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Abstract

Current knowledge about the dynamics of antigen presentation to T cells during viral infection is very poor despite being of
fundamental importance to our understanding of anti-viral immunity. Here we use an advanced mass spectrometry method
to simultaneously quantify the presentation of eight vaccinia virus peptide-MHC complexes (epitopes) on infected cells and
the amounts of their source antigens at multiple times after infection. The results show a startling 1000-fold range in
abundance as well as strikingly different kinetics across the epitopes monitored. The tight correlation between onset of
protein expression and epitope display for most antigens provides the strongest support to date that antigen presentation
is largely linked to translation and not later degradation of antigens. Finally, we show a complete disconnect between the
epitope abundance and immunodominance hierarchy of these eight epitopes. This study highlights the complexity of viral
antigen presentation by the host and demonstrates the weakness of simple models that assume total protein levels are
directly linked to epitope presentation and immunogenicity.

Citation: Croft NP, Smith SA, Wong YC, Tan CT, Dudek NL, et al. (2013) Kinetics of Antigen Expression and Epitope Presentation during Virus Infection. PLoS
Pathog 9(1): e1003129. doi:10.1371/journal.ppat.1003129

Editor: E. John Wherry, University of Pennsylvania, United States of America

Received June 20, 2012; Accepted November 26, 2012; Published January 31, 2013

Copyright: � 2013 Croft et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was funded by a Project Grant for the National Health and Medical Research Council of Australia (NH&MRC) project grant 1023141 and an
Early Career Research grant from the University of Melbourne to N.P.C. This work was supported by infrastructure obtained through an Australian Research
Council (ARC) Linkage Infrastructure and Equipment Grant (LE100100036). A.W.P. is an NHMRC Senior Research Fellow. D.C.T. is an ARC Future Fellow. The funders
had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: david.tscharke@anu.edu.au (DCT); anthony.purcell@monash.edu (AWP)

" These authors contributed equally to this work and are joint senior authors.

Introduction

The presentation of virus peptides (epitopes) to CD8+ T cells

plays a pivotal role in anti-viral immunity. Recognition of these

epitopes presented on MHC class I drives CD8+ T cell priming

following interactions with professional antigen presenting cells

(APC) and subsequently allows control of infection through killing

of infected cells and secretion of cytokines. The process of MHC

class I antigen presentation is complex and multi-staged. It starts

with degradation of polypeptides, typically by the proteasome,

followed by transport to the ER, loading onto MHC class I and

finally egress to the cell surface [1]. Along the way other proteases

and chaperones refine the peptides and perform quality control

functions on peptide-MHC complexes (pMHC) [2]. Surprisingly,

despite the large coding capacity and therefore antigenic potential

of many viruses, CD8+ T cell responses are often skewed towards a

small number of peptides in a phenomenon known as immuno-

dominance [3]. This is exemplified by studies of humans and

animals infected with large, complex dsDNA viruses, such as

herpes- and poxviruses, where reproducible CD8+ immunodomi-

nance hierarchies emerge. For example, up to 20% of the CD8+ T

cell response following infection of C57BL/6 mice with vaccinia

virus (VACV) is directed towards a single immunodominant

epitope and a handful of subdominant specificities account for

much of the remainder [4,5]. Further, while MHC class I antigen

presentation is well understood in principle [6] and bioinformatic

predictions of MHC class I binding are often highly refined [7],

prediction of antigenicity and immunogenicity have remained

elusive.

In part this gap remains because kinetic studies to date have

focused on single peptides [8] and broader scale studies of

antigenicity have been limited to single time points [9–11]. This

has reflected limitations of technology in that the best reagents for

quantifying antigen presentation have been the few monoclonal

antibodies generated to date that recognise specific pMHC

complexes [8,12–15]. Proteome-wide biochemical approaches

have typically required prohibitively large numbers of cells

(16109 and greater) restricting experiments to single time points

[16,17] . Although we have good examples showing the diversity

of native virus epitopes presented and we know the consequences

of manipulating expression levels and even translation rates for

presentation of model antigens [8,18], this information remains

disconnected. As a consequence, while it is clear that increasing

expression of a given antigen leads to higher presentation of

epitopes, it is not known whether antigen expression level per se is a

useful predictor of likely antigenicity across different viral proteins.

Further, whether bulk protein abundance or expression levels

correlate best with production of epitopes as a general rule is not

known. Indeed, several recent studies have highlighted the

diversity of source for MHC class I bound peptides and have
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implicated both products of translational infidelity (defective

ribosome initiation products (DRiPs)) [10,19–22] as well as mature

proteins [23]. For instance, some biochemical surveys of epitope

versus transcript or steady-state antigen abundance suggest these

are closely related at single time points [16,24]. However, most

epitopes studied in detail are shown to be the products of recent

translation and therefore need not be related to final antigen

abundance [25–28]. Only studies that can link the kinetics of

antigen synthesis and accumulation with epitope presentation for

multiple native virus proteins will allow general conclusions to be

drawn. Finally, antigen expression levels can be linked to

immunogenicity for model antigens, but again whether this is

useful for evaluating whole viral proteomes has not been

approached.

Here we present the first study that links the kinetics of virus

protein build up and CD8+ T cell epitope presentation for

multiple pMHC complexes. We used vaccinia virus, best known

as the vaccine used to eradicate smallpox, taking advantage of its

robust in vitro infections and a well characterised CD8+ T cell

epitope hierarchy [4,5]. In addition there is good evidence that

anti-VACV CD8+ T cells are directly primed by infected APC

making this an ideal choice to study antigen presentation in vitro

[29–31]. The abundance of 8 VACV epitopes was quantified

simultaneously at multiple times after infection using the multi-

ple reaction monitoring approach to tandem mass spectrometry

[32]. The same method was applied in parallel to determine

relative abundance of the relevant virus proteins using filter

assisted sample preparation and whole cell tryptic digestion [33].

Together, these data provide an unparalleled insight into the

dynamic nature of antigen presentation on class I during a virus

replication cycle. Further they provide the most compelling

evidence to date of the direct correlation between the timing

of virus antigen expression and the appearance of epitopes

derived from the same protein. Finally, while we can now add

kinetics to our description of epitope presentation for mul-

tiple epitopes, these biochemical data still fail to predict the

hierarchy of immunodominance in responding CD8+ T cell

responses.

Results

Antigen presentation during viral infection is complex
and cannot be described by a single epitope

Previous studies aimed at understanding antigen presentation

kinetics have focussed on single epitopes, most commonly the

model peptide SIINFEKL (presented by H-2Kb) expressed from

recombinant viruses, including VACV. Whilst these experiments

have yielded much useful mechanistic insight, it is not clear

whether kinetic data generated are representative of virus epitopes

in general. To examine this issue, we first recapitulated published

data showing the rapid rise of H-2Kb-SIINFEKL complexes on

cells infected with a recombinant VACV strain WR-NP-S-GFP

[8,13]. This virus expresses a chimera in which SIINFEKL is

sandwiched between influenza virus nucleoprotein and enhanced

green fluorescent protein [8,34]. DC2.4 cells, a dendritic cell-like

line derived from C57BL/6 mice, were infected at a multiplicity of

10 pfu per cell and presentation of Kb-SIINFEKL complexes

measured using the mAb 25D1.16 and flow cytometry at various

times (Figure 1A). Consistent with previous work that typically

used L-Kb cells, in DC2.4 Kb-SIINFEKL complexes rose rapidly

after infection and began to plateau by 6 hours post infection (hpi).

