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Mesenchymal stem cells (MSCs) are a heterogeneous cell population that is isolated initially from the bone marrow (BM) and
subsequently almost all tissues including umbilical cord (UC). UC-derived MSCs (UC-MSCs) have attracted an increasing
attention as a source for cell therapy against various degenerative diseases due to their vigorous proliferation and differentiation.
Although the cell proliferation and differentiation of BM-derived MSCs is known to decline with age, the functional difference
between preterm and term UC-MSCs is poorly characterized. In the present study, we isolated UC-MSCs from 23 infants
delivered at 22–40 weeks of gestation and analyzed their gene expression and cell proliferation. Microarray analysis revealed that
global gene expression in preterm UC-MSCs was distinct from term UC-MSCs. WNT signaling impacts on a variety of tissue
stem cell proliferation and differentiation, and its pathway genes were enriched in differentially expressed genes between
preterm and term UC-MSCs. Cell proliferation of preterm UC-MSCs was significantly enhanced compared to term UC-MSCs
and counteracted by WNT signaling inhibitor XAV939. Furthermore, WNT2B expression in UC-MSCs showed a significant
negative correlation with gestational age (GA). These results suggest that WNT signaling is involved in the regulation of GA-
dependent UC-MSC proliferation.

1. Introduction

Mesenchymal stem cells (MSCs) are a heterogeneous cell
population that has a potential to proliferate and differentiate
into trilineage mesenchymal cells: adipocytes, osteocytes, and
chondrocytes. MSCs were initially isolated and characterized
from the bone marrow (BM) [1, 2] and subsequently derived
from almost all tissues including adipose tissue (AT), syno-
vium, skin, dental pulp, umbilical cord blood (UCB), pla-
centa, and umbilical cord (UC) [3]. Due to the ability to

home to sites of injury, undergo differentiation, suppress
immune responses, and modulate angiogenesis, MSCs are
paid an increasing attention as a source for cell therapy
against various degenerative diseases. Currently, MSCs from
different sources have been tested in clinical studies for treat-
ment of graft-versus-host disease, myocardial infarction,
cerebral infarction, and so on [4, 5].

Although BM is the most well-characterized source
of MSCs, it has certain limitations with the invasive BM
aspiration and the decline in MSC proliferation and
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differentiation capacity with age. In contrast, fetal MSCs
obtained from UCB, placenta, and UC have advantages
with the noninvasive sampling during newborn delivery
and the vigorous proliferation and differentiation capacity
for cell therapy [6, 7]. Especially, human UC starts to
develop at 4–8 weeks of gestation, continues to grow until
50–60 cm in length, and is usually discarded as medical
waste after newborn delivery. Taken together, UC-derived
MSCs (UC-MSCs) will become a promising source for cell
therapy [8, 9].

Various genes and signaling pathways are known to
regulate MSC proliferation and differentiation. WNT sig-
naling serves as a key regulator that influences various
stages of embryonic development as well as tissue homeo-
stasis in adulthood [10]. It affects the proliferation, self-
renewal, and differentiation of various tissue stem cells
and controls the various tissue renewal and regeneration
in response to disease, trauma, and ageing [11]. WNT
ligands, which comprise a family of 19 members in human,
are evolutionally conserved, are lipid modified, and
secreted glycoproteins. They can activate either β-catenin-
dependent (canonical) or β-catenin-independent (nonca-
nonical) pathways by acting on transmembrane receptor
FZD and its coreceptors LRP5/LRP6. The canonical path-
way inhibits the β-catenin destruction complex, associates
the transcriptional coactivator β-catenin with the transcrip-
tional factor complex TCF/LEF, and induces WNT target
gene transcription. The noncanonical pathway is indepen-
dent of β-catenin and mainly associates with Ca2+-depen-
dent and JNK-dependent signaling pathways, which can
impact on cell migration, cell polarity, and cytoskeletal
organization. The molecular events occurring these nonca-
nonical pathways are far less defined than the canonical
pathway [12].

