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Abstract

Alcohol consumption with psychostimulants is very common among drug addicts. There is little 

known about the possible pharmacological interactions between alcohol and psychostimulants. 

Among most commonly co-abused psychostimulants with alcohol are methamphetamine, cocaine, 

3,4-methylenedioxymethamphetaminen, and nicotine. Co-abuse of alcohol with psychostimulants 

can lead to several neurophysiological dysfunctions such as decrease in brain antioxidant enzymes, 

disruption of learning and memory processes, cerebral hypo-perfusion, neurotransmitters depletion 

as well as potentiation of drug seeking behaviour. Moreover, co-abuse of alcohol and 

psychostimulants can lead to increase in heart rate, blood pressure, myocardial oxygen 

consumption and cellular stress, and the risk of developing different types of cancer. Co-abuse of 

alcohol with psychostimulants during pregnancy can lead to fetal brain abnormalities. Further 

studies are needed to investigate the pharmacokinetics, pharmacodynamics, and neurochemical 

changes on co-abuse of alcohol and psychostimulants.
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Introduction

Alcohol dependence is considered a major public health problem worldwide [1–6]. Alcohol 

can contribute to a significant number of disabilities due to psychological, medical, injury, or 

other detrimental effects [7]. These effects can be dramatically severe when alcohol is 

consumed with other drugs of abuse. Alcohol consumption with other drugs of abuse is very 

common among drug users. Different pharmacological mechanisms of interactions may 

occur when alcohol and other psychostimulants are co-abused. It is noteworthy that drugs of 

abuse have been shown to alter central brain reward circuitry, which can lead addicts to 
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increase their alcohol intake for reward effects [8,9]. Alcohol use with other drugs of abuse 

has been reported to hinder decision making, thinking, and neurocognitive capabilities [10–

15]. Moreover, recent studies confirmed that alcohol and other drugs of abuse are usually 

found in the blood of deceased or seriously injured drivers involved in traffic accidents 

caused by psychomotor function impairment [16–20].

We discussed here several findings related to alcohol interactions with psychostimulants. 

According to previous reports, alcohol is commonly abused with methamphetamine 

(METH), cocaine and marijuana [21]. Men have higher prevalence of co-abuse of alcohol 

and other drugs compared to women [22]. The prevalence of drugs of abuse has been shown 

to have a positive correlation with the level of alcohol intake [22]. We reviewed here the 

available literature regarding alcohol interactions with certain psychostimulants, including 

METH, cocaine, nicotine, and 3,4-methylenedioxymethamphetaminen (MDMA), according 

to animal experimental and clinical studies.

Alcohol and METH co-abuse

METH abuse is an increasing health problem worldwide. According to the available data 

from national surveys between the years of 2002 and 2004, more than 16 million Americans 

over the age of 12 have used METH [23]. METH is a derivative of amphetamine with 

increased CNS activities and effects. METH can be abused by different routes such as 

inhalation, ingestion, or intravenous injection, with acute effects that can last for up to 24 h 

[24,25]. It is well known that METH can stimulate the release of monoamines such as 

dopamine and norepinephrine to produce euphoria and to increase alertness and libido [26–

28]. METH abusers frequently use alcohol and have a higher risk of reaching alcohol 

intoxication level [29]. The prevalence of alcohol use disorder was found 75% higher among 

amphetamine dependent patients [30]. For example, a study reported that more than 60% of 

METH users in New York City reported abusing METH in combination with alcohol [31]. 

Recent study conducted on regular METH users showed that alcohol drinking increased the 

chances of METH use in same day by more than 4 folds [32]. Despite this evidence of high 

prevalence of METH and alcohol co-abuse, very few studies have investigated the effects of 

their co-abuse. A summary of possible effects of concurrent exposure to alcohol and METH 

is presented in Table 1.