To test if the kinetics observed for Kb-SIINFEKL complexes is

representative of all VACV epitopes we used polyclonal T cells

isolated from infected mice since monoclonal antibodies to VACV

epitope-MHC complexes are not available. If all VACV antigen

presentation is like Kb-SIINFEKL, the fraction of polyclonal anti-

VACV CD8+ T cells that can be stimulated by infected cells

should rise over time with a simple, rapid kinetic. If on the other

hand, new pMHC complexes first appear on the cell surface at

different times after infection, then one might expect a more

complicated curve as new populations of T cells are able to be

activated once their epitope appears at the cell surface. Thus using

DC2.4 and the same infection protocol, global VACV epitope

presentation was probed up to 12 hpi using splenocytes taken from

mice seven days after VACV infection and the percent of CD8+ T

cells making IFNc determined by intracellular cytokine staining

(ICS) (Figure 1B). In contrast to the simple rise of Kb-SIINFEKL

presentation, the increase in number of CD8+ T cells recognising

the infected cells was more complex. There were two phases of

rising CD8+ T cell activation, one from 2 to 5 hours (a similar time

frame to Kb-SIINFEKL presentation) followed by second, steeper

rise from 5–7 hpi that continued until 12 hpi. While this reveals

nothing about the kinetics of individual epitopes, it suggests that

the onset of presentation differs across the native VACV epitopes.

It is also consistent with published work using mono-specific T cell

lines that shows presentation of some VACV epitopes is delayed

for some hours after infection [35]. Together these data suggest

that monitoring a single epitope does not reveal the true

complexity of viral antigen presentation to T cells. We therefore

sought to dissect in greater detail the presentation of individual

VACV derived epitopes using mass spectrometry (MS).

LC-MRM for the simultaneous detection and quantitation
of multiple VACV epitopes

Liquid chromatography coupled to multiple reaction monitor-

ing mass spectrometry (LC-MRM) is the method of choice for

detection of multiple known peptides [32,36,37]. LC-MRM MS

affords high sensitivity and selectivity and has been recently

applied to multiplexed qualitative and quantitative analyses of

peptide epitopes eluted from MHC molecules [32,37]. For this

study, eight VACV epitopes restricted by murine H-2 Kb were

chosen based on their well characterised immunogenicity and their

expression from a variety of different VACV proteins spanning

Author Summary

A major mechanism for the detection of virus infection is
the recognition by T cells of short peptide fragments
(epitopes) derived from the degradation of intracellular
proteins presented at the cell surface in a complex with
class I MHC. Whilst the mechanics of antigen degradation
and the loading of peptides onto MHC are now well
understood, the kinetics of epitope presentation have only
been studied for individual model antigens. We addressed
this issue by studying vaccinia virus, best known as the
smallpox vaccine, using advanced mass spectrometry.
Precise and simultaneous quantification of multiple pep-
tide-MHC complexes showed that the surface of infected
cells provides a surprisingly dynamic landscape from the
point of view of anti-viral T cells. Further, concurrent
measurement of virus protein levels demonstrated that in
most cases, peak presentation of epitopes occurs at the
same time or precedes the time of maximum protein build
up. Finally, we found a complete disconnect between the
abundance of epitopes on infected cells and the size of the
responding T cell populations. These data provide new
insights into how virus infected cells are seen by T cells,
which is crucial to our understanding of anti-viral
immunity and development of vaccines.

Kinetics of Antigen Presentation during Infection
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different temporal phases of the infection (Table 1) [4,5]. In addition,

SIINFEKL was included in some experiments to allow a direct

comparison of this model antigen with the native VACV epitopes.

Optimal MRM transition conditions (precursor ion charge, frag-

mentation energy and fragment ion selection) for each VACV

epitope listed in Table 1 were determined using synthetic peptides

(Table S1 and Figure S1 in Supporting Information). The resulting

MRM method allowed for the simultaneous detection of all 8 VACV

epitopes (Figure 2A) and also included transitions to measure

SIINFEKL and isotopically-labelled (AQUA) SIIN*FEKL; inclusion

of the SIIN*FEKL AQUA peptide was used to control for losses

during processing of the MHC-bound peptides as described [32].

The unequivocal detection of peptide epitopes was achieved by

several rigorous confirmatory steps in this LC-MRM workflow:

firstly, RP-HPLC retention across multiple dimensions of purifica-

tion (correct eluting fraction during off-line RP-HPLC and correct

on-line retention time during LC-MRM MS) must be consistent with

that measured for the synthetic version of each of the VACV

peptides (Figure S2); secondly, they must trigger all MRM transitions

concurrently and in the correct transition hierarchy; and, as a final

step, each peptide sequence must be further confirmed by an MRM-

triggered MS/MS sequencing scan – a modality unique to the

quadrupole linear ion trap mass spectrometer used in this study [38].

Validation of LC-MRM and detection of VACV epitopes
eluted from cells

In order to verify the sample workflow (Figure 2B), DC2.4 cells

were incubated with a pooled mixture of the full set of 8 synthetic

peptides representing VACV epitopes (Table 1). Following

extensive washing to remove unbound peptides, cells were pelleted

and snap-frozen and subjected to immunoaffinity purification of

H-2Kb complexes, peptide elution and chromatographic separa-

tion as previously described [32,37]. The presence of each VACV

epitope in the MHC eluate was confirmed by LC-MRM

(Figure 2C). The differing detection intensities across the peptide

set reflects a combination of the varying ionisation efficiencies of

the peptides and competition for binding to the Kb molecules

during incubation.

Next, MHC elution and LC-MRM were used for the detection

of SIINFEKL and native VACV epitopes generated through

VACV infection with the recombinant WR-NP-S-GFP. DC2.4

cells (16108) were infected for 6 hours with WR-NP-S-GFP to

compare the levels of SIINFEKL presentation with that of the 8

native VACV epitopes (Figure 3). Capture of Kb-peptide

complexes was achieved as above, including the addition of

50 fmol of isotopically-labelled AQUA SIIN*FEKL in order to

control for sample preparation losses post affinity purification of

the MHC-peptide complexes [32]. The quantification of each

VACV epitope was achieved by comparing the area under the

MRM curve to that of 100 fmol of the corresponding synthetic

epitope analysed separately (Figure 2A). LC-MRM confirmed the

detection of SIINFEKL and all 8 VACV peptides (Figure 3A

shows representative data for SIINFEKL, B820–27 and J3289–296).