Early studies showed the profound impacts of WNT
signaling on a variety of tissue stem cell proliferation
and differentiation [13–15]. In MSCs, both stimulatory
and inhibitory roles for WNT signaling in cell prolifera-
tion and differentiation into trilineage mesenchymal cells
were documented [16]. The adipogenic differentiation of
AT-derived MSCs (AT-MSCs) was inhibited by WNT
signaling activation [17]. The potential of WNT signaling
on osteogenic differentiation of MSCs was controversial,
with both stimulatory and inhibitory effects being
reported [18, 19]. An inhibitory effect of WNT signaling
on chondrogenic differentiation was demonstrated in
AT-MSCs [20].

Although UC can be obtained from a wide range of ges-
tational age (GA) newborn as a result of preterm, term, and
postterm delivery, their functional differences are poorly
characterized [21]. An understanding of the molecular
mechanisms controlling UC-MSC proliferation and differ-
entiation is crucial to determining the drivers and effectors
of the functional difference between different GA UC-MSCs
as well as the most suitable use of UC-MSCs for cell ther-
apy against degenerative diseases. In the present study, we
isolated UC-MSCs from 23 infants delivered at 22–40
weeks of gestation and analyzed their gene expression and
cell proliferation.

2. Materials and Methods

2.1. Patients and Samples. Human UCs were obtained from
23 infants delivered at 22–40 weeks of gestation with parental
written consent. This study was approved by the Ethics Com-
mittee at Kobe University Graduate School of Medicine
(approval number 1370) and Hyogo Prefectural Kobe Chil-
dren’s Hospital (approval numbers 24-25) and conducted
in accordance with the approved guidelines.

2.2. Preparation of UC-MSC. The umbilical cord (2-3 g
weight) was collected, cut into 2-3mm pieces, enzymatically
dissociated with Liberase DH Research Grade (Roche, Mann-
heim, Germany) in PBS for 45–60min at 37°C followed by
the addition of 10% fetal bovine serum (FBS; Sigma, St.
Louis, MO) to inhibit enzyme activity, and filtered through
a 100 μm cell strainer (BD Bioscience, Bedford, MA). The
resulting cells derived from all compartments of the umbili-
cal cord (whole UC) were cultured at 37°C (5% CO2 and
95% air) in MEM-α (Wako Pure Chemical, Osaka, Japan)
containing 10% FBS and 1% antibiotic-antimycotic solution
(Invitrogen, Carlsbad, CA) until confluent primary cultures
were established. The cells were then disassociated with
trypsin-EDTA (Wako Pure Chemical), and the trypsinized
cells were seeded into fresh dishes and passaged to conflu-
ence. Serial passaging was carried out until the tenth passage.
The cells at fifth to eighth passages were used in the present
experiments.

2.3. Cell Surface Marker Analysis. UC-MSCs were dissociated
with 0.25% trypsin-EDTA for 10 minutes, washed with PBS
and suspended at ~1 × 106 cells/ml in FCM buffer containing
1 ×PBS, 2mM EDTA, and 10% Block Ace (Dainippon Phar-
maceutical, Osaka, Japan). The cells were incubated with
phycoeryhrin- (PE-) conjugated mouse primary antibodies
against CD14, CD19, CD34, CD45, CD73, CD90, CD105,
or HLA-DR (BD Bioscience, Franklin Lakes, NJ) for 45min
on ice, washed with PBS, incubated with Fixable Viability
Stain 450 (BD Bioscience) for 15min at room temperature,
washed with PBS, and filtered through a 70 μm cell strainer
(BD Bioscience). PE-conjugated mouse IgG1 k, IgG2a k, or
IgG2b k isotype control (BD Bioscience) was used as a nega-
tive control for each primary antibody. Flow cytometric anal-
ysis was performed using FACSAria III carrying a triple laser
(BD Bioscience) and FACSDiva software (BD Bioscience).