Previous findings demonstrated that alcohol can decrease p-hydroxylated metabolites of 

METH in the urine of METH abusers, suggesting that alcohol may inhibit METH 

metabolism [33] (Table 1). This may lead to higher METH blood concentration, with an 

increase in its stimulating effects on brain and heart. Moreover, recent findings showed that 

alcohol increased the absorption and distribution of METH and its active metabolite, 

amphetamine, in several organs, including brain in rats and rabbits (Figure 1) [34,35]. A 

recent study compared the acute effects of alcohol, METH, and their combination on mood, 

performance, and physiological behaviours of nine adult males [36]. This study showed that 

when alcohol and METH were co-self-administered, a greater increase in heart rate, 

euphoria, and lower detrimental effects on sleep and performance were observed compared 

to each drug self-administered alone. This may explain why METH abusers tend to consume 

high level of alcohol [36]. These findings raise an alarming concern of METH and alcohol 
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co-abuse because METH might mask the signs of alcohol intoxication, such as sedation and 

compensated performance, allowing abusers to consume more alcohol with risk of 

developing alcohol toxicity.

A double blind study was conducted on eight alcohol and METH abusers [37]. The abusers 

were found to have high myocardial oxygen consumption and increased heart rate (Figure 

2). In this study, the pharmacokinetics of METH did not change significantly, which is 

possibly due to the limited number of subjects recruited in this study. However, further 

testing should be done on more subjects to reach more conclusive evidence of the effect of 

alcohol on METH pharmacokinetics [37]. A recent clinical study conducted on nine 

volunteers showed an increase in heart rate [36]. Furthermore, findings showed that 

concurrent consumption of METH and alcohol disrupted learning and discriminating 

behaviour compared to METH self-administered alone in rats [38]. However, this study did 

not focus on the effects of alcohol alone which may hinder the conclusion that METH and 

alcohol co-abuse may disturb the performance compared to METH administered alone. A 

recent study conducted on rats revealed that concurrent intake of METH and alcohol can 

lead to synergistic effect in impairment of spatial memory compared to METH administered 

alone [39]. Interestingly, alcohol administered alone did not cause any changes in spatial 

memory suggesting the synergistic effects of both drugs on memory. Moreover, this study 

showed that although alcohol or METH administered alone can induce oxidative stress and 

impairments in antioxidant enzymes in rats hippocampus, co-abuse of METH and alcohol 

can cause synergistic effect in impairment and oxidative stress compared to drug 

administered alone (Figure 3) [39].

Concurrent exposure to METH and alcohol has also been observed in pregnant women. 

Indeed, a study demonstrated that more than 40% of pregnant women who abused METH 

reported using alcohol during their pregnancy [40]. Another study was conducted on 61 

participants; 13 of them were exposed prenatally to alcohol, 21 were exposed prenatally to 

METH, and the remaining 27 control participants were not prenatally exposed to either 

alcohol or METH [41]. Of the 21 participants in METH group, 18 children were also 

exposed to alcohol during their fetal life. The results of this study suggest that prenatal 

exposure to METH and alcohol can cause synergistic striatal structural damage than prenatal 

exposure to alcohol alone. Damage to the striatal brain region hinders the overall intellectual 

competence of the affected children [41]. In addition, in a study that found common damage 

in the fronto-striatal circuit of the prenatally METH exposed group, 15 out of 19 children 

were exposed to alcohol and METH prenatally (Figure 4) [42]. It is important to note, 

however, that these studies could not precisely predict the dosage, frequency, and duration of 

METH or alcohol exposure during pregnancy, which may hamper our understanding of the 

pharmacological and neuropathological basis of drugs exposure and their interactions. 

Preclinical studies are warranted to show the risk of concurrent exposure of METH and 

alcohol during different stages of pregnancy, which may provide information about the 

deteriorating effects of prenatal exposure of METH and alcohol.
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Alcohol and cocaine co-abuse

Cocaine can produce different effects on the human body; these effects can last from 

minutes to hours, based on the route through which cocaine was administered into the body 

[43]. In the brain, cocaine can affect the reward circuitry by modulating dopamine 

neurotransmission [44], and acts by preventing the reuptake of dopamine from the synaptic 

cleft, which leads to prolongation of the pleasurable effects of dopamine [44,45]. Cocaine 

can produce euphoria, alertness, dependence and tolerance as well as cardiovascular changes 