Further it provides the first definitive evidence that the amino acid

length and constitution of the VACV epitopes is exactly as

described in the original mapping studies [4,5]. SIINFEKL

presentation on WR-NP-S-GFP-infected cells at 6 hpi was

calculated to be 2.36104 and 3.16104 copies per cell for two

independent experiments (Figure 3B). All 8 Kb-restricted VACV

epitopes were detected at considerably lower estimated abundan-

ces to that of SIINFEKL. Further, abundance of the 8 VACV

peptides varied over a wide range with 3 epitopes (B820–27;

A47138–146 and J3289–296) being presented at levels up to 1000-fold

higher than the remaining 5 VACV epitopes. When compared to

CD8+ T cell response elicited in mice infected for 7 days by the

same virus, there is a striking dissociation between the epitope

abundance and T cell immunodominance hierarchies (Figure 3B).

Kinetics of VACV epitope and protein presentation
Next we sought to assess the presentation kinetics of the 8

VACV epitopes during the course of infection. This was done

using non-recombinant VACV, to avoid any potential competing

effects from the very high levels of presentation of SIINFEKL

following infection with the recombinant WR-NP-S-GFP VACV

strain. DC2.4 cells were infected for 0.5, 3.5, 6.5, 9.5 and

12.5 hours, or mock infected as a negative control and epitope

Figure 1. Antigen presentation during virus infection is complex and cannot be described by a single epitope. DC2.4 cells were
infected with VACV strain WR-NP-S-GFP (A) or WR (B) and presentation of MHC class I peptides detected at various times. A) Kb-SIINFEKL presentation
levels determined by staining with mAb 25-D1.16 and flow cytometry. Data are representative multiple experiments. B) Presentation of bulk native
VACV epitopes determined by incubation with VACV-immune splenocytes and detecting activation by staining for surface CD8+ and intracellular
IFNc. Means and SEM of triplicates are shown and the data are representative of two independent experiments.
doi:10.1371/journal.ppat.1003129.g001

Kinetics of Antigen Presentation during Infection
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abundance at each time determined by LC-MRM analysis. All 8

VACV epitopes were detected and the kinetics of their presenta-

tion measured (Figure 4A). Six of 8 peptides were detected by

0.5 hpi, with the remaining 2 epitopes (A3270–277 and A1947–55)

undetectable until 6 hours later. Peak expression occurred at

3.5 hpi for 5 epitopes, 6.5 hpi for two epitopes and at the final

time point of 12.5 hours for a single epitope. We noted that the

presentation of the immunodominant B820–27 epitope was unusual

in that its onset was at 30 minutes, but instead of peaking at

3.5 hpi, like most of this group of epitopes, its peak was later at

6.5 hpi. The abundance profile spanned 3 logs, ranging from as

low as an estimated 11 copies per cell for C4125–132 to as high as

32,400 copies of A47138. These basic features of presentation with

some epitopes showing peak presentation around 3.5 hours after

infection, while others only appear at 6.5 hours have also been

observed for cells infected with the MVA strain of VACV (our

unpublished observations). Thus abundance and kinetics of

presentation are highly variable across different epitopes and

robust presentation early after infection is not always maintained.

In order to assess how the kinetics of epitope presentation

correlates with source antigen expression, a sample of the cell

lysate from each infection time point was subjected to reduction,

Figure 2. Simultaneous detection of multiple viral epitopes by LC-MRM MS. A) Demonstration of multiplexed detection of 8 VACV Kb-
binding epitopes. A mixture of 100 fmol of each synthetic peptide was loaded and analysed directly by LC-MRM using a method to detect all
peptides simultaneously. A single MRM transition per peptide is shown for clarity. B) Schematic of sample workflow. C) DC2.4 cells were pulsed with a
1 mM mixture of each VACV peptide, incubated for 1 hour and washed extensively to remove unbound peptide. Cells were subjected to MHC-
peptide elution and each epitope detected by LC-MRM-MS (sum area of all MRM transitions per peptide is shown).
doi:10.1371/journal.ppat.1003129.g002

Table 1. VACV CD8+ T cell epitopes.

Epitope Sequence IC50 (nM) Protein Function Expression* Promoter**

B820–27 TSYKFESV Kb, 1.1 Immune modulator E1.1 E

A8189–196 ITYRFYLI Kb, 6.2 Viral transcription factor E1.1 E

A3270–277 KSYNYMLL Kb, 2.7 Virion core protein PR I

C4125–132 LNFRFENV Kb, 0.84 Unknown E1.2 E

A47138–146 AAFEFINSL Kb, 0.61 Unknown E1.2 E

L253–61 VIYIFTVRL Kb, 0.85 Unknown E1.1 E

J3289–296 SIFRFLNI Kb, 1.2 Viral RNA pol component E1.2 E

A1947–55 VSLDYINTM Kb, 0.94 Unknown PR I

*[41] Expression time based on cluster analysis of transcript levels during infection. E1.1 and E1.2 are early classes, with E1.1 expressed earlier and at higher levels that
E1.2. PR (post replication), typically referred to as the late class.
**[43] Earliest promoter associated with gene. E is early, I is intermediate.
doi:10.1371/journal.ppat.1003129.t001

Kinetics of Antigen Presentation during Infection
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alkylation and subsequent digestion with the enzyme trypsin prior

to proteomic analysis. Proteotypic tryptic fragments from each of

the 8 VACV protein antigens were chosen using Skyline [39]

(Table S2 and Figures S3 and S4). Following initial screening of

samples, 6 of the 8 VACV proteins were detected (for A3 and J3,

multiple tryptic fragments were found to be amenable to MRM

analysis and so all were included). Despite rigorous testing of

multiple peptides, no positive signal could be detected for proteins

L2 and C4 so these were not included further. In order to achieve

normalisation of protein loading across the timecourse, 12 murine

tryptic peptides (corresponding to eight host proteins; Table S3

and Figure S3) were simultaneously analysed in the same LC-

MRM method (Figure S3). These murine proteins were chosen as

suitable candidates for normalisation based on the high copy

number and long half life of their human homologues [40], with

the notion that such proteins will not be grossly affected by the

VACV-mediated shutdown of host protein synthesis. In addition,

a good correlation between the abundance of these representative

proteins and cell number recovered post-infection was found

suggesting that they were appropriate for normalisation

(Figure 3C). The uncorrected data is also shown in Figure S4

for comparison.

MRM peaks at each time point for the 6 VACV proteins were

used to determine relative protein expression over the course of

infection and these were plotted alongside the relative levels of

each epitope derived from the same protein (Figure 4B). This

approach allows relative expression of individual antigens to be

determined at different time points but does not provide absolute

quantitation of the antigen and therefore direct comparison

between antigens is more qualitative. Expression profiles of the 6

proteins were consistent with their temporal expression cluster as

reported by analyses of transcription and more recently defined

promoters [41–43], which gives further confidence of the method.

