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Abstract: Commonly misused substances such as alcohol, cocaine, heroin, methamphetamine, and
opioids suppress immune responses and may impact viral pathogenesis. In recent years, illicit use of
opioids has fueled outbreaks of several viral pathogens, including the human immunodeficiency
virus (HIV), hepatitis B virus (HBV), and hepatitis C virus (HCV). This review focuses on the myriad
of mechanisms by which drugs of abuse impact viral replication and disease progression. Virus–drug
interactions can accelerate viral disease progression and lead to increased risk of virus transmission.
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1. Drug Use Morbidity and Mortality in the US

There were over 19 million people aged 18 or older with substance use disorder (SUD)
in the United States in 2019 [1]. Frequently misused substances include alcohol, cocaine,
heroin, marijuana (cannabis), tobacco, methamphetamine, and opioids. Given the sharp
rise in opioid-related deaths in recent years, this review focuses on opioids and their
interactions with common viral pathogens, such as the human immunodeficiency virus
(HIV), hepatitis B virus (HBV), and hepatitis C virus (HCV).

Rates of drug overdose deaths have increased significantly in recent years [2,3]. From
2016 to 2017, more than 142,000 Emergency Department visits were suspected opioid-
involved overdoses [4]. Among the 70,000+ drug overdose deaths in 2017, 67.8% involved
an opioid [5]. In 2019, 70.6% of drug overdose deaths involved opioids, while 51.5%
involved synthetic opioids [6]. Contributing to these increased deaths is the dramatic
increase in the availability of heroin and illicitly manufactured fentanyl and fentanyl
analogs [7–12].

2. Drug Use and Immune Function

Several commonly misused substances suppress immune responses (reviewed in [13,14]).
Possible mechanisms include impaired function of natural killer cells, T cells, B cells,
neutrophils, dendritic cells, and/or macrophages, altered expression of cytokines and
chemokines, and the weakened integrity of the intestinal barrier, all of which contribute to
decreased ability to control pathogens and limit their subsequent clearance. Evidence of
the immunosuppressive effects of drug use are further supported by epidemiologic studies
demonstrating an increased rate of infections amongst persons with SUD [15–17].

3. Common Viral Infections Associated with Drug Use

Drug use—particularly the opioid pandemic—has fueled outbreaks of several viral
pathogens. Perhaps the most well-known example occurred in Scott County, Indiana, in
2015. In an area that had previously recorded approximately five new HIV cases annually,
over 200 people were diagnosed with HIV in less than one year [18,19]. Most individuals
lived in rural communities, were under 40 years of age, white, and nearly half were women.
A total of 80% reported injection drug use. Among those, all reported dissolving and
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injecting oxymorphone tablets. It was subsequently reported that most individuals were
also co-infected with HCV [20]. Increases in HIV and/or viral hepatitis associated with
injection drug use have been noted in several other settings [21–27]. A meta-analysis found
that 17.8% of persons who inject drugs (PWIDs) were living with HIV, 52.3% were HCV
seropositive, and 9.1% were HBV surface antigen positive [28]. Thus, it is not surprising
that rises in viral infections associated with injection drug use—frequently involving
opioids—have been noted internationally as well [29–34].

4. Opioids

There are three main types of opioids. Natural opiates are found in plants and include
morphine and codeine. Semi-synthetic opioids are those created in laboratory settings
from natural opiates and include hydromorphone, hydrocodone, and oxycodone, as well
as heroin, which is made from morphine. Synthetic opioids include fentanyl, fentanyl
analogs, buprenorphine, methadone, and tramadol. Endogenous opioid peptides are also
responsible for a plethora of physiological functions and include endorphins, enkephalins,
and dynorphins.

Opioid family receptors are classified as µ-opioid (MOR), δ-opioid (DOR), κ-opioid
(KOR), and nociceptin/orphanin (ORL) receptors [35]. When an opioid receptor is activated,
adenylyl cyclase is inhibited, leading to the activation of K+ channels and the reduced
conductance of Ca2+ channels. Opioid receptors also activate mitogen-activated protein
kinases and phospholipase C-mediated signaling, leading to the formation of IP3 and diacyl
glycerol. The activation or inhibition of downstream signaling cascades thus facilitates the
intrinsic effects of opioids [36,37].