[46–50]. Tolerance makes cocaine users increase dosage each time to reach the same level of 

euphoria that was reached on the first instance of taking the drug. Increasing the doses of 

cocaine can lead to its side effects and toxicity [51–54]. It is important to note that the 

prevalence of alcohol use was found 89% higher among cocaine dependents [55]. This 

might be due to higher increase of reward effects when alcohol and cocaine co-abused 

compared to either drug self-administered alone, which have been shown in preclinical 

studies [56–58]. In a study conducted on rats, intravenous injections of cocaine increased 

alcohol drinking suggesting that cocaine potentiated alcohol seeking [59]. Interestingly, a 

preclinical study showed a higher genetic susceptibility of the reinforcing effects of cocaine 

in selectively bred alcohol preferring (P) rats compared to its outbred Wistar rats, which 

suggests a higher sensitivity of alcoholics to the reinforcing effects of cocaine [60]. 

Similarly, it has been revealed that genetically predisposed subjects for alcohol dependence 

have a higher rate to be cocaine dependents [61].

Cocaine co-administered with alcohol can lead to production of cocaethylene, which is more 

lethal than cocaine itself [62,63]. This cocaethylene can also produce most of the effects that 

are associated with cocaine [64,65]. Concurrent exposure of alcohol and cocaine may cause 

more lethality in rats than either drug administered alone, which probably due to the 

formation of cocaethylene [66]. Interestingly, cocaethylene detection in wastewater has been 

utilized in recent study as an evidence of co-abuse of cocaine and alcohol in different cities 

[67]. Cocaethylene levels were found to be significantly higher during weekends compared 

to weekdays suggesting a higher co-abuse of cocaine and alcohol during weekends [67].

Alcohol has been shown to increase the plasma concentration of cocaine [68]. This is 

probably mediated through a decrease in the metabolism of cocaine by carboxylesterases, 

which hydrolyze it to benzoylecgonine and ecgonine methyl ester metabolites [68] (Table 1). 

Furthermore, it has been demonstrated that alcohol administered with cocaine can lead to 

increase in cocaethylene concentration in plasma and decrease benzoylecgonine renal 

excretion (Figure 1) [69]. It is noteworthy that different routes of drug exposure may 

produce different peak levels of cocaethylene [70]. For example, oral administration is 

considered the highest in raising cocaethylene concentration in blood as compared to 

intravenous route [70]. The inhalation route (i.e., smoking) showed the lowest effect on 

cocaethylene blood concentration compared to oral and IV routes [70]. Furthermore, cocaine 

and cocaethylene blood concentrations were obtained following concurrent use of cocaine 

and alcohol [71]. This study revealed that the concentration of cocaine in plasma was found 

to be increased by 15% after cocaine and alcohol co-exposure. Moreover, 22% of the 

absorbed cocaine was converted to cocaethylene. Although, cocaine half-life was not altered 

significantly by ingestion of alcohol, cocaethylene’s half-life was increased in comparison to 

Althobaiti and Sari Page 4

J Addict Res Ther. Author manuscript; available in PMC 2016 July 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



cocaine’s [71]. Increasing the half-life of cocaethylene might impose serious health problem 

due to increasing body exposure to its deteriorating toxic effects.

Concurrent exposure to cocaine and alcohol has deleterious effects on cardiovascular and 

endocrine systems. Co-abuse of cocaine and alcohol was found to increase heart rate, 

systolic blood pressure, cortisol, and prolactin concentrations (Figure 2) [64,69]. In addition, 

cerebral blood perfusion was found to be affected by co-exposure to cocaine and alcohol 

[72,73] (Table 1). It has been shown that cerebral hypo-perfusion was more common among 

individuals taking cocaine and alcohol compared to individuals taking cocaine or alcohol 

alone [72,73]. These findings show the significant deleterious effects of the co-abuse of 

alcohol and cocaine on cardiovascular system that might result in debilitating conditions.