Translation, as determined by tryptic peptide detection, was

detected at 0.5 hpi for A47, A8 and B8, corresponding with the

appearance of epitopes derived from those proteins. Whilst levels

of A47 peaked at 6.5 hpi, all other proteins peaked (at least within

the limits of this time course) at 12.5 hours. Proteins A3 and A19,

both of which are classified as late, were detected by 3.5 hours, but

did not reach substantial levels until 6.5 hours and onwards;

presentation of epitopes A3270–277 and A1947–55 tracked closely

with the increase in protein levels. For epitopes A47138–145, A8189–

196 and J3125–132, rapid and peak presentation following protein

expression was followed by a sharp decline in epitope levels to

almost zero by 12.5 hpi. However, epitopes B820–27 and A3270–277,

although decreasing following peak levels mid-infection, main-

tained a more constant level around 20–40% of the maximum; for

A1947–55, epitopes levels did not peak until the end of the time

course, following an almost identical profile to A19 protein

expression. Of note the B820–27 epitope appeared to display a lag

between peak of protein expression and peak of epitope

presentation.

Figure 3. Detection and quantitation of SIINFEKL and VACV epitopes from WR-NP-S-GFP infection. 16108 DC2.4 cells were either mock
treated or infected with 5 pfu of VACV strain WR-NP-S-GFP for 6 hours and epitopes eluted and analysed by the LC-MRM workflow. A) Representative
MRM traces for the detection of SIINFEKL (RP-HPLC fraction A10) and VACV epitopes B820–27 (fraction A8) and J3289–296 (fraction A13). Background,
non-specific MRM signal is shown for mock treatment (left panels). Positive, overlapping MRM transitions (four per peptide, Q3 ions as indicated) are
shown during infection (right panels). Inset: MRM signal for 50 fmol of the internal standard isotopically-labelled AQUA peptide SIIN*FEKL for the
absolute quantitation of SIINFEKL levels. B) Epitope presentation hierarchy on DC2.4 cells 6 hours after infection with WR-NP-S-GFP by LC-MRM. Data
from 2 independent infections are shown. C) CD8+ T cell immunodominance hierarchy 7 days after infection of C57BL/6 mice as determined by brief
stimulation with the peptides shown and ICS for IFNc. Data are the mean and SEM of 3 mice and are representative of two experiments.
doi:10.1371/journal.ppat.1003129.g003

Kinetics of Antigen Presentation during Infection
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Next, in vitro protein and epitope presentation kinetics were

correlated with CD8+ T cell immunodominance in vivo.

C57BL/6 mice were infected with VACV WR by the

intraperitoneal route (i.p.) and 7 days after infection, the

percentage of CD8+ T cells responding to ex vivo stimulation

with each peptide was determined by intracellular staining for

IFNc (Figure 4C). This method of epitope detection has

recently been shown to have a linear range that covers

responses to all the epitopes investigated here [44]. As

previously reported [4,5], B820–27 dominated the response,

A1947–55 was the weakest and the remaining 6 epitopes formed

an intermediate hierarchy. Here, where the onset, peak level

and longevity of epitope display were revealed (as opposed to

the single time point for the WR-NP-S-GFP in Figure 3), there

was still no obvious correlation between presentation and the

CD8+ T cell dominance hierarchy. Although the immunodo-

minant B820–27 was one of the most robust epitopes in peak and

persistence of presentation, it is similar in this respect to the

subdominant A47138–146 and J3289–296. Further, A3270–227 and

A8189–196, which are the next 2 peptides in the dominance

hierarchy after B820–27, have very different presentation

profiles with the former only appearing later (6.5 hpi) and

having better persistence but a substantially lower (approxi-

mately 10-fold) peak than the latter.

Figure 4. Kinetics of VACV antigen presentation. A) 16108 DC2.4 cells/time point were infected with 5 pfu of VACV strain WR (or mock treated
as time 0) and incubated for 0.5, 3.5, 6.5, 9.5 or 12.5 hours. MHC-peptide complexes were eluted at each time and epitope levels monitored by LC-
MRM. Data show the copies of each epitope per cell. B) Epitope data from (A) expressed as the percentage of maximum levels alongside the relative
kinetics of each source protein. C) CD8+ T cell immunodominance hierarchy of WR infection 7 days after infection as determined brief stimulation
with the peptides shown and ICS for IFNc. Data are the mean and SEM of 3 mice and are representative of multiple experiments.
doi:10.1371/journal.ppat.1003129.g004

Kinetics of Antigen Presentation during Infection
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Discussion

The use of liquid chromatography and mass spectrometry to

detect MHC epitopes has a long heritage [e.g. [45–50]] yet it is

only in recent years that techniques and instrumentation are

beginning to surpass sensitivity and feasibility blockades to gain

qualitative and quantitative insights into the immunopeptidome

[24,32,51–53]. Use of LC-MRM methods to detect epitope

presentation offers a large increase in sensitivity, but thus far has

few precedents in the literature. LC-MRM analysis has rarely been

used to examine antigen presentation with only a few examples

examining melanoma epitopes [54] and measles virus epitopes

[55]. We have recently further developed the methodology

studying SIINFEKL presentation as a model antigen [32]. The

current study is the first to comprehensively apply LC-MRM to

study epitope presentation during virus infection, an inherently

dynamic process. It is also the first to combine epitope and source

antigen quantification from the same samples using LC-MRM.

Our data provide extensions to and have implication for several

aspects of antigen processing and anti-viral immunity and include:

1. Confirmation of epitopes mapped by prediction and
synthetic peptides

The variable quality of epitope mapping data is a problem that

is too frequently ignored [56,57]. Of the 8 epitopes examined here,

3 have been verified to the level of the source antigen and by

peptide titration [4]. For the remaining 5, the only data available

are from prediction and testing of peptides in vitro at relatively high

concentration [5]. The nature of the MRM method leaves no

ambiguity as to the sequence of peptides that are detected on

infected cells and all 8 peptides have now been confirmed as the

actual epitope presented on the surface of infected cells. Our data

supports the value of the predictions and methods used to map

such epitopes using overlapping synthetic peptides; but a wider

comparison of the many epitopes published from a variety of

viruses and other pathogens remain an important future goal.

2. Complexity of epitope kinetics
We show here that the abundance of virus epitopes varies

massively from as low as 10 copies per cell to as high as .30,000

copies per cell. This variation is striking given that these are all

relatively immunogenic peptides and responses to 6 of 8 epitopes

fall within a two-fold range when measured using ex vivo assays

(Figures 3C and 4C). The kinetics of epitope presentation was

much more complex than that observed for single epitopes; not all

epitopes were presented by 3.5 hours but all were there at 6.5 hpi

consistent with data produced with mono-specific T cell lines [35].