2.4. Cell Differentiation. To verify the multipotency of UC-
MSCs, the cells were induced to differentiate into the adipo-
genic, osteogenic, and chondrogenic lineages. Adipogenic
differentiation was induced in STEMPRO adipogenesis dif-
ferentiation medium (Invitrogen) for 2-3 weeks and stained,
and the differentiation was investigated by staining lipid ves-
icles with Oil Red O (Sigma). Osteogenic differentiation was
induced in STEMPRO osteogenesis differentiation medium
(Invitrogen) or STK-3 (DS Pharma Biomedical, Osaka,
Japan) for 1-2 weeks, and the differentiation was examined
by staining with Arizarin Red S (Sigma) reacting to calcium
cation. Chondrogenic differentiation was induced by form-
ing cell aggregates in micromass culture in STEMPRO
chondorogenesis differentiation medium (Invitrogen) for
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1 week, and the differentiation was assessed by staining
anionic glycoconjugates with Toluidine Blue (Sigma). Cell
images were acquired using a BZ-X700 microscope (Keyence,
Osaka, Japan).

2.5. RNA Extraction. Total RNA from UC-MSCs and fibro-
blasts was extracted with a TRIZOL Plus RNA purification
kit (Life Technologies) according to the manufacturer’s
instructions. RNA integrity was evaluated by Agilent 2100
Bioanalyzer (Agilent Technologies, Santa Clara, CA) using
RNA 6000 nanokit (Agilent Technologies) according to the
manufacturer’s instructions.

2.6. Gene Expression Microarray Analysis. Total RNA from
three term and five preterm UC-MSCs (Table 1) was sub-
jected to global gene expression analysis using the Low Input
Quick Amp Labeling Kit One-Color (Agilent Technologies)
and SurePrint G3 Human Gene Expression v3 8 × 60K
Microarray Kit (Agilent Technologies) according to the man-
ufacturer’s instruction. Briefly, double-stranded cDNA was
synthesized from 100ng of total RNA by AffinityScript-RT
using T7 promoter-incorporated Oligo-dT primer. Cyanine
3- (Cy3-) CTP-incorporated RNA (cRNA) was generated
using the second strand cDNA as a template via an in vitro
transcription reaction. The amplified cRNA was purified
with the RNeasy mini kit (Qiagen, Valencia, CA) and
quantified cRNA by the NanoDrop 2000 (Thermo Fisher
Scientific, Waltham, MA). 600ng of Cy3-labeled cRNA
was hybridized to the microarray slides at 65°C for 17hr
with rotation at 10 rpm. After hybridization, the slides
were washed and scanned by the SureScan (Agilent Tech-
nologies), the images were subsequently extracted using
the Feature Extraction Software (Agilent Technologies).
Extracted data with good QC metrics were normalized
(percentile shift to the 75th percentile) and filtered by gene
expression (20.0–100.0 percentile), flags for signals and error
for CV in the GeneSpring GX (v 14.5) (Agilent Technolo-
gies). The processed data were subjected to statistical analysis
(moderated T-test with Benjamini-Hochberg FDR), and
the corrected p value <0.05 was determined to be significant
(n = 3–5). The following analyses were performed for further
data interpretation: principal component analysis (PCA),
clustering analysis, GO (gene ontology) analysis, and
pathway analysis with curated datasets of WikiPathways
(413 pathways) and KEGG (10 pathways). A gene-set list
associated with human WNT signaling pathway (150 genes,
04310 from KEGG pathways) was obtained from a public
database (https://www.stemformatics.org/).

2.7. Quantitative RT-PCR (RT-qPCR). cDNA was synthe-
sized from 1 μg of total RNA from UC-MSCs by using a
QuantiTect reverse transcription kit (Qiagen). Real-time
PCR analysis was performed with an ABI 7500 real-time
PCR system (Applied Biosystems, Foster City, CA) using
FastStart Universal SYBR Green master mix (Roche) with
0.5 μM sense and antisense primers and cDNA (correspond-
ing to 12.5 ng total RNA) according to the manufacturer’s
instructions. Each cDNA was amplified with a precycling
hold at 95°C for 10min, followed by 40 cycles at 95°C for

15 sec and 60°C for 60 sec, and one cycle at 95°C for 15 sec,
60°C for 60 sec, 95°C for 15 sec, and 60°C for 15 sec. Relative
expression of each transcript was calculated based on the
ΔΔCt method using β-actin (ACTB) as an endogenous refer-
ence for normalization. Primer sequences for WNT2,
WNT2B, WNT3A, WNT4, WNT5B, WNT6, SFRP1, and
ACTB were shown in Table 2. All sample measurements
were repeated at least three times, and the results were
expressed as the mean± SE.

