified with qPCR using TaqMan (Roche) reagents, comparing FIH

and VHL to HIF1a gDNA levels in wildtype and knockout cells. qPCR analysis was performed with an ABI StepOne Plus detection

system.

In Vitro Hypoxic Treatment of MEFs
For hypoxic studies, cells were seeded and cultured in normoxia (21% oxygen) until they were transferred to a temperature-,

humidity- and gas-controlled workstation (Baker Ruskinn) with an atmosphere of 5% CO2 and 1%O2. To permit comparison across

timepoints in a single hypoxic timecourse, all cell samples were cultured for the same total length of time, and transferred into hypoxia

only for the designated timeframe at the end of the protocol. To avoid reoxygenation, RNA, protein, metabolite and media samples

were collected within the hypoxic workstation.

1H-NMR Analysis of Aqueous Metabolites
Aqueous metabolite concentrations were measured in 600ml culture media aliquots. To extract aqueous metabolites from cell

lysates, cell culture media was aspirated and adherent cells washed twice with ice-cold DPBS. Cell layers were immediately scraped

into cold 6% perchloric acid (Sigma), then neutralized completely with 10M KOH. The supernatant was lyophilized and stored until

analysis, where they were reconstituted in 600ml D2O. Metabolite concentrations in both media and cell lysates were eventually

normalized to live cell counts in duplicate wells plated under the same original conditions.
1H-NMR spectroscopywas performed on a 600MHzBruker AvanceNMR spectrometer. Solvent suppression pulse sequencewas

used for acquisition of the 1H-NMR data. DSS was used as an internal standard. Spectral processing consisted zero- and first-order

phase corrections followed by baseline correction using NMR Suite 7.6 (Chenomx). Metabolites were identified by chemical shift

assignments using the same interface. The absolute concentration of metabolites was calculated by normalizing peak area to the

concentration of DSS in each sample calculated by an ERETIC method.
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Microarray Data Interpretation
An existing Affymetrix microarray dataset relevant to FIH KO, VHL KO and VHL/FIH dKO mouse embryonic fibroblasts was down-

loaded from NCBI GEO (GEO: GDS3769). A principal component analysis was first performed using the relevant function on

GenePattern (Broad Institute, USA) server, to visualize differences. The dataset was filtered through a PreprocessDataset function

on GenePattern, applying lower and upper limits of 0 and 20 000 to Affymetrix results. Genes with minimal variability across

samples (absolute fold change of less than 2 or a range of less than 50) were excluded from analysis. Using GenePattern’s

ComparativeMarkerSelection and ExtractComparativeMarkerResults modules, pairs of genotypes were subject to a two-sided

t-test without permutation.

Taking each knockout / control pair in turn, the fold change and p-value of each gene were plotted against each other using the

MultiPlot module on GenePattern. To extract metabolically relevant information from this dataset, genes with KEGG metabolic

pathway gene ontologies were identified on data plots for clearer visualization.

RNA Extraction from Cells and qRT-PCR Analysis
Total RNA was isolated from cultured cells using an RNeasy kit (Qiagen), with accompanying DNase I treatment (Qiagen). 1mg RNA

was reverse-transcribed using a SuperScript III First Strand Synthesis system (Invitrogen). Resulting cDNA was then diluted 1:20,

and amplified with qPCR using SYBR Green (Roche) reagents in an ABI StepOne Plus detection system. Cycling conditions: Heat

ramp 95�C x 10min, extension (95�C x 15s, 60�C x 1min) x 40 cycles, melt curve 95�C x 15s, 60�C x 1min, 95�C x 15s with 0.3�C
increments. Primer sequences are appended (Table S1). Fold change gene expression was calculated by normalisation to 18S,

i.e. 2-DDCT = 2-[(CT,target – CT,housekeeping)hypoxia - (CT,target – CT,housekeeping)normoxia].

Apoptosis Assay
MEFs (150 000) were seeded perwell of a 6well plate. Tomeasure apoptosis, MEFswere exposed to various levels of hypoxia, trypsi-

nized at various timepoints, incubatedwith 7’-AAD (1:20) (eBioScience) in DPBS at 4�C for 15min, then analyzed for the percentage of

dead (positively-stained) cells using flow cytometry.