Several tests were performed on intelligence, memory, verbal learning and other aspects of 

neuropsychological performances to explore the effects of co-abuse of alcohol and cocaine 

[74,75] (Table 1). The resulting neuropsychological performances were found to be 

negatively affected by the concurrent intake of cocaine and alcohol compared to either drug 

administered alone (Figure 3) [74,75]. It has been shown that the sense of pleasure and 

euphoria increased in co-abuse of alcohol and cocaine and consequently elevated the risk of 

dependence and toxicity [71,76]. In addition, alcohol was found to significantly potentiate 

the effect of cocaine in conditioned place preference in rat and invertebrate animal models 

[56,77]. Moreover, study showed that there is a synergistic effect in self-administration of 

both alcohol and cocaine in concentrations that did not provoke self-administration to either 

drug alone [78]. Similarly, a recent study has shown the potentiating effect of cocaine on 

alcohol seeking and relapse-like alcohol intake in P rats [79]. This might indicate a cross 

reactivity between alcohol and cocaine on common drug seeking behaviour.

Several studies have shown the involvement of mesolimbic dopaminergic system in 

reinforcing effects of cocaine [80–83] and alcohol [84,85]. In fact, alcohol and cocaine co-

exposure increased extracellular dopamine concentration in the nucleus accumbens, well 

known brain region involved in the rewarding and reinforcing effects of drugs of abuse [86–

89], than either drug administered alone in rats [90] (Table 1). Furthermore, recent findings 

have demonstrated the critical role of glutamate and its uptake in central brain reward 

regions in the seeking and reinforcing effects of cocaine [91–93] and alcohol [94–97]. 

Further studies are needed for investigating the role of glutamatergic system in alcohol and 

cocaine co-abuse in brain regions involved in rewarding and reinforcing effects of these 

drugs.

Alternatively, studies have shown the detrimental effects of prenatal exposure to cocaine 

such as low birth weight, preterm delivery, and decrease in head circumstance [98–101]. 

However, prenatal co-exposure to cocaine and alcohol has not been well studied despite the 

findings that more than 85% of women who reported using cocaine during pregnancy, also 

reported concurrent alcohol use [98]. One recent study, however, has demonstrated a 

significant interaction in prenatal co-exposure of cocaine and alcohol on cortical thickness in 

youths prenatally exposed to these drugs [102]. Furthermore, it has been shown that prenatal 

exposure to alcohol increased the rewarding and reinforcing effects of cocaine in rats (Figure 

4) [103].
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Alcohol and nicotine co-abuse

Alcohol and nicotine have serious global health problems. Table 1 summarizes different 

studies of the effects of alcohol and nicotine co-abuse. Nicotine dependents may have high 

tendency to be alcohol dependents [104]. It has been reported that more than 80% of chronic 

alcohol users are also smokers [105–107]. In a preclinical study, rats chronically co-exposed 

to alcohol and nicotine showed higher nicotine self-administration as compared to drug self-

administered alone [108]. Although, it has been suggested that nicotine or alcohol consumed 

alone may have some beneficial effect at low doses, it is clear that co-abuse of these drugs 

may have negative effects on human health [109].

Nicotine and alcohol activate the mesocorticolimbic dopaminergic system; there is potential 

synergistic effect in the increase of dopamine release when the drugs are consumed 

concurrently [110]. Furthermore, studies showed that alcohol and nicotine co-abuse can lead 

to increase dopaminergic neuronal firings and dopamine release [111–116] (Table 1). It is 

suggested that the synergistic effect of these drugs may influence drug reinforcement to each 

other and predispose smokers to become alcoholics and vice versa [110,117]. Interestingly, 

an additive effect on dopamine release in the nucleus accumbens shell was found between 

alcohol and nicotine in rats [116]. This additive effect on dopamine release was inhibited by 

mecamylamine pre-treatment, a nicotinic receptor antagonist, suggesting the involvement of 

nicotinic receptors in the reinforcing effects of alcohol. Importantly, alcohol-induced 

dopaminergic neurons firing in ventral tegmental area were inhibited in mice lacking 

nicotinic acetylcholine receptors that contain α6 subunit [118]. Moreover, it has been shown 

that alcohol and nicotine co-abuse can increase the pleasurable effects of each drug [119] 

(Table 1). This may explain some of the pharmacological mechanisms of action involving 

the co-abuse of nicotine and alcohol in the modulation of dopamine release (Figure 3).