2.8. Ki-67 Staining. Cell suspensions of UC-MSCs were cen-
trifuged at 3000 rpm for 5min, and two smears were immedi-
ately prepared. Slides were fixed in 95% ethanol for
immunostaining or fixed in 20% formalin and 80%methanol
and stained with hematoxylin and eosin (H&E), respectively.
Immunostaining was performed with antibody against Ki-67
(Clone MIB-1, Dako, Santa Clara, CA) using Leica Bond-
Max automation and Bond Polymer Refine detection kit
(Leica Biosystems, Nussloch, Germany) according to manu-
facturer’s instructions. IHC cytology protocol included pri-
mary antibody incubation for 15min, post primary for
8min, polymer for 8min, peroxide block for 5min, mixed
DAB refine for 10min, and followed by 5min hematoxylin
counterstaining.

2.9. MTS Assay. UC-MSCs were seeded at the density of
12,000 cells/well in a 12-well plate, incubated in 1ml of
MEM-α with 10% FBS in the presence or absence of 10 μM
XAV939 (Selleck Chemicals, Houston, TX) at 37°C (5%
CO2 and 95% air) for 24, 48, or 72 h. Cell proliferation was
then determined by the CellTiter 96H AQueous One Solu-
tion Cell Proliferation Assay kit (Promega, Madison, WI,
USA) according to the manufacturer’s instruction. Briefly,
200 μl of MTS reagent (a tetrazolium compound) was added
into each well and incubated at 37°C (5% CO2 and 95% air)
for 4 h. The absorbance at 490nm was measured using an
EnSpire Microplate Reader (Perkin Elmer, Poland, OR). All
experiments were repeated at least three times, and the
results were expressed as the mean± SE.

2.10. Statistical Analysis. Pearson’s correlation coefficients
were determined, and the Mann–Whitney U test was used
to compare two independent datasets, using Excel software
(Microsoft, Redmond, WA) and Excel Statistics (Statcel 3;
Social Survey Research Information, Tokyo, Japan). Differ-
ences were considered statistically significant for p < 0 05.

3. Results

3.1. UC-MSCs Isolated from Infants Delivered at 22–40Weeks
of Gestation.We first obtained UCs from infants delivered at
22–40 weeks of gestation and then isolated the plastic-
adherent cells from these UCs (Table 1). The cells exhibited
a spindle-like shape (Figure 1(a)). Their cell surface markers
were positive for MSC signature markers CD73, CD90, and
CD105 but negative for hematopoietic, macrophage, and
endothelial markers CD14, CD19, CD34, CD45, and HLA-
DR by flow cytometric analysis (Figure 1(b)). There were
no statistically significant differences in the percentages of
MSC signature marker-positive cells (CD73: 99.9± 0.1%
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and 99.6± 0.4%, CD90: 99.9± 0.1% and 99.5± 0.5%, and
CD105: 99.7± 0.3% and 99.5± 0.5%) between preterm and
term UCs.

Under standard in vitro differentiation conditions, both
preterm and term UC-MSCs were induced to differentiate
into osteocytes, adipocytes, and chondrocytes (Figure 1(c)).
Preterm UC-MSCs did not qualitatively differ from term
UC-MSCs in their capacity to differentiate into trilineage
mesenchymal cells. Taken together, the resulting cells ful-
filled the criteria defined by the ISCT position paper [22]
and were defined as UC-MSCs.

3.2. Differentially Expressed Genes between Preterm and Term
UC-MSCs. To get an insight into the functional difference
between preterm and term UC-MSCs, we extracted total
RNA from five preterm and three term UC-MSCs (Table 1)
and performed microarray analysis. Principal component
analysis (PCA) for global gene expression revealed that pre-
term UC-MSC samples were clustered together and were
separated from termUC-MSC samples (Figure 2(a)). In total,
5578 unique genes (4272 upregulated and 1306 downreg-
ulated) showed greater than twofold-expression changes
between preterm and term UC-MSCs with a corrected
p value less than 0.05 (Figure 2(b), Supplementary Table S1
available online at https://doi.org/10.1155/2017/8749751).
The pathway analysis of all differentially expressed genes
identified significant enrichment of signaling pathways
for immune/inflammatory reactions, cell-cell/cell-extracellu-
lar matrix interactions, glucose/lipid metabolism, and cell
proliferation and differentiation (Table 3). Among these sig-
naling pathways, we focused WNT signaling pathway that
was previously implicated in the regulation of MSC prolifer-
ation and differentiation. Noticeably, 32/150 of WNT signal-
ing pathway genes were overlapped with differentially
expressed genes between preterm and term UC-MSCs
(Figures 2(c) and 2(d)).