Enzyme-Based Metabolic Assays
MEFs (150 000) were cultured for up to 72h in 21% or 1% oxygen. A media sample was taken at different timepoints for colorimetric

quantification of glucose concentration by a glucose oxidase assay (Merck/Calbiochem), and lactate concentration by a lactate de-

hydrogenase assay (Cayman Chemical), according to manufacturers’ instructions. Glucose and lactate measurements from uncon-

ditionedmedia were used for comparison. Adherent MEFs were washed and lysed in a non-denaturing Cell M Lysis Reagent (Sigma)

containing proteinase inhibitor. Lysates were centrifuged, and the supernatant kept at -80�C until analysis. Native citrate synthase

activity (Sigma) and cytochrome c oxidase activity (BioVision) in lysates was measured using colorimetric kinetic measurements ac-

cording to manufacturers’ instructions, using a Tecan Sunrise microplate-reader. In particular, COX activity was measured by

following the oxidation of reduced cytochrome c as an absorbance decrease at 550nm. All readings were then normalized to viable

cell counts obtained from duplicate wells plated under the original conditions.

Flow Cytometric Analysis
To characterize various mitochondrial parameters in MEF populations, MEFs were cultured for 48h, then trypsinized and stained with

one of the following at 4�C over 20min in DPBS: 10mMMitoSOX (Thermo Fisher), 200nM tetramethylrhodamine methyl ester (Thermo

Fisher). Stained cells were then washed and kept in cold DPBS briefly before analysis. Results were acquired with a Fortessa

(Becton-Dickinson) flow cytometer, and analyzed in FlowJo vX.

Quantification of mtDNA
Total genomic DNA was extracted from cultured cells using a DNeasy kit (Qiagen) with RNaseA treatment. To approximate mtDNA

content (Huo andScarpulla, 2001; Shen et al., 2004), the relative quantities ofmtDNA genes encoding cytochromeB andmCO-1, and

rDNA genes encoding 18S and m5S, were determined by qPCR. A list of primer sequences is appended (Table S1).

HPLC Assay for High Energy Nucleotides
Cell culture media was removed and cells were washed twice with ice-cold DPBS. Cell layers were scraped into ice-cold 6%

perchloric acid. A known amount of cytidine monophosphate (Sigma) was added as an internal standard at the same time. Cells

were then immediately scraped and collected. Samples were incubated on ice for 10min, then centrifuged. Universal indicator

solution (Fisher) was added to supernatants. The samples were neutralized with KOH and the supernatants were collected and

lyophilized.

For analysis, each sample was reconstituted in 200-300ml of HPLC-grade water (Fisher), then 20ml was injected onto a 3.0 mm

SUPELCOSIL LC-18-T HPLC column (Sigma) using a Dionex Ultimate 3000 system. The column temperature was held at 30�C
and the flow rate was 1.0 ml/min. Buffer A consisted of 100mM KH2PO4/K2HPO4 (Fisher) with 4mM tetrabutylammonium-bisulfate

(Sigma) in water. Buffer B consisted of 100mM KH2PO4/K2HPO4 with 4mM tetrabutylammonium-bisulfate in 30% methanol (Fisher

Scientific). After 2.5min at 0%buffer B, the gradient profile startedwith a linear increase of buffer B to 30%until 5.0min, followed by a

linear increase to 50% buffer B until 10.0 min. From 10.0 min to 18.0 min the gradient was increased linearly to 100% buffer B. At
Cell Metabolism 27, 898–913.e1–e7, April 3, 2018 e4



20.0min, the gradient was reversed to 0%buffer B and held for 5.0 min. Detection was achieved bymeasuring absorbance at 254nm

and quantified against the absorbance of known standards.

Seahorse XF Glycolytic and Oxidative Stress Tests
An XF24-3 Analyzer (Agilent) equipped with fluorescent biosensors was used to measure local pH or pO2 changes in culture media.