The risk of developing cancer in general is higher in heavy tobacco smokers and alcohol 

drinkers [120–123]. In case-controlled clinical studies that were conducted on European and 

American subjects, alcohol and tobacco smoking elevated the risk of head and neck cancer 

in patients addicted to both drugs [124]. The exact mechanism of alcohol and nicotine 

interaction that results in the development of cancer is not well known and remains 

controversial. Studies have suggested that alcohol and nicotine co-abuse may produce toxic 

metabolites such as acetaldehyde, which may contribute to cancer development [125,126]. 

Other studies have suggested that alcohol and nicotine co-abuse promotes the formation of 

premalignant lesions (Figure 1) [127–129].

The effects of alcohol and nicotine co-abuse on cardiovascular system have been also 

investigated. Synergistic effects on heart rate and blood pressure were found in healthy 

human volunteers following alcohol and nicotine exposure [130,131]. Interestingly, the order 

of self-administering alcohol and nicotine plays a role in their negative interactive effect on 

cardiovascular system. When self-administration of alcohol was followed by nicotine, a 

synergistic effect on the increase in left ventricular pressure was revealed, which was 

alleviated when self-administration of nicotine was followed by alcohol in dogs (Figure 2) 

[132].
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In a study investigated the link between alcohol and nicotine use during pregnancy in more 

than 14000 previous pregnant mothers, it was found that more than 55% of pregnant alcohol 

users reported smoking [133]. Alcohol and nicotine exposure during gestational period 

increased the risk of fetal growth abnormalities more than the exposure to alcohol alone 

[133–135]. Interestingly, in a study conducted on rats, alcohol and nicotine were co-

administered to pregnant rats throughout the gestational period [136]. This study showed 

that offspring prenatally co-exposed to nicotine and alcohol developed rapid increase in 

nicotine self-administration as compared to controls (Figure 4) [136].

Alcohol and MDMA co-abuse

According to 2001–2002 national epidemiologic survey in United States, the prevalence of 

alcohol use in MDMA users is more than 95% [137]. MDMA and alcohol exposure in 

adolescent mice induced physiological and behavioural alteration than either drug 

administered alone [138]. In fact, recent study has shown that the co-abuse of MDMA and 

alcohol exacerbated cardiac cellular stress and toxicity through augmented activation of 

cardiac sympathetic system in adolescent mice (Figure 2) [139]. MDMA can induce a rapid 

release of dopamine and serotonin [140]. High consumption of MDMA may result in 

depletion of serotonin in the brain, resulting in serious psychological consequences [141–

148]. MDMA is usually consumed with many drugs such as amphetamine, cocaine, 

cannabis, and alcohol. Alcohol and MDMA co-abuse is considered the most popular form of 

MDMA co-abuse [149–153]. Importantly, mice pre-treated with MDMA were found to 

consume high amount of alcohol compared to control mice [154] (Table 1). Therefore, mice 

consumed higher amounts of alcohol to reach to the same reward effect that was normally 

reached at lower doses of alcohol. This study also found that MDMA impaired the 

dopaminergic pathway. Furthermore, findings revealed that presynaptic modulation of 

serotonin release in the hippocampus is affected by exposure to both MDMA and alcohol 

[155]. This study also showed that long term consumption of MDMA and alcohol caused 

serotonin depletion. The alteration in the serotonergic system might be associated with the 

psychopathological disturbances observed in MDMA and alcohol co-abusers [155] (Table 

1).