We then confirmed a subset of these WNT signaling
pathway gene expressions by RT-qPCR using cDNA from
the same five preterm and three term UC-MSCs as a tem-
plate. A subset included secreted WNT ligands and modula-
tors: WNT2, WNT2B, WNT3A, WNT4, WNT5B, WNT6,
and SFRP1. Consistent with microarray analysis, upregulated
WNT2, WNT2B, WNT3A, WNT4, and WNT6 showed
increased expression in preterm UC-MSCs compared to
term UC-MSCs by RT-qPCR (Table 4, Figure 3). Decreased

expression of downregulated WNT5B and SFRP1 was also
detected by RT-qPCR (Table 4, Figure 3). Collectively, these
results suggested that WNT signaling pathway gene expres-
sion in preterm UC-MSCs was distinct from term UC-MSCs.

3.3. Cell Proliferation of Preterm and Term UC-MSCs. To
examine the function of WNT signaling pathway genes in
preterm and term UC-MSCs, we isolated UC-MSCs from
nine preterm (22–26 weeks of gestation) and nine term
(37–39 weeks of gestation) infants (Table 1) and analyzed
their cell proliferation. We first evaluated the expression of
Ki-67, a marker of proliferating cells expressed in all active
phases of the cell cycle (G1, S, G2, and M), by immunocyto-
chemistry [23]. The percentages of Ki-67-positive cells were
markedly increased in preterm UC-MSCs as compared to
term UC-MSCs, albeit not statistically significant (Figure 4).

We then analyzed cell proliferation of preterm and term
UC-MSCs by MTS assay. Although both preterm and term
UC-MSCs showed vigorous proliferation, the proliferation
rate of preterm UC-MSCs measured at 72h was significantly
faster than term UC-MSCs (Figure 5(a)). Next, we examined
the effect of WNT signaling inhibition on the growth of
preterm and term UC-MSCs using a small molecule
XAV939. XAV939 is a potent inhibitor of Tankyrase1 and
Tankyrase2, and this inhibition stabilizes Axin1 and
Axin2, the concentration-limiting component of the WNT
pathway transcription factor β-catenin destruction complex.
Increased levels of Axin1 and Axin2 stimulate β-catenin deg-
radation and thereby inhibit β-catenin-mediated transcrip-
tion [24]. Treatment of preterm UC-MSCs with 10 μM
XAV939 resulted in significant inhibition of cell proliferation
(Figure 5(b)). Term UC-MSC proliferation was also reduced
by 10 μM XAV939, but there was no statistical significance
(Figure 5(c)). These results suggest that WNT signaling
is involved in the enhanced cell proliferation of preterm
UC-MSCs compared to term UC-MSCs.

3.4. Gestational Age-Dependent Expression of WNT Signaling
Pathway Genes. We further analyzed WNT2, WNT2B,
WNT3A, WNT4, WNT5B, WNT6, and SFRP1 expressions
in UC-MSCs isolated from other 10 infants delivered at 22–
40 weeks of gestation by RT-qPCR. Expression of these
WNT signaling pathway genes tended to decrease or increase
with gestational age. Among them, WNT2B expression
showed a statistically significant negative correlation with
gestational age (Figure 6, Supplementary Figure S1).

4. Discussion

In the present study, we isolated UC-MSCs from 23 infants
delivered at 22–40 weeks of gestation and obtained the
following findings. (1) Global gene expression in preterm
UC-MSCs was distinct from term UC-MSCs. (2) WNT sig-
naling pathway genes were enriched in differentially
expressed genes between preterm and term UC-MSCs. (3)
Preterm UC-MSC proliferation was faster than term UC-
MSCs. (4) WNT signaling inhibitor XAV939 significantly
inhibited the cell proliferation of preterm but not term

Table 2: Primers used for RT-qPCR.