Briefly, 50 000 MEFs were seeded per culture well overnight (8-12h), then washed and equilibrated in glucose/pyruvate-free, unbuf-

fered (glycolysis stress test) or low glucose/low pyruvate, HEPES-free DMEM for 1h at 37�C, in a CO2-free atmosphere. After taking

baseline recordings, reagents were injected successively into eachwell, with pH and pO2 tracked in real-time (2min-1min-2min / mix-

wait-measure cycles, with three cycles per injection). Working concentrations optimized for the ‘‘glycolytic stress test’’ were 10mM

glucose, 2.5mM oligomycin and 12mM 2-deoxyglucose. Those used for the ‘‘mitochondrial stress test" were 10mM glucose, 0.8mM

oligomycin, 1.2mM FCCP and a 4mM antimycin/2mM rotenone mixture. After the final reading, live cells were stained with calcein AM

dye (Life Technologies), and each well imaged for particle analysis in ImageJ. Extracellular acidification rates and oxygen consump-

tion rates for each well were divided by the live cell counts for the same well, and the final result normalized to ‘‘50 000 viable cells at

the end of the experiment’’.

To measure fatty acid oxidation, cells were first starved over 24h in glucose/pyruvate-limited DMEM supplemented with 0.5mM

carnitine. Thereafter, cells were washed and kept briefly in Krebs-Henseleit Buffer. Either BSA-conjugated palmitate or BSA vehicle

was added to wells, and the oxidative stress test was immediately run. Fatty acid oxidation was taken to be the difference between

palmitate and vehicle-treated readouts. Separate control wells treated with 40mM etomoxir 15min before the experiment were found

to be unresponsive to palmitate – confirming that oxidation measured in this setup was indeed attributable to fatty acids.

To acquire similar readouts under hypoxic conditions, the XF24-3 Analyzer (Agilent) was subsequently placed within a gas flow-

controlled Perspex hermetic chamber. The chamber was not humidity- or temperature-controlled, but a fan promoted internal air

circulation. The chamber was maintained at 1% oxygen, 0% carbon dioxide. The assay was optimized and cells were seeded at

a density that allowed anoxia to be avoided during each measurement cycle. The instrument and biosensors were allowed to equil-

ibrate in this hypoxic atmosphere overnight, while aliquots of assay reagents were thawed and equilibrated 1h in advance.

MEFs (20 000) were seeded per well, and cultured for 24h at 1% oxygen, 5% carbon dioxide. After cells were washed and left in XF

media, they were transferred into the Analyzer via an airtight container, and were left to equilibrate with the instrument’s carbon

dioxide-free atmosphere for 1h. The glycolytic and mitochondrial stress tests were performed as previously described. Reagent

working concentrations were modified as follows: For the ‘‘glycolytic stress test’’, 10mM glucose, 2.5mM oligomycin and 12mM

2-deoxyglucose. For the ‘‘mitochondrial stress test", 10mM glucose, 0.6mM oligomycin, 1mM FCCP and a 2mM antimycin/1mM

rotenone mixture.

To analyze data acquired under hypoxia, extracellular acidification rates did not require further correction. Oxygen consumption

rates were corrected using the XF Hypoxia Rate Calculator Program (Seahorse Bioscience), which was calibrated by wells where

anoxia was ‘induced’ by repeated injections of 100mMNa2SO3 into XF assay calibrant.Well readingswere finally normalized to viable

cell counts performed at the end of each experiment, taken to be the number of cells stained positively by calcein AM dye (Life

Technologies).

Western Blotting of Cells and Organ Lysates
Confluent layers of cultured cells were washed once with DPBS and scraped into ice-cold RIPA buffer (1% PMSF, 2% proteinase

inhibitor) for protein extraction. Primary tissues were homogenized under liquid nitrogen with mortar and pestle, then protein was

likewise extracted with a 1:1 tissue:RIPA volume ratio. Lysates (15mg) were separated on either 3-8% Tris-Acetate or 4-12% Bis-

Tris gels (Invitrogen) in SDS buffer, then transferred onto nitrocellulose membranes with a TransBlot system (BioRad). Immunoblot-

ting was performed by standard methods. A list of primary and secondary antibodies is appended in the Key Resources Table. Blots

were developed with an Amersham ECLWestern Blotting Detection Reagent (GE Healthcare) and visualized with a Fusion FX system

(Vilber Lourmat). Densitometric analysis was performed with ImageJ.