Moreover, the dominant B820–27 epitope peaked at the 6.5 h time

point, consistent with the rise in antigenicity seen on the infected

cells between 5 and 7 hours (Figure 1B). To provide another view

of epitope presentation, we have expressed our data in terms of the

fraction of surface H-2Kb occupied by the epitopes studied

(Figure 5). To do this we have assumed a basal copy number for

this MHC allomorph of 105 class I copies per cell, which although

is likely to be conservative, is in line with published estimates

[48,58]. Moreover, we have taken into account variation in cell

surface MHC levels during the infection time course based on data

collected under identical experimental conditions (Figure S5). This

analysis highlights several striking features: First, as early as 3.5 hpi

a very large proportion of all H-2Kb on the infected cells are

displaying virus-derived epitopes, which represents a very rapid

and substantial change from the pre-infection immunopeptidome.

This also contrasts with HIV infection, where the most noteworthy

change after infection was the presentation of novel host epitopes

[16], suggesting that different viruses will have different impacts

upon the immunopeptidome and thus may explain the very

different evolution of immune responses to some viruses. Second,

antigen presentation can be dominated by relatively few epitopes.

At 3.5 hours after infection, presentation of just 2 virus epitopes

(A47138–146 and J3289–296) can account for an estimated half of all

H-2Kb molecules. This domination of presentation by few virus

epitopes has precedents, but has not been demonstrated so soon

after infection [17]. Third, presentation is very dynamic,

exemplified by the rise and fall of A47138–146 and J3289–296 from

0.5 to 6.5 hours. The rapid loss of presentation of these epitopes is

intriguing because they both have relatively high affinity for H-

2Kb molecules (Table 1: IC50 of 0.61 and 1.2, respectively [59]

(although our own data suggests J3289–296 stabilises Kb poorly) and

in each case the source protein continues to accumulate over this

time. The loss of these peptides is not easy to reconcile with half

life predictions for H-2Kb ranging from a lower limit of around

48 minutes for empty forms [60], to estimates with peptides of

moderate to high affinity of over 100 minutes [61]. However, half

life is determined by the balance of association and dissociation

rates [62], which are not fully known for these peptides. In our

own studies (Figure S6), we find that a peptide’s capacity for

increased MHC stabilisation correlates roughly with the half life of

that complex on the cell surface, yet neither of these factors can

predict the kinetics observed in our study. This is perhaps not

surprising given that such measured half lives are for cells in a

steady state condition and not undergoing virus infection. As a

virus such as VACV takes over all aspects of cell biology the supply

of peptides will change abruptly. Just as virus epitopes rapidly

replace those from the host, swamping the presentation capacity of

cells at 3.5 hours, it is reasonable to suggest that the cascade of

gene expression during infection is mirrored by successive waves of

virus epitopes being presented. A final feature of Figure 5 is the

comparison of data from cells infected with WR and WR-NP-S-

GFP at the 6.5 hour time point. This shows very similar amounts

of the native virus epitopes for both viruses, strongly supporting

the validity of our normalization methodology. Whilst it also shows

that SIINFEKL is more prevalent than any of the VACV epitopes

in our study at 6.5 hours, compared with the H-2Kb occupancy

levels achieved by A47138–146 and J3289–296 at 3.5 hours it is by no

means exceptional. Moreover, like A47138–146 and J3289–296,

SIINFEKL is not as immunogenic as the B820–27 epitope.

3. Relationship between antigen and epitope levels
Previous studies have used various strategies to relate antigen

expression or steady state levels to explain epitope abundance. On

balance, studies comparing transcription and epitope levels show

that the correlation between transcript levels and epitopes

presented is not especially good [24,28]. Likewise, a proteomic

approach using stable isotope labelling with amino acids in tissue

culture (SILAC), found a limited correlation between the

proteome and immunopeptidome [63]. A dynamic setting in

which antigen levels are changing can provide more insight into

the relationship between antigen and epitope levels. An example of

this approach found that novel host cell epitopes appearing on

HIV-infected cells was most likely related to the degradation of

these proteins during infection and not level of expression [16]. In

contrast, here we focus on virus antigens and epitopes and are able

to correlate protein levels from the initiation of their synthesis.

What is most clear from our study is that onset of epitope

presentation is essentially coincident with neosynthesis of the

source proteins. For 4 of the 6 epitopes where protein data were

obtained, epitope abundance peaks before antigen abundance; for

A19, epitope and protein kinetics were essentially coincident, and
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for the remaining epitope (B820–27) protein abundance was found

to peak first. Further, as noted above epitope turnover after the

peak is often rapid, in contrast to the source proteins that typically

continue to slowly rise or plateau. These data also demonstrate the

power of the time course approach in that without the full kinetics

of epitope and antigen levels, the conclusions would depend

entirely on the time point chosen for analysis. The inescapable

conclusion from our data is that epitope presentation is not well

correlated with antigen abundance, but this is in part because of

the rapid proteome dynamics in virus infected cells. The caveat

here is that in our analysis we were not able to determine absolute

protein abundance and so we cannot draw conclusions across the

epitopes.

4. The source of virus epitopes
For many model antigens neo-synthesis of proteins and not

their eventual degradation correlates with epitope production

[25–27,64]. The rapid onset of epitope presentation that

coincides with antigen expression in our study, strongly support

this idea. Importantly we show this close coupling of expression

and presentation for each of the 6 epitopes and these are derived

from native virus proteins expressed in the normal course of

infection. This means first, that the linkage of expression and

presentation is indeed a general phenomenon. Second, that any

concerns about previous findings being linked to the artificial

nature of the model antigens or systems being used can now be

discarded. What remains is to clearly reveal the identity of the

source proteins: what fraction of these are the defective products

predicted by the DRiP hypothesis versus other forms of rapidly

degraded proteins, perhaps produced by the pioneer round of

mRNA translation [65,66]. Either way, the efficiency implied by

the appearance of 6 of our 8 epitopes as early as 30 minutes after

infection suggests an exceptionally tight relationship between a

subset of newly synthesised proteins and the antigen processing

machinery. On the other hand, the presentation of post-

translationally modified antigens in other studies presumably

reflects that degradation of more mature protein species does

contribute to the epitopes presented [67,68]. A full understand-

ing of the fraction of epitopes derived from newly synthesized

versus mature proteins awaits a full immunopeptidome-wide

analysis. The behaviour of B820–27 is of interest in this respect:

while onset of protein production and presentation were co-

incident, peak presentation was delayed. We speculate that this

antigen is processed by two pathways, with epitope being

produced both from nascent protein, but also from a pool of

mature protein. So while we show here the benefits of broad-

scale approaches in allowing the common themes to emerge,

clearly much remains to be learnt from detailed analyses of

individual antigens.