Forward primer Reverse primer

WNT2 tttggcagggtcctactcc cctggtgatggcaaatacaa

WNT2B aacttacataataaccgctgtggtc actcacgccatggcactt

WNT3A aactgcaccaccgtccac aaggccgactccctggta

WNT4 gcagagccctcatgaacct cacccgcatgtgtgtcag

WNT5B gcgagaagactggaatcagg cagagcagccgtgaacag

WNT6 agagtgccagttccagttcc gaacacgaaggccgtctc

SFRP1 gctggagcacgagaccat tggcagttcttgttgagca

ACTB ccaaccgcgagaagatga ccagaggcgtacagggatag
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Figure 1: Characterization of UC-MSCs from term and preterm infants. (a) UC-MSCs from preterm (24 weeks of gestation, preterm UC-
MSCs) and term (38 weeks of gestation, term UC-MSCs) newborns at passage numbers 6 to 7 were examined by phase-contrast
microscopy. The images shown are representative of three independent experiments. Scale bars show 100 μm. (b) Preterm and term UC-
MSCs were analyzed by flow cytometer using antibodies against MSC markers (CD14, CD19, CD34, CD45, CD73, CD90, CD105, and
HLA-DR) defined by ISCT [22]. The histograms shown are representative of three independent experiments. (c) Preterm and term UC-
MSCs were differentiated into adipocyte as visualized by Oil Red O and into osteocyte as visualized by Alizarin Red S and chondrocyte as
visualized by Toluidine Blue. The images shown are representative of three independent experiments. Scale bars represent 50 μm.
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Figure 2: Gene expression microarray analysis of preterm and term UC-MSCs. (a) PCA mapping of gene expression profile for preterm
(pre-1-5) and term (term-1-3) UC-MSCs. (b) Heat map of 5578 differentially expressed gene with greater than twofold changes in
preterm UC-MSCs as compared to term UC-MSCs at a corrected p value less than 0.05. Green color refers to low levels of gene expression
and red color to high levels. (c) Pie chart of altered expression genes and WNT signaling pathway genes. The list shows overlapped 32
genes. (d) Heat map of 32 genes extracted from (c). Green color refers to low levels of gene expression and red color to high levels.
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UC-MSCs. (5) WNT2B expression in UC-MSCs showed a
significant negative correlation with GA.

MSCs are isolated from a variety of tissues and result in
so heterogeneous population of cells, and not all of them
express the same phenotypic markers. In the case of BM-
MSCs, younger donor-derived BM-MSCs showed greater
proliferative and differentiative potential than older counter-
parts and may have more potential for cell therapy [25, 26].
Although fetal MSCs could be isolated from newborns deliv-
ered at a wide range of GA as a result of preterm, term, and
postterm delivery, their GA-dependent function remained
poorly characterized [8, 9]. With regard to UCB-MSCs, the

Table 4: Differentially expressed WNT pathway genes between
preterm and term UC-MSCs.

Gene FC (pre versus term) p (Corr)