Comparison of Expression of Mitochondrial Electron Transfer Chain Complexes in WT and FIH KO
MEFs seeded in six-well plates were lysed in 100uL/well RIPA buffer. Lysates were separated on 4-12% SDS Page, transferred to

nitrocellulose membrane. Immunoblotting was performed with a Total OXPHOS Rodent WB Antibody Cocktail (Abcam 110413)

1:250, using rat heart mitochondria as a positive control.

Tail Vein Blood Sampling
Serum obtained from tail vein blood samples was analysed by a biochemical core facility using the following assays (Dade-Behring):

creatine kinase by Oliver and Rosalki method; glucose by hexose-6-phosphate dehydrogenase assay; high density lipoprotein by

homogenous detergent solubility / enzyme assay; lactate by Marbech and Weil method.

Indirect Calorimetry
Mouse energy expenditure was measured with an Oxymax system (Columbus Instruments). Each mouse was placed in a metabolic

chamber with a controlled supply of room air and monitored over a period of 24h, during which it was provided freely with food and

water. Each pair of wildtype and knockout littermates was analyzed during the same 24h timeframe. O2 and CO2% at each chamber
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inlet and outlet were monitored with a paramagnetic O2 sensor and CO2 sensor and analyzed to obtain weight-normalized metabolic

parameters (VO2, VCO2 and respiratory exchange ratios) over time.

Incremental Uphill and Downhill Treadmill Protocols
All calorimetry and treadmill studieswere carried out at a controlled 21 degree C ambient environmental temperature. No exclusion or

inclusion criteria were employed when selecting mice in these studies.

Untrained knockout and control mouse littermates were run on an enclosed-chamber modular treadmill (Columbus Instruments) at

a 5� incline, beginning at 5m/min, with an acceleration of 1m/min2 until the animal was exhausted, exhaustion being defined as the

point where mice refused to run even when coming into contact with a low-voltage power grid. Oxygen and carbon dioxide into and

out of the treadmill chamber was monitored using a carbon dioxide and paramagnetic oxygen sensor within an Oxymax system.

VO2,max was defined as the maximum VO2 achieved during this assessment, while the baseline VO2 was taken to be that at rest,

just before the treadmill was started at 5m/min. Power was calculated as the product of bodyweight in kg, acceleration due to gravity,

and vertical speed (horizontal speed 3 angle of incline). To assess downhill running, the VO2,max protocol was repeated, with the

treadmill positioned at a 10� decline instead.

To assess the impact of inhalational hypoxia on running performance, mice were first allowed to acclimatize for 5h in hermetic

chambers supplied at 12% oxygen. They were then transferred to the modular treadmill setup (Columbus Instruments) with a joint

gas supply, and the VO2,max protocol was repeated.

To assess endurance, with at least 72h rest between any two protocols, mice were run at 70% of their pre-determined, maximum

achievable speed at a 5� incline. Distance run to exhaustion was noted. To measure oxygen debt, from a resting state, mice were

immediately stepped up to 70% of their pre-determined, maximum achievable speed at a 5� incline, run for 15min, then immediately

stepped down to rest. The resulting plot of VO2 over time was used for analysis. Oxygen debt was defined as the area under the VO2

curve following the ‘step-down’.

Doppler Imaging
Procedures were carried out at a 21 degree C environmental temperature. Mice were anaesthetized with isoflurane atop a warm plat-

form, and the hindlimb was exposed by a skin flap. Doppler imaging was performed with a laser speckle contrast imager (FLPI, Moor

Instruments). The charged coupled device camera was positioned 20cm above the exposed femoral artery and its branches. Four

sequential images were acquired in a in a long exposure, high resolution setting (camera exposure 1min), integrated to produce a

scaled flux image of local blood flow velocity. Perfusion was reported in arbitrary units. Three regions of interest across the femoral

artery were analyzed and the data pooled. Imaging and analysis was done in a blinded fashion. Mice were culled at the end of the

procedure by cervical dislocation.