It has been found, in a double blind study conducted on nine healthy human volunteers, that 

MDMA and alcohol co-abuse induced a longer duration of euphoria and feeling well as 

compared to drug use alone [149]. Therefore, MDMA and alcohol use together can increase 

the abuse potential more than abusing alcohol or MDMA alone. In a preclinical study, 

exposure to alcohol during adolescent age in mice increased the reinforcing effects of 

MDMA [156]. Moreover, exposure to MDMA and alcohol during adolescence potentiated 

anxiety measures, impaired learning and memory, and decreased striatal dopamine contents 

during adult life in mice (Figure 3) [157,158]. Studies have demonstrated an increase in the 

MDMA plasma concentration by 13% following alcohol intake and a decrease in blood 

alcohol concentration of about 12% compared to either drug administered alone (Figure 1) 

[149]. In addition, these studies found that MDMA reversed the subjective sedative effect, 

which was induced by alcohol consumption.
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A recent study aimed to find the effect of MDMA and alcohol co-abuse on learning and 

memory [159]. In this study, alcohol and MDMA were administered either together or alone 

to measure their effects on learning and memory in adult mice. Both drugs caused 

impairment of learning and memory, as the affected mice displayed an imbalance in the 

interaction of dopamine and serotonin. These findings suggest that the brain in adulthood is 

very sensitive to MDMA and alcohol damage [159]. However, other study did not 

demonstrate any additive effect of combining alcohol and MDMA on declarative memory in 

mice [160] (Figure 3). This might be due to several factors, including the doses used for 

alcohol and MDMA.

Prenatal exposure to alcohol and MDMA is understudied topic, although pregnant women 

who reported MDMA use during pregnancy also reported higher alcohol use compared to 

non MDMA users [161,162]. Importantly, a preclinical study found that prenatal exposure to 

both alcohol and MDMA impaired working memory, exploratory activity, and neurogenesis 

in rat’s offspring (Figure 4) [163].

Conclusion

Alcohol interaction with drugs of abuse is currently not well understood, however, there are 

studies that demonstrated numerous side effects, which have occurred with drugs co-abuse. 

The prevalence of concurrent abuse of alcohol with psychostimulants such as METH, 

cocaine, nicotine, or MDMA is extremely high. This increase in prevalence of co-abuse of 

alcohol with psychostimulants is most likely due to potentiated effects on euphoria and 

pleasure as well as decrease detrimental subjective effects of either alcohol or other drugs of 

abuse. Co-abuse of alcohol with psychostimulants can lead to serious negative consequences 

on the brain such as decreasing antioxidant enzymes, disrupting learning and memory 

processes, cerebral hypo-perfusion, neurotransmitters depletion as well as potentiating drug 

seeking behaviour. Moreover, co-abuse of alcohol and psychostimulants can lead to increase 

in heart rate, blood pressure, myocardial oxygen consumption and cellular stress as well as 

increase in the risk of developing different types of cancer.

Alcohol has been shown to increase the blood concentration of different psychostimulants 

and its active metabolites. It is suggested that the pharmacokinetics of METH, MDMA, 

cocaine, and nicotine, might be altered when alcohol is consumed concurrently with these 

drugs. We suggest here that alcohol metabolism and its metabolites may increase the blood 

concentration of these drugs of abuse, and consequently elevate the risk of toxicity. 

Importantly, alcohol co-abuse with psychostimulants during pregnancy can impose critical 

structural and functional damages in the fetal brains. Further studies are needed to 

investigate possible pharmacodynamics, pharmacokinetics, and neurochemical basis of co-

abuse of alcohol and psychostimulants as well as possible therapeutic interventions.
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Figure 1. 
Effects of alcohol on the pharmacokinetics of methamphetamine(METH), 3,4-

methylenedioxymethamphetaminen (MDMA), cocaine, and nicotine. (↑ increase or 

enhancement; ↓ decrease or deterioration).
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Figure 2. 
Effects of alcohol interactions with methamphetamine (METH),3,4-

methylenedioxymethamphetaminen (MDMA), cocaine and nicotine on cardiovascular 

system, (↑ increase or enhancement; ↓ decrease or deterioration).
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Figure 3. 
Effects of alcohol interactions with methamphetamine (METH),3,4-

methylenedioxymethamphetaminen (MDMA), cocaine, and nicotine on central nervous 

system. (↑ increase or enhancement; ↓ decrease or deterioration).
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Figure 4. 
Effects of prenatal exposure to alcohol and methamphetamine(METH),3,4-

methylenedioxymethamphetaminen (MDMA), cocaine, and nicotine. (↑ increase or 

enhancement; ↓ decrease or deterioration).
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Table 1

Aspects and effects of alcohol and psychostimulants interactions.