5. Opioids and HIV

Opioid receptors are expressed on a variety of immune cells, such as lymphocytes,
macrophages, neutrophils, and monocytes [38,39]. Therefore, the interactions between
opioids/opioid receptors and HIV are important to investigate (Figure 1). Endogenous
opioid peptides enhance HIV expression. For instance, the β-endorphin enhanced viral
protein production and long terminal repeat (LTR) activation in microglia [40]. Similarly,
endomorphin-1 increased HIV expression in mixed glial/neuronal, as well as microglial,
cell cultures [41], and dynorphin upregulated HIV expression in fetal brain co-cultures [42].
However, subsequent studies have not evaluated the role of endogenous opioid peptides
on HIV disease progression in vivo.

Squinto et al. first reported that morphine activated the HIV LTR in human neurob-
lastoma cells [43]. Subsequent studies showed increased HIV replication with several cell
types. Morphine increased HIV expression in promonocyte/fetal brain cell co-cultures,
as well as primary cultures of Kupffer cells [44,45]. Morphine also triggered viral reac-
tivation in latently-infected lymphocytes [46]. Interestingly, Wang et al. demonstrated
that morphine withdrawal also enhanced HIV replication within peripheral blood lym-
phocytes, as well as T cell lines in vitro [47]. The neuropeptide substance P (SP) enhanced
viral replication in a dose-dependent manner, and an SP antagonist inhibited the effect of
morphine withdrawal on HIV replication. HIV LTR activation was also increased in cells
undergoing morphine withdrawal. The same group reported that morphine upregulated
chemokine receptor expression, downregulated β chemokine production, inhibited the
expression of interferons (IFNs), IFN-inducible genes, and regulators of the Janus Kinase
signal transducer and activator of transcription (JAK–STAT) signaling pathway, and de-
creased expression of anti-HIV microRNAs, while also increasing HIV expression in blood
monocyte-derived macrophages and neonatal macrophages [48–51]. Morphine withdrawal
also enhanced HIV expression within macrophages and inhibited expression of multiple
viral inhibitory factors [52]. Additionally, Balinang et al. also demonstrated increased
HIV replication in neural progenitor cells in the presence of morphine [53]. Notably, HIV
proteins also synergize with morphine to increase the expression of opioid receptors, alter
cell cycle regulation, and exacerbate neurotoxicity and neuroinflammation [54–60].
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for HIV and HCV, and/or liver injury.

Using an in vitro HIV-CD4+ T cell system, Liang et al. showed that morphine treat-
ment induced more drug-resistant mutations under selective pressure from antiretroviral
drugs and shortened the generation time for such mutations compared to controls treated
with only antiretroviral drugs [61]. The inhibitory effects of antiretroviral therapies on HIV
replication in primary astrocytes in vitro were also attenuated by morphine [62]. Morphine
influences antiretroviral drug concentration in a drug and cell type-dependent manner [57],
although the in vivo significance of these findings remains to be determined. In the simian
immunodeficiency virus (SIV) model, morphine alters the fecal microbiome and expression
of microbial metabolites and reduces the CD4+ T cell reservoir in lymphoid tissues, while
increasing the microglia/macrophage reservoir in the central nervous system [63,64]. There
are no published reports on whether another natural opioid—codeine—has similar effects
on HIV infection/replication.

Of the semi-synthetic opioids, data on their impact on HIV pathogenesis are only available
for heroin (heroin triggered HIV reactivation in latently-infected lymphocytes in vitro) [46].
Others have demonstrated that heroin enhanced HIV expression in macrophages, suppressed
IFNs, and inhibited several anti-HIV microRNAs [51,65]. Altered microRNA expression
was also confirmed in peripheral blood mononuclear cells (PBMCs) and/or macrophages
from heroin-dependent persons [65,66]. In a large cohort study, HIV-infected PWIDs had
higher plasma HIV RNA levels than non-PWIDs, and PWIDs expressed lower levels of
host restriction factors such as TRIM5α, TRIM22, ABOBEC3G, and IFNs than individuals
with no drug use [67].

Methadone and buprenorphine are widely used for the treatment of opioid addiction.
Patient-based studies investigating their impact on HIV pathogenesis are lacking. However,
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in vitro studies indicated that methadone enhanced HIV replication within fetal microglia
and blood monocyte-derived macrophages, and increased replication in latently-infected
PBMCs [68]. Methadone increased expression of CCR5 in monocyte-derived macrophages.
A subsequent study by the same group found that methadone also increased HIV expres-
sion in primary macrophages and reduced expression of IFNs, IFN-stimulated genes, and
several anti-HIV microRNAs [69].