Tissue Harvest
At the end of the experimental period, mice were culled by cervical dislocation. Samples of gastrocnemius, quadriceps and soleus

were immediately snap-frozen in liquid nitrogen, while some samples were prepared for histology as described below.

Native Enzyme Activity Assays
Tissuewas homogenized under liquid nitrogen using amortar and pestle setup. Tissue homogenates were lysed in approximately 1:1

(v/v) non-denaturing Cell M Lysis Reagent (Sigma) containing proteinase inhibitor. Lysates were centrifuged, and supernatants kept

at -80�C until analysis. Native citrate synthase activity (Sigma, CS0720) and cytochrome c oxidase activity (BioVision, K287-100) in

lysates was measured using colorimetric kinetic measurements using a Tecan microplate reader.

Preparation of Tissue for Histology
For muscle histology, samples of quadriceps were harvested from untrained mice of all genotypes and flash-frozen in OCT (Tissue-

Tek) by immersing in a dewar of liquid nitrogen-cooled isopentane. Tissue sections (10mm) were cut with a cryostat for histological

analysis.

Fiber Type Differentiation Using NADH-tetrazolium Reductase Method
Frozen, unfixedmouse quadriceps sections were incubated for 30min in 0.16%NADH in 0.05M Tris buffer (pH7.6) containing freshly-

added 0.1% nitro-blue tetrazolium (Sigma), at 37�C. Sections were washed with three exchanges of deionised water. Unbound nitro-

blue tetrazolium was removed using acetone solutions in the following sequence: 30%, 60%, 90%, 60%, 30%. Finally, slides were

rinsed several times with deionized water and cover-slipped with an aqueous mounting medium. Purple formazan is deposited at

sites of mitochondria; more oxidative fibers appear darker, as do blood vessels. The segmentation function of the MRI Adipocyte

Tools toolset in ImageJ was used to demarcate and enumerate individual myofibers of a minimum surface area per field. The staining

intensities of individual fibers were then stratified into three grades using a LUT editor, and the fibers belonging to each grade were

then manually counted by two blinded observers, finally expressed as a ratio of total myofibers per field.
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Metabolite Extraction from Muscle Samples
Gastrocnemius samples of known mass were homogenized under liquid nitrogen using a mortar and pestle setup. 100ul of each ho-

mogenate was added to 300ml of ice-coldmethanol:chloroform (2:1) and vortexed. Mixtures were kept on ice for 15min, then 100ul of

chloroform and 100ml of water were added to each tube. Samples were centrifuged for 7min at 13 300rpm, then the lower (lipophilic)

fraction was carefully separated and dried in a fume hood overnight, then stored at -80�C until analysis.

LC-MS Analysis of Lipid Species
75% of dried lipophilic fractions were used for liquid chromatography-mass spectrometry (LC-MS) analysis of intact lipids. Each

extract was reconstituted in 300 ml isopropanol-acetonitrile-water (2:1:1 v/v), and then 100 ml of this was diluted in 1.4ml IPA-aceto-

nitrile-water. Samples were then analysed using a Waters Q-ToF Xevo (Waters Corporation, Manchester) combined with an Acquity

Ultra Performance Liquid Chromatogram (UPLC). 4 ml of the sample was injected onto an Acquity UPLCCharged Surface Hybrid C18

column (1.7 mm x 2.1 mm x 100 mm) (Waters Corporation, Manchester, UK) held at 55�C. The binary solvent system (flow rate

0.400 ml/min) consisted of solvent A containing HPLC grade acetonitrile-water (60:40) with 10 mM ammonium formate and solvent

B consisting of LC-MS grade acetonitrile-isopropanol (10:90) and 10mM ammonium formate. The gradient started from 60%A/40%

B, reached 99% B in 18 min, then returned back to the starting condition, and remained there for the next 2 min. The data was

collected over the mass range ofm/z 105-1800 with a scan duration of 0.2s. The source temperature was set at 120�C and nitrogen

was used as the desolvation gas (900 L/h). The voltages of the sampling cone, extraction cone and capillary were 30 kV, 3.5 kV and 2

kV respectively, with a collision energy of 6 V for each single scan, and a collision ramp from 20 to 40 V for the fragmentation function.