5. Antigenicity on infected cells and immunogenicity
In our experiments with both VACV viruses there is no

correlation between levels of epitope display on infected cells and

immunogenicity. Others have shown that epitope levels measured

at a single time are not helpful in predicting the immunodomi-

nance hierarchy beyond suggesting that very low epitope levels can

limit immunogenicity [47,69]. However, rate of epitope accumu-

lation [69] and epitope off rates [70] or direct measurements of

persistence [71] have all been suggested to be important

determinants of immunogenicity. For the first time we are able

to determine onset, peak and persistence of presentation for

multiple epitopes and show that none of these parameters were

useful indicators of immunogenicity. There are two main areas of

explanation here. First we are using a cultured cell type that may

or may not resemble the real APC for priming anti-VACV CD8+

T cells. The balance of more recent studies suggests that during

VACV infection most CD8+ T cells are directly primed by

infected DCs [29–31], but it remains possible that some epitopes

may utilize cross priming [72]. If indeed cross priming is

important, levels of epitope on cross priming DCs would almost

certainly be different than those on infected cells and this might

explain the discrepancy between our data on presentation and

immunogenicity. Even if direct priming is the main pathway,

numerous possible complications in presentation might be in play.

More than one APC type might be involved and these might

present varying levels of individual epitopes through an array of

mechanisms. For example, differential immunoproteasome ex-

pression [73,74] or susceptibility to viral immune evasion

mechanisms [75]. Infection might be aborted in some APCs and

depending on the time that this occurs, epitopes from later classes

of genes would not be presented. Of interest in this regard is that of

the nearly 50 H-2b-restricted epitopes mapped, only two very weak

ones (far weaker than A19L examined here) are from genes with

late promoters [5,43]. Further, epitope display on non-professional

APCs might contribute to expansion of some specificities after

priming [76]. It will be important to repeat our studies by

harvesting APC directly ex vivo which will take into account

epitopes acquired by any mechanism. Second, immunodominance

Figure 5. Cartoon depiction of the changes in vaccinia viral epitope presentation during infection. Circles represent infected cells at the
indicated times post infection. Size is proportionate to the changing levels of MHC Kb during infection, relative to mock-infected cells.
doi:10.1371/journal.ppat.1003129.g005

Kinetics of Antigen Presentation during Infection

PLOS Pathogens | www.plospathogens.org 8 January 2013 | Volume 9 | Issue 1 | e1003129



is a complicated business and is driven by factors other than

availability of antigen. Precursor frequency for responding CD8+

T cells will always be a critical part of the explanation [77,78].

However, studies of VACV and influenza virus suggest that even

epitope abundance and the T cell repertoire might not be enough

to fully explain immunodominance [79,80]. Thus much work

remains both on the antigen presentation and T cell sides of the

immunodominance equation.

6. The value of individual epitopes as CD8+ T cell vaccine
targets

The sharp peak of epitope presentation kinetics and delayed

appearance of some epitopes are important factors to consider

when using epitope abundance data to choose optimal vaccine

targets. These considerations again highlight the importance of

measuring presentation at multiple time points. Having said this,

despite the vast difference in presentation levels, all the peptides in

our study were shown to be highly protective (.70% survival)

against a lethal VACV challenge when used as a sole immunogen

[59]. As noted above, better studies to relate the protective

capacity of epitopes with their display on infected cells will be

subject to identifying and studying the relevant cell type in vivo.

In summary, the advances we present here in quantifying virus

epitope abundance set a new benchmark in our understanding of

antigen presentation during virus infection. The surprisingly

dynamic nature of epitope display is a feature that has not been

reported previously and has ramifications both for immunogenic-

ity and use of epitopes as targets. This study is an important step

toward the ultimate goal of quantifying epitope presentation in vivo

which in turn is a requisite for a full understanding of anti-viral T

cell responses and how they may be manipulated in future

vaccines and other immunotherapies. Finally, the capacity to

follow viral protein expression, induced host cell protein expres-

sion and antigen presentation will provide new avenues of research

into the virus-host interaction and the role of immunoevasins and

innate immune mechanisms in viral clearance.

Materials and Methods

Cell lines
The murine bone marrow-derived DC line DC2.4 [81] was

provided as a kind gift from Professor Kenneth Rock (University of

Massachusetts Medical School). The murine hybridoma Y-3 [82]

secretes an anti-H-2Kb monoclonal antibody and RMA-S is a

TAP-deficient cell line derived from C57BL/6 mice [83]. Cells

were maintained in RPMI or DMEM (Life Technologies)

supplemented with 10% fetal bovine serum (FBS), 2 mM

glutamine with or without 50 IU/ml penicillin and 50 mg/ml

streptomycin (R10 or D10). BHK-21 and BS-C-1 were maintained

in D10.

Virus production
VACV strains Western Reserve (VACV WR, ATCC

#VR1354) and WR-NP-S-GFP were grown and titrated in

BHK-21 and BS-C-1 cells respectively under DMEM with 2%

FBS and 2 mM glutamine (D2) using standard methods. VACV

WR and WR-NP-S-GFP were gifts of Bernard Moss, Jon Yewdell

and Jack Bennink (all at NIH, Bethesda).

Virus infection
For LC-MRM experiments DC2.4 were washed twice with

DMEM with no additions (D0), then 16108 cells were infected at

10 plaque forming units (pfu) per cell in 2 ml D0 in round-bottom

tubes for 30 minutes at 37uC with shaking. After this time the cells

were transferred to 50 ml tubes and 40 ml of warm D2 was added.

The tubes were then incubated for the required time at 37uC with

slow rotation. Cells were counted at the end of each incubation to

account for any loss due to the method and snap frozen. For

detection of Kb-SIINFEKL and for use as stimulators prior to ICS,

1–56106 of washed DC2.4 were infected with 10 pfu/cell of WR

or WR-NP-S-GFP in 0.2 ml of D0 for 60 minutes at 37uC with

shaking. After this time 10 ml of warm D2 was added and the

tubes were incubated for the required time at 37uC and then

placed on ice before staining with mAb 25D1.16 or use in

intracellular cytokine staining (ICS).

Peptide synthesis
Peptides (.80% purity) were purchased from Genscript Corp

(Piscataway, NJ) or Mimotopes (Clayton, Vic, Australia) and

master stocks made with 100% DMSO at 1 mg/ml or greater.

Dilutions were made in D0. For mass spectrometry, purified and

lyophilised peptides were reconstituted in 100% DMSO at 5 mM

and diluted with buffer A (0.1% formic acid in water) to stocks of

2.5 mM.

Flow cytometric staining of Kb-SIINFEKL levels
DC2.4 cells (16106) infected with WR-NP-S-GFP were

incubated with mAb 25D1.16 conjugated to Allophycocyanin

(eBioscience) [8,12] for 30 minutes on ice. Cells were washed and

analysed by flow cytometry (LSR II, BD Biosciences) and analysis

done using Flowjo software (Tree Star).