Retention on buprenorphine treatment was associated with maximal HIV suppression
in opioid-dependent persons [70], although there are no reports on whether buprenorphine
directly impacts HIV levels in vivo. A recent study found that buprenorphine resulted
in more than an eight-fold increase of in vitro infection of PBMCs from uninfected in-
dividuals with an HIV reporter virus [71]. In contrast, in a murine model of HIV, viral
levels were not increased, although cognitive impairment was reduced in the presence of
buprenorphine [72].

Despite the significant contribution of synthetic opioids such as fentanyl to the current
opioid crisis, data evaluating the potential association of fentanyl or fentanyl analogs on
HIV disease are limited. We recently reported preliminary data suggesting that fentanyl
increases HIV replication via enhanced expression of the CCR5 and CXCR4 chemokine co-
receptors in several cell types [73,74]. Nonetheless, the impacts of other synthetic opioids
on HIV pathogenesis remain to be explored.

6. Opioid Receptor/Chemokine Receptor Interactions

It is well established that, like chemokines, µ-, δ-, and κ-opioids induce chemotactic
responses in monocytes and neutrophils [75–78]. It has also been shown that the activation
of mu- and delta-opioid receptors leads to the heterologous desensitization of chemokine
receptors (reviewed in [79]). Thus, opioid receptor–chemokine receptor interactions and
desensitization by opioid agonists may have important implications for HIV pathogenesis.
Several groups have sought to antagonize opioid receptor–chemokine receptor interactions
as a novel therapeutic strategy to limit HIV replication. Akgün et al. synthesized a bivalent
MOR agonist/CCR5 antagonist that exhibited significant anti-nociception in mice [80]. This
bivalent compound was around 3500 times more potent than a mixture of the MOR agonist
and CCR5 antagonist monovalent ligands. Arnatt et al. developed a different bivalent
compound targeting the MOR–CCR5 heterodimer [81]. Exposure to the bivalent ligand
significantly reduced HIV p24 levels in PBMCs, macrophages, and primary astrocytes. This
group subsequently developed a bivalent MOR–CXCR4 antagonist that is around 150 times
more potent than monovalent controls at inhibiting HIV entry [82], and have recently
reported additional bivalent MOR–CCR5 ligands with potent anti-HIV activity [83].

7. Stimulants and HIV

Stimulants such as cocaine and methamphetamine may alter HIV pathogenesis and
have been reviewed in detail elsewhere [84,85]. For instance, stimulant use is associated
with higher HIV RNA levels and greater CD4+ T cell decline [86–88]. In vitro, cocaine
enhances HIV transcription through the altered expression of NFκB, mitogen- and stress-
activated kinase 1 (MSK1) p38 mitogen-activated protein kinase (p38 MAPK), and/or
initiation and elongation factors [89–91]. Cocaine can directly enhance HIV expression
in multiple cell types including PBMCs, macrophages, CD4+ T cells, dendritic cells, mi-
croglia, and astrocytes [89,92–99]. Peterson et al. further reported that antibodies to
either tumor necrosis factor alpha (TNFα) or transforming growth factor beta (TGFβ)
reduced the impact of cocaine on HIV replication [94]. Cocaine can also enhance HIV
neuroinvasion by remodeling microvascular endothelial cells in the brain [100]. Roth et al.
noted a 100- to 300-fold increase in HIV levels after cocaine administration in a murine
model of HIV infection [101,102]. The mechanism by which cocaine influences HIV patho-
genesis includes increased chemokine co-receptor expression, epigenetic modifications,
upregulation of dendritic cell-specific intercellular adhesion molecule-3-grabbing non-
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integrin (DC-SIGN), differential MAPK expression, dysregulation of arachidonic acid and
its metabolites, and/or downregulation of anti-HIV microRNAs [90,91,93,98,99,102–105].

Methamphetamine use in the US increased 43% from 2015 to 2019 [106]. Metham-
phetamine use alters the immune system in a variety of ways, including altered immune
cell subset number, increased pro-inflammatory cytokine production, increased CD4+ and
CD8+ T cell proliferation, enhanced CD4+ T cell activation and/or exhaustion, and altered
immune-related signaling pathways, as reviewed elsewhere [107–110]. Population-based
studies report that methamphetamine use is associated with higher HIV viral loads, higher
likelihood of having detectable HIV viral loads, and/or lower CD4+ T cell counts compared
to non-users [111–113]. Several in vitro studies have shown that methamphetamine and
the HIV tat protein interact to alter mitochondrial dysfunction and cell death [114,115].
Others have demonstrated increased HIV replication in the presence of methamphetamine
in multiple cell types, including blood monocyte-derived macrophages, monocyte-derived
dendritic cells, neural progenitor cells, and CD4+ T cells [116–124]. The proviral effects
of methamphetamine on HIV are attributed to the enhanced expression of chemokine
co-receptors, decreased expression of β chemokines, inhibition of IFNα, upregulation of T
cell activation markers, altered microRNA expression, dysregulation of signal transduction
pathways, inhibition of TLR9, and activation of the HIV LTR.