As lockmass, a solution of 2 ng/ml acetonitrile-water (50:50) leucine enkephaline (m/z 556.2771) with 0.1% formic acid was infused

into the instrument every 30 seconds.

QUANTIFICATION AND STATISTICAL ANALYSIS

Analyses were performed with GraphPad Prism 7. Data are presented as mean ± SD. All experiments were conducted at least three

times with representative data shown, and where appropriate, examined for normal distribution by histogram. Statistically significant

differences were determined using the Student’s t test. Correlations were evaluated using the Pearson r method. A value of p <0.05

was considered statistically significant. For the analyses of metabolites, comparisons between groups were made using multiple

t tests with a false discovery rate of 0.05. For comparison among multiple groups a, one-way ANOVA was used; for comparison

of grouped data, a two-way ANOVA was used. Statistical parameters can be found in the figure legends.
e7 Cell Metabolism 27, 898–913.e1–e7, April 3, 2018


	The Factor Inhibiting HIF Asparaginyl Hydroxylase Regulates Oxidative Metabolism and Accelerates Metabolic Adaptation to Hy ...
	Introduction
	Results
	Quantitative Effects of FIH Loss on the Metabolic Transcriptome
	Metabolic Differences in FIH and vHL Null Cells
	FIH Modulates a Hypoxic Metabolic Shift
	FIH Suppresses Hypoxia-Induced Mitochondrial Reactive Oxygen Species Production
	Shift in Mitochondrial Membrane Potentials Is Induced by vHL Loss, but Not FIH Loss
	Mitochondrial Levels and Activity Differ in FIH and vHL Null MEFs
	Loss of FIH Increases Mitochondrial Activity under Normoxia
	Loss of FIH under Normoxia Selectively Increases Glycolytic Reserve
	Loss of FIH under Normoxia Increases Oxygen Consumption
	Loss of FIH in Skeletal Muscle Demonstrates Its Role in the Potentiation of Hypoxic Metabolic Shifts
	FIH Loss Accelerates Hypoxic Adaptation in Skeletal Muscle

	Discussion
	Limitations of Study

	Supplemental Information
	Acknowledgments
	References
	STAR★Methods
	Key Resources Table
	Contact for Reagent and Resource Sharing
	Experimental Model and Subject Details
	Mice
	Derivation of Primary Mouse Cells
	Generation of an FIH Knockout MEF Cell Line Stably Overexpressing Mouse FIH

	Method Details
	Acute Deletion of Target Genes from MEFs
	In Vitro Hypoxic Treatment of MEFs
	1H-NMR Analysis of Aqueous Metabolites
	Microarray Data Interpretation
	RNA Extraction from Cells and qRT-PCR Analysis
	Apoptosis Assay
	Enzyme-Based Metabolic Assays
	Flow Cytometric Analysis
	Quantification of mtDNA
	HPLC Assay for High Energy Nucleotides
	Seahorse XF Glycolytic and Oxidative Stress Tests
	Western Blotting of Cells and Organ Lysates
	Comparison of Expression of Mitochondrial Electron Transfer Chain Complexes in WT and FIH KO
	Tail Vein Blood Sampling
	Indirect Calorimetry
	Incremental Uphill and Downhill Treadmill Protocols
	Doppler Imaging
	Tissue Harvest
	Native Enzyme Activity Assays
	Preparation of Tissue for Histology
	Fiber Type Differentiation Using NADH-tetrazolium Reductase Method
	Metabolite Extraction from Muscle Samples
	LC-MS Analysis of Lipid Species

	Quantification and Statistical Analysis