Stimulation and intracellular cytokine staining (ICS)
Splenocytes (16106) from mice infected 7 days previously with

VACV WR or WR-NP-S-GFP were incubated with 1) peptides at

1027 M or 2) 26105 DC2.4 cells infected with VACV (see above)

in the wells of a 96-well plate at 37uC and 5% CO2. 10 mg/ml

brefeldin A was added after 1 hour, and the incubation continued

for another 3–4 h. Plates were spun, medium was removed, and

cells were stained for surface CD8 (clone 53–67, BD Biosciences)

on ice for 20 minutes. Cells were washed, fixed with 1%

paraformaldehyde solution, washed and then stained for intracel-

lular IFNc (clone XMG1.2, BD Biosciences) in PBS with 0.5%

saponin at 4uC. Cells were washed and analysed by flow cytometry

(LSR II, BD Biosciences) and analysis done using Flowjo software

(Tree Star). Background staining determined using uninfected cells

(generally around 0.1%) was subtracted from the values presented

from infected samples. The fidelity of this method for enumeration

of CD8+ T cell responses to acute VACV infection is supported by

a recent study [44].

Purification of MHC-peptide complexes
Frozen cell pellets of DC2.4 were lysed by gentle resuspension in

a total of 5 mls of 0.5% IGEPAL (Sigma), 50 mM Tris pH 8,

150 mM NaCl and protease inhibitors (Complete Protease

Inhibitor Cocktail Tablet; Roche Molecular Biochemicals) and

incubated with rotation for 1 hour at 4uC. Lysates were cleared by

centrifugation at 16,0006g in a benchtop microfuge and MHC-

peptide complexes immunoaffinity purified using Y-3 (anti-Kb)

monoclonal antibody bound to protein A-Sepharose, as previously

described [32,84]. Bound complexes were eluted by acidification

with 10% acetic acid. The mixture of peptides and MHC protein

chains was fractionated on a 4.6 mm internal diameter650 mm

long reversed-phase C18 HPLC column (Chromolith Speed Rod,

Merck) using an ÄKTAmicro HPLC system (GE Healthcare)

running on a mobile phase buffer A of 0.1% trifluoroacetic acid

(TFA) and buffer B of 80% acetonitrile/0.1% TFA and at a flow
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rate of 1 ml/min with peptides separated across a gradient of 2%

B to 45% B over the course of 20 minutes, collecting 500 ml

fractions.

FASP protein purification and tryptic digestion
Lysate flow-through following immunoaffinity purification was

used to detect cellular and VACV proteins. 200 ml of flow-through

was treated with the reducing agent (tris(2-carboxyethyl)pho-

sphine (TCEP) at a final concentration of 5 mM and sample

heated to 60uC for 30 minutes. 30 ml of sample was then loaded

onto a FASP protein digestion kit column (Protein Discovery)

[33] and tryptic digestion of proteins carried out as per the

manufacturer’s instructions. Digested proteins were eluted from

the column with 50 ml of 0.5 M sodium chloride into 80 ml of

50 mM ammonium bicarbonate. 10-fold dilutions of the eluate

(starting from 10 ml neat, to a 1/1000 dilution) were made to a

20 ml volume with mass spectrometry buffer A (0.1% TFA in

water) and analysed by LC-MRM as described below (see Liquid

chromatography mass spectrometry).

Design of VACV MRMs
MRM transitions for 8 VACV epitopes, restricted through

murine Kb MHC class I molecules, were designed through

spiking 200 fmol of synthetic versions of each peptide into an AB-

SCIEX QTRAP 5500 mass spectrometer (Table S1 and Figure

S1). Each peptide was initially analysed in EMS scanning mode

to determine the predominant precursor (Q1) ion. Peptides were

then analysed in EPI scanning mode across a range of collision

energies (CEs) to determine the optimal CE resulting in the

highest intensity fragment ions in Q3. At least four Q3 ions were

chosen per peptide to eliminate isobaric peptides triggering false-

positive MRMs, and each Q3 ion was fine-tuned for optimal

intensity using the method of Sherwood et al [85]. All MRMs

were built into a single method which also included the previously

described MRMs for SIINFEKL and isotopically-labelled

(AQUA) SIIN*FEKL [32].

Design of theoretical MRMs for VACV and murine protein
antigen detection

Skyline [39] v1.2.0.3245 was used to build an initial library of

MRMs targeting proteotypic tryptic fragments for each VACV

protein from which epitopes in this study were derived (Table S2

and Figure S4). Up to 3 tryptic fragments were selected per

protein, with at least 3 transitions per peptide. MRMs for each

peptide were further refined upon their detection. 12 tryptic

murine peptides (corresponding to 8 proteins) were used to

normalise protein levels across the timecourse (Table S3 and

Figure S3).

Liquid chromatography mass spectrometry
Following peptide elution, samples were concentrated using a

Labconco Centrivac concentrator, set to 40uC. Samples were

concentrated down to a volume of ,10 ml and then all equalised

to 20 ml through the addition of 0.1% formic acid in water (buffer

A), sonicated in a water bath for 10 minutes and centrifuged for

10 minutes at 13,000 rpm prior to samples being stored in mass

spectrometry vials at 4uC for immediate analysis by mass

spectrometry. An AB SCIEX QTRAP 5500 mass spectrometer

was used for MRM detection, coupled on-line to a Tempo nano

LC (Eksigent) autosampler and cHiPLC nanoflex (Eksigent). 20 ml

samples were injected and loaded onto a trap column

(200 mm60.5 mm ChromXP C18-CL 3 mm 120 Å; Eksigent part

number 804-00006) at a flow rate of 10 ml/min in 98% buffer A

for 10 minutes. For on-line fractionation of samples onto the mass

spectrometer, samples were eluted from the trap column and over

a cHiPLC column (75 mm615 cm ChromXP C18-CL 3 mm

120 Å; Eksigent part number 804-00001) at 300 nl/min under the

following buffer B (95% acetonitrile, 0.1% formic acid in water)

gradient conditions: 0–3 min 2–10% B, 3–33 min 10–40% B, 33–

36 min 40–80% B, 36–38 min hold at 80% B, 38–39 min 80–2%

B, followed by equilibration at 2% B until the end of the run at

48 min. The QTRAP 5500 was operated in MRM mode in unit

resolution for Q1 and Q3, coupled to an information-dependent

acquisition (IDA) criterion set to trigger an EPI scan (10,000 Da/

sec; rolling CE; unit resolution) following any MRM transition

exceeding 500 counts (ignoring the triggering MRM transition for

3 seconds thereafter).

Mass spectrometry data analysis
Data analysis was performed using a combination of Analyst

v1.5.2, Peakview v1.1 and Multiquant v2.0.2 (AB SCIEX).

RMA-S stabilisation assay
RMA-S cells were used to measure the capacity for each epitope

to stabilise MHC Kb cells, as described previously [86]. Briefly,

cells were grown overnight at 26uC to allow expression of peptide

receptive class I molecules on the surface of cells. The following

morning, decreasing concentrations of peptide were exogenously

loaded onto the cells for 1 hour and then the cells transferred to

37uC for 2 hours to allow unloaded H-2Kb molecules to dissociate.

Cells were then stained with the Kb-specific monoclonal antibody

Y-3, followed by secondary detection with a FITC-conjugated

anti-murine IgG antibody (Merck Millipore; AQ326-K) and

visualisation by flow cytometry. For measuring the time course

of epitope stabilisation, cells were grown and labelled as above

with 1 mM of peptide for 1 hour at 26uC, washed, and then

incubated for the indicated amount of time. Class I molecules were

detected as in the standard stabilisation assay. Data was analysed

using FlowJo software (TreeStar).