8. Alcohol and HIV

Alcohol represents a near ubiquitous extrinsic factor that can play a role in infection,
transmission, and maintenance of chronic viral infections. The World Health Organization
reports that alcohol consumption contributes to 3 million deaths per year globally (WHO
2018). The 2019 National Survey on Drug Use and Health reported 139.7 million current
alcohol users aged 12 and older in 2019 [125].

Alcohol can impact HIV by increased risk of infection/transmission, reduced viral
suppression, and increased emergence of viral resistance to antiretroviral therapies, as
well as alcohol-associated immunosuppression that increases the risk of opportunistic
infections and disease progression. A meta-analysis of 10 studies reported that any alcohol
consumption was associated with an increased relative risk of HIV infection, while binge
drinking led to an increased relative risk of 2.2 [126]. This risk is attributable in part to
the link between alcohol use, unprotected sexual intercourse, multiple sexual partners,
and a prior history of sexually transmitted infections [127,128]. Recreational drug use,
intimate partner violence, and depression are also recognized as co-morbidities of alcohol
misuse [129].

Suppression of HIV with antiretroviral therapy has implications for the infected
individual in terms of disease progression, and as well as HIV transmission to others.
In a longitudinal study of patients in continuity care, the time spent with a viral load
>1500 copies/mL was evaluated. Hazardous alcohol use, recent drug use, black race,
and age were highly associated with failure to maintain an HIV <1500 copies/mL [130].
In the Women’s Interagency HIV Study, heavy drinking was associated with failure to
remain virally suppressed as well [26]. The association between failure to suppress HIV
and disease progression due to alcohol is well established. However, the factors that
contribute to disease progression are less clear. A detailed review of this subject suggests
that alcohol may affect HIV progression through alteration of the microbiome, affecting
gut permeability, and systemic activation, though not all studies report an association
between heavy alcohol use and markers of progression [131]. Alcohol may increase risk
of infections in persons with HIV by altered immune surveillance mechanisms. Experi-
mental models suggest that alcohol consumption increases susceptibility to pneumococcal
pneumonia [132]. The presence of alcohol use disorder is associated with greater pneu-
monia severity as well [133]. In vitro studies suggest that HIV gp120 and alcohol increase
blood-brain barrier permeability [134]. Additionally, others have demonstrated increased
HIV replication in the presence of alcohol in various cell types, including T lymphocytes,
monocyte-derived macrophages, monocyte-derived dendritic cells, epithelial cells, and oral
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keratinocytes [47,135–140]. Higher alcohol-induced levels of HIV may lead to increased
risk of transmission to others. The mechanisms by which alcohol enhances HIV replication
include upregulation of chemokine co-receptors and inhibition of β chemokines [137].

9. Opioids and Viral Hepatitis

Opioid receptors are expressed in the liver where they are important mediators of
liver disease progression [141–147]. Hepatic stellate cells (HSCs) are major contributors
to liver fibrosis and express multiple opioid receptors [141,142,144–146,148]. However,
less is known about the impact of opioids on HCV and liver disease (Figure 1). In vitro
studies demonstrated that morphine, heroin, and methamphetamine enhance HCV repli-
cation [149–153]. We recently reported that fentanyl increased replication of HCV and
HBV in hepatocytes [73]. The addition of fentanyl also resulted in significant apoptosis.
RNA sequencing identified multiple hepatocyte genes that were differentially regulated by
fentanyl, including those related to apoptosis, the antiviral interferon response, chemokine
signaling, and NFκB signaling. As higher virus levels are associated with pathogenesis and
virus transmission, additional research is essential to our understanding of opioid-virus
pathogenesis and for the development of new and optimized treatment strategies. However,
there are no data on HCV RNA levels and/or markers of liver damage in fentanyl-using
populations. Similarly, there are no published reports evaluating HCV or HBV attachment
or entry factors by fentanyl or other opioids. While multiple microRNAs stimulate or
suppress HCV replication [154], studies of opioid HCV–miRNA interactions are absent
from the literature.