Drug of Abuse Aspect of interaction Effects of interactions

METH

METH metabolism

Alcohol decreased p-hydroxylated metabolites of METH in the
urine of METH abusers [33].

Alcohol increased the levels of METH and its active metabolite,
amphetamine, in rats and rabbits [34,35].

Performance and sleep
Lower detrimental effects on performance and sleep compared
to each drug alone [36].

Euphoria
Increased euphoria in alcohol and methamphetamine co-abuse
[36].

Cardiac effects Increased myocardial oxygen consumption and cardiac rate [37].

Prenatal exposure Damage to striatal region of the brain [41].

Oxidative stress

Combination caused more impairment of antioxidant enzymes in
rats hippocampus and oxidative stress than either drug alone
[39].

Cocaine

Cocaine metabolism

Alcohol decreased metabolism of cocaine [68]. Alcohol
decreased benzoylecgonine renal excretion, and increased in
cocaine and cocaethylene blood concentrations [69].

Cardiovascular and endocrine systems
Exposure to cocaine and alcohol increased heart rate, systolic
blood pressure, cortisol, and prolactin levels [64,69].

Cerebral blood perfusion

Cerebral hypo-perfusion occurred more in individuals taking
cocaine and alcohol than in individuals taking cocaine or alcohol
alone [72,73]

Neurobehavioral performances
Negatively affected by concurrent intake of cocaine and alcohol
compared to either drug alone [74,75].

Mesocorticolimbic dopamine system

Increased extracellular dopamine concentration than either drug
alone in nucleus accumbens in rats [90]

Sense of pleasure and euphoria were found to be improved [71].

Nicotine

Drug reinforcement

Rats have established self-administration and place preference
to combination of alcohol and cocaine in concentrations that did
not provoke reinforcement to either drug alone [56,78]. Cocaine
potentiated alcohol seeking [59,79]

Mesocorticolimbic dopamine system
Increased in dopaminergic neuron firings and dopamine release
in an additive mechanism [111–116].

Pleasure and drug seeking

Increased in the pleasurable effects of each drug [119]. Rats
self-administered nicotine more than rats received chronic
exposure to either drug alone [108].

Cardiovascular system

Additive effect on heart rate and blood pressure was found in
healthy human volunteers [130,131]. Synergistic increase in left
ventricular pressure in dogs [132].

Cancer Increase in the risk of developing esophageal cancer [120–123].

Prenatal exposure

Showed a multiplicative effect in increasing the risk of head and
neck cancer in human [124].

Increased the risk of fetal growth restrictions in human [133–135].
Offspring developed rapid nicotine self-administration and at a
higher level in rats [136].

MDMA
Cardiovascular system

Exacerbated cardiac cellular stress and toxicity through
augmented activation of cardiac sympathetic system in
adolescent mice [139].

Blood level
MDMA plasma concentration increased following alcohol intake
[149].
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Drug of Abuse Aspect of interaction Effects of interactions

Drug reinforcement

MDMA and alcohol induce a longer duration of euphoria [149].

Exposure to alcohol during adolescent age in mice increased the
reinforcing effects of MDMA [156].

Sedation
MDMA reversed the sedative effect induced by alcohol
consumption [149].

Learning and memory
Administration of alcohol and MDMA exhibited learning and
memory impairments [159]

Dopamine reward effect
MDMA impaired dopaminergic reward pathway, leading to
increase alcohol consumption [154].

Psychopathological effect

Long term consumption of MDMA and alcohol can lead to
serotonin depletion and cause psychopathological changes
[155].

Prenatal exposure
Impaired working memory, exploratory activity, and neurogenesis
in rats offspring [163].
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