MHC expression analysis during virus infection
DC2.4 cells (26107) were infected with VACV-WR at an m.o.i.

of 5 in 500 ml of serum-free DMEM for 30 minutes. Infected cells

were then transferred to 40 ml DMEM supplemented with 2%

FCS. The tubes were then incubated for the required time at 37uC
with slow rotation. Cells were centrifuged, incubated with Fc block

(BD Biosciences; clone 2.4G2) for 20 minutes at 4uC. Cells were

washed once and stained with PE-conjugated anti-H2-Kb

(Biolegend; AF6-88.5) for 30 minutes at 4uC. Cells were wash

and fixed with paraformaldehyde at room temperature for

20 minutes. Cells were washed and analysed by flow cytometry

(LSR II, BD Biosciences) and analysed using FlowJo software

(Tree Star).

Ethics
All experiments were done according to Australian NHMRC

guidelines contained within the Australian Code of Practice for the

Care and Use of Animals for Scientific Purposes and under

approvals F-BMB-38.8 and A2011-01 from the Australian

National University Animal Ethics and Experimentation Com-

mittee.

Supporting Information

Figure S1 MS and MS/MS analysis of synthetic VACV
peptides for MRM design. 200 fmol of each VACV peptide

was analysed individually by a QTRAP 5500 operating in
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enhanced MS (EMS) mode in order to determine the dominant

precursor ion (upper panel for each peptide; precursor ion charge

is indicated). Subsequently, a full enhanced product ion (EPI) scan

(80–1000 m/z range) across a range of collision energy (CE) values

was triggered following detection of the dominant precursor (lower

panel for each peptide; a single CE is shown for clarity, although

different CEs were used for optimal product generation – refer to

Table S1). Further refinement of optimal MRM conditions was

achieved using a method adapted from Sherwood et al. (Sherwood et

al., 2009). At least 4 Q3 product ions (purple lines) were chosen per

peptide in order to practically eliminate false-positive signal due to

the presence of isobaric peptide species in MHC eluates.

(TIF)

Figure S2 Eluting RP-HPLC fractions for each epitope.
1 nmol of each peptide was spiked individually onto a 4.6 mm

internal diameter650 mm long reversed-phase C18 HPLC

column (Chromolith Speed Rod, Merck) using an ÄKTAmicro

HPLC system (GE Healthcare) running on a mobile phase buffer

A of 0.1% trifluoroacetic acid (TFA) and buffer B of 80%

acetonitrile/0.1% TFA and at a flow rate of 1 ml/min. These

conditions are identical to those used in the separation of peptides

following MHC elution and therefore determines the RP-HPLC

fraction (indicated above each chromatographic peak) which

contains each VACV epitope. Peptides were read at an absor-

bance of 215 nm.

(TIF)

Figure S3 The use of murine protein MRMs for the
protein normalisation during VACV infection. In order to

accurately measure relative levels of VACV protein expression

during infection (see Supporting Information Figure S4) it was

necessary to concurrently measure host cellular protein levels as

references for normalisation. Following protein lysate reduction

and alkylation with iodoacetamide, levels of twelve tryptic peptides

(corresponding to 8 murine proteins) were measured using the

MRM transitions described in Table S2. A) Multiplexed detection

of each murine tryptic peptide. Example data is from mock

infection and a single MRM transition is shown for each peptide

for clarity. * indicates false-positive signal peaks. Protein name and

peptide sequence (in parentheses) are indicated for each peak. B)

Detection levels (calculated from sum MRM area per peptide) of

each murine peptide during the infection timecourse relative to the

level observed from mock infection. C) Murine tryptic peptide

data plotted as individual points showing mean +/2 SEM. Cell

count (plotted relative to mock on the same scale) is overlaid. D)

Normalisation factor (mock set to 1) for each step of the time

course calculated by taking the inverse of the detection level

relative to mock from (C). Data shows mean +/2 SEM, where the

mean was used as the normalisation value for calculating VACV

protein abundance. The full protein descriptors are defined in

Table S2.

(TIF)

Figure S4 Kinetics of VACV protein expression during
infection. VACV proteins were detected using the MRM

transitions described in Table S3. A) Raw (non-normalised)

MRM detection intensities at each stage of infection. MRM trace

y-axes are set to the maximum detected value for each protein. B)

Raw and normalised (see Supporting Information Figure S3)

VACV protein levels, plotted as a percentage of maximum.

(TIF)

Figure S5 Surface MHC class I Kb levels during VACV
WR infection. DC2.4 cells were infected with VACV strain WR

and incubated for the indicated times at which point cell surface

MHC class I Kb molecules were visualised by flow cytometry.

Data is plotted as the percentage expression relative to mock-

infected cells at time 0. Values are mean of triplicate samples +/2

SEM and are representative of one of two independent

experiments.

(TIF)

Figure S6 Epitope stabilisation assay of VACV peptides.
A) RMA-S cells were grown overnight at 26uC to induce maximal

empty class I expression and then exogenously labelled with the

indicated titrated concentrations of each synthetic VACV peptide

for 1 hour and then transferred to 37uC for 2 hours. Stabilised cell

surface MHC class I complexes were visualised by flow cytometry.

B) Epitope stabilisation across 6.5 hours was carried out following

labelling of stabilised empty class I molecules with 1 mM of

synthetic peptide, washing cells and incubating at 37uC for the

indicated times. Stabilised cell surface MHC class I complexes

were visualised by flow cytometry. Estimated half-lives for each

peptide-MHC complex are as follows: B820–27, 5 hrs; J3289–296,

5 hrs; A47138–146, 5.5 hrs; A1947–55, 7 hrs; L253–61, 12 hrs; A3270–

277, 5 hrs; A8189–196, 5 hrs; C4125–132, 4.5 hrs. All data are mean

of triplicate values +/2 SEM and are representative of at least two

independent experiments.

(TIF)

Table S1 MRM transitions used to monitor for VACV
epitopes. Target epitope position with each protein is indicated,

along with epitope amino acid sequence, Q1 and Q3 m/z, the

dwell time that the QTRAP instruments spends on each transition

and the optimal collision energy (CE) for each transition.

(DOCX)

Table S2 MRM transitions used to monitor for murine
tryptic peptides. Target protein and peptide amino acid

sequence is indicated, along with the Q1 and Q3 m/z, the dwell

time that the QTRAP instruments spends on each transition and

the optimal collision energy (CE) for each transition.

(DOCX)

Table S3 MRM transitions used to monitor for VACV
tryptic peptides. Target protein and peptide amino acid

sequence is indicated, along with the Q1 and Q3 m/z, the dwell

time that the QTRAP instruments spends on each transition and

the optimal collision energy (CE) for each transition.

(DOCX)
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