10. Stimulants and Viral Hepatitis

As with HIV, stimulants such as cocaine and methamphetamine may alter the patho-
genesis of viral hepatitis. However, data regarding the influence of cocaine on viral hepatitis
in at-risk populations are sparse. While cocaine use is associated with HCV infection and
the presence of HCV viremia, the impact of cocaine on HCV RNA levels or treatment
response rates is less clear [155–157]. There are conflicting data on the impact of cocaine
use on liver disease [158,159]. Similarly, there are limited studies on the impact of cocaine
use on HBV-related liver disease, although amongst US veterans with HCV, cocaine and
other drug use was associated with HBV co-infection [160].

Ye et al. demonstrated that methamphetamine increased HCV replication and inhib-
ited hepatic IFNα expression in vitro [149]. Population-based studies evaluating the impact
of methamphetamine on HCV RNA levels and liver disease are limited. However, metham-
phetamine injection is an independent predictor of incident HCV infection [161–163], and recent
methamphetamine injection is associated with phylogenetic clustering of HCV, suggesting
that it plays a role in HCV transmission networks [164].

11. Alcohol and Viral Hepatitis

Alcohol and viral hepatitis (HBV or HCV) are important contributors to liver injury
and progression to cirrhosis, leading to increased morbidity and mortality. The interaction
between HCV and alcohol misuse is significant and appears to be dose- and duration-
dependent. For example, an analysis of National Health and Nutrition Examination Survey
(NHANES) data revealed that excessive alcohol consumption was associated with a hazard
ratio for liver-related mortality of around 184 compared to around 74 for HCV-infected
persons not reporting excessive alcohol consumption. Liver-related mortality was increased
with moderate alcohol use, as well as when HCV was present [165]. Among those cured
of HCV with directing acting agents, unhealthy alcohol use remained associated with
liver-related outcomes and mortality, although low-level alcohol use was not [166]. A
myriad of factors could influence liver injury and disease progression among HCV-infected
persons who drink alcohol. Several studies have suggested an increased quasispecies
complexity of HCV associated with alcohol use [167,168]. In vitro studies have described
increased viral replication following the exposure of permissive cells to alcohol [169]. It
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has been reported that upregulation of the microRNA-122 that facilitates HCV replication
could be involved [170]. Alcohol is also associated with HCV replication in PBMCs [171].
Liver injury is also associated with the development of steatosis and free radical oxidative
stress, both of which are increased in conjunction with HCV and alcohol exposure [172].

The impact of alcohol on HBV is poorly understood. Yet, alcohol consumption in-
creases HBV surface antigen (HBsAg) and viral DNA in transgenic mice [173], supporting
a previous study demonstrating increased HBsAg levels in HepG2 cells in the presence
of ethanol [174]. Nonetheless, cohort-based studies evaluating the impact of alcohol on
HBV-specific liver disease are lacking.

12. Tobacco, Cannabis, and Viral Infections

Among persons with HIV, the prevalence of cigarette smoking is estimated at 40% to
70% (reviewed in [175,176]). Multiple studies have reported that cigarette smoke exposure
is associated with increased HIV replication, lower CD4+ T cell counts, immune activa-
tion, oxidative stress, and/or decreased adherence or response to antiretroviral therapy
(ART) [177–179]. Smoking/nicotine also enhances HIV replication in macrophages, T lym-
phocytes, and/or microglia [180–184]. Ranjit et al. observed a three- to four-fold increase
in HIV replication in macrophages exposed to benzo(a)pyrene—a major carcinogen found
in cigarettes. The impact of cannabis use on HIV is less clear with some studies reporting a
reduced adherence to ART and missed clinical appointments, while others reported benefi-
cial/no impact on virus levels [185–189]. Notably, given its potential anti-inflammatory
properties, cannabis has been offered as a potential treatment for addiction, as well as for
neuroinflammation associated with HIV [190,191].

Recent reviews show cannabis use may impact liver disease [192]. While some studies
have reported that cannabis use was associated with liver fibrosis, other studies showed
little to no effect. Cannabis use may also be associated with reduced hepatic steatosis [193].

13. Drugs of Abuse and SARS-CoV-2

The ongoing SARS-CoV-2/COVID-19 pandemic has raised considerable concern
about its potential negative impact on persons with SUD [194,195]. Social isolation and
stress increased with lockdowns during the pandemic. Addiction services and treatment
options were also severely limited to align with new social distancing norms. Recent reports
now confirm that drug overdose deaths increased during the COVID-19 pandemic [196–199].
Wang et al. recently reported that persons with SUD were at significantly increased
risk for COVID-19 and worse outcomes [200]. Fentanyl use also increased during the
COVID-19 pandemic [201,202]. COVID-19 mortality may be exacerbated in persons with
SUD for several reasons, including downregulation of interferon expression, development
of pulmonary edema, increased thrombotic factors, and increased expression of angiotensin-
converting enzyme 2 (ACE2) (reviewed in [203], although data to support these potential
mechanistic interactions are quite limited currently). However, the acute nature of infection
with SARS-CoV-2 may prove challenging for evaluating how drugs of abuse impact SARS-
CoV-2/COVID-19 pathogenesis in vivo.

14. Recommendations for Additional Research

There are multiple future research opportunities to consider related to drugs of abuse
and chronic viral infections. Firstly, side-by-side comparison of multiple drugs of abuse
and their impact on viral replication in vitro is essential using standardized drug doses,
established timings of drug exposure, and cell types that are relevant to the viral life cycle
and the overall disease progress in vivo. Secondly, polysubstance abuse is quite common in
persons with substance use disorders. While this clearly complicates study design and data
analysis, the impact of polysubstance abuse compared to single drugs of abuse is not commonly
considered in well-characterized clinical cohorts with viral infections and co-infections. Thirdly,
the opioid antagonists naloxone and naltrexone can limit the increased viral replication brought
about by distinct drugs of abuse in vitro [48,50,65,153,204–208]. Furthermore, a recent clini-
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cal trial demonstrated that extended-release naltrexone improves HIV viral suppression,
thus suggesting its potential role in the treatment of SUD in persons with chronic viral
infections [209]. Similarly, high rates of HCV clearance were achieved with combined
direct-acting antivirals and opioid agonist therapy in HCV-positive PWIDs [210]. Thus,
increased availability and utilization of opioid antagonists may have beneficial impacts
on the most vulnerable and at-risk populations. Nonetheless, the potential effects of
these agents on synthetic opioid-mediated virus replication have not been evaluated to
date in vitro or in at-risk patient populations. Fourthly, given their central role in HIV
pathogenesis, as well as liver disease, and the possibility of opioid receptor–chemokine
receptor interactions, several groups have sought to antagonize these interactions as a
novel therapeutic strategy to limit HIV replication. Yet, this strategy could be extended to
include liver disease caused by alcohol, HBV, and/or HCV. A more robust understanding
of the complex interactions between opioids, viruses, and the chemokine system could
facilitate the optimization of therapeutic options for patients with SUD and lead the to
the development of novel therapeutic strategies for multiple diseases that are common
in PWIDs. Fifthly, the interactions of drugs of abuse with antiretroviral therapies for
HIV or direct-acting agents for HCV are largely known, as reviewed elsewhere (reviewed
in [211–213]). However, progress towards the development of new antiviral drugs, as well
as new drug formulations, and the creation of new, distinct drugs of abuse, such as fentanyl
analogs, requires careful study. Moreover, the impact of viral infections on drug–drug
interactions and drug metabolism must be considered. Sixthly, the human T-lymphotropic
virus type 1 (HTLV-1) which infects around 10 million people globally can lead to adult
T-cell leukemia/lymphoma and HTLV-associated myelopathy/tropical spastic paraparesis
(reviewed in [214]). Given its routes of transmission, co-infections with HIV, HBV, and
HCV are relatively common and would likely impact persons with SUD/OUD (opioid use
disorder). However, there are almost no published data on the impact of drugs of abuse on
HTLV-1 pathogenesis. Thus, this represents an excellent focus for future research.

15. Conclusions

Chronic viral infections like HIV, hepatitis B, and hepatitis C have a significant impact
on individuals, and the health of societies as a whole. Though suppressive or curative
strategies are available for these infectious diseases, their efficacy and impact may be
limited by the use or misuse of drugs and/or alcohol through a variety of interconnected
mechanisms. These include effects on viral replication, immune-mediated clearance, and
medication adherence. The outcomes of these interactions can lead to disease progression
(i.e., CD4+ T cell decline, immune activation, and/or increased hepatic fibrosis/cirrhosis)
and to increased risk of transmission. While virus–drug interactions have been explored
for some drugs of abuse, there are limited data for others. Additional research into the
complex interactions between drugs of abuse and viral pathogenesis must simultaneously
occur at the level of basic research in vitro, as well as in vivo in large cohort studies that
are sufficiently powered to permit the analysis of subsets of individuals experiencing these
disease modifiers.
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