Ligands

WNT2 4.07917 0.01631

WNT2B 2.64791 0.02698

WNT3A 2.56017 0.02584

WNT6 2.35531 0.00938

WNT4 2.11623 0.00510

WNT5B −3.93533 0.01317

Receptors

FZD9 3.47820 0.04035

TCF7L2 2.29222 0.01187

Extracellular modulators

DKK4 3.79029 0.01143

DKK2 −2.65327 0.01720

SFRP1 −3.13336 0.00621

Intracellular signaling molecules

CCND2 3.49892 0.02933

DAAM2 2.71289 0.00467

CER1 2.40160 0.03446

MAPK8 2.36091 0.00501

NFATC4 2.25687 0.01089

APC2 2.21774 0.04864

PPP2R5B 2.20956 0.00501

PRKCB 2.11780 0.00504

CAMK2A 2.03443 0.02825

APC −2.01861 0.00578

FOSL1 −2.06872 0.03346

PRKACA −2.16403 0.02705

PPP2R1A −2.19719 0.04119

CCND3 −2.20727 0.01748

RUVBL1 −2.24427 0.02646

AXIN1 −2.47832 0.02670

RAC2 −2.51880 0.00902

TBL1X −2.73244 0.01261

DVL1 −2.77299 0.00726

NFATC3 −2.82561 0.02238

CCND1 −3.28580 0.03436
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Figure 3: WNT signaling pathway gene expression in preterm and
term UC-MSCs. The relative expression of WNT2, WNT2B,
WNT3A, WNT4, WNT6, WNT5B, and SFRP1 mRNA in preterm
(n = 3) and term (n = 5) UC-MSCs was analyzed by RT-qPCR.
The mean of term UC-MSCs was set as 1. The results shown are
the mean± SE.
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Figure 4: Ki-67 staining of preterm and term UC-MSCs. (a) Smears
of preterm (n = 3) and term (n = 3) UC-MSCs were prepared,
immunostained with anti-Ki-67 antibody, and counterstained with
hematoxylin. The images shown are representative of three
independent experiments. (b) The percentage of Ki-67 positive
was determined by manually counting 1000 cells and expressed as
the mean± SE.

13Stem Cells International



MSC population in UCB was significantly higher in preterm
newborn compared to term newborn [27, 28]. In the case
of UC-MSCs, MSCs were isolated from different UC

compartments including cord lining, perivascular region
(PV), Wharton’s jelly (WJ), and whole UC [29–31]. Pre-
term UCs were shown to contain more perivascular cells
(PVCs), identical to MSCs, than term UCs [32]. Preterm
PVCs/UC-MSCs isolated from fetuses aborted at 8–12 weeks
of gestation were reported to exhibit a greater proliferative
potential, a more efficient differentiation into chondrogenic
and adipogenic cell lineages, and a differential gene expres-
sion profile compared to term PVCs/UC-MSCs isolated from
newborns delivered at 37–40 weeks of gestation [33].
Although we isolated UC-MSCs from the whole UC and
preterm newborns delivered at 22–26 weeks of gestation,
the present study and others supported that proliferative
capacity of UC-MSCs declined with GA.

Global gene expression analysis identified 5578 differen-
tially expressed genes between preterm and term UC-MSCs
(Figure 2(a), Table S1). The pathway analysis revealed signif-
icant enrichment of 111 signaling pathways (Table 3).
Immune/inflammatory reaction-associated signaling path-
ways were top-ranked among the list (Table 3). The upreg-
ulation of interferon (IFN) signaling pathways in preterm
UC-MSCs may be interpreted as the consequence of
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Figure 5: Cell proliferation of preterm and term UC-MSCs. Preterm (n = 8) and term (n = 6) UC-MSCs were cultured in the absence or
presence of XAV939 for 24, 48, and 72 h. Their cell proliferation was determined by MTS assay and expressed as the percent increase. The
results shown are the mean± SE of (a) preterm and term UC-MSCs, (b) preterm UC-MSCs±XAV939, and (c) term UC-MSCs±XAV939.

6

R = p =
y =

4

2

Re
la

tiv
e g

en
e e

xp
re

ss
io

n

0
20 25 30

WNT2B

35
Gestational age (wks)

40 45

0.022‒0.535,
‒0.1088x + 4.8454
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gestation was analyzed by RT-qPCR. The mean of all UC-MSCs
was defined as 1.
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preterm delivery that has inherent fetal and/or maternal
indications (Table 1, Table 3). Although cell cycle and
senescence-associated secretory phenotype pathways were
also expected to affect the growth rate and GA-dependent
changes of UC-MSCs, these pathways were not included in
the list (Table 3).

WNT signaling is a key regulator of stem cell functions in
development, renewal, and regeneration of multiple tissues
[13–15]. In the case of MSCs, mRNA expression of a subset
of WNT signaling pathway genes including WNT2, WNT4,
WNT5A, WNT11, WNT16, SFRP2, SFRP3, and SFRP4 was
detected in BM-MSCs [34]. WNT2, WNT2B, WNT4,
WNT5A, WNT5B, SFRP1, and SFRP4 were also highly
expressed in AT-MSCs under hypoxic stress conditions
[35]. Comparison of BM-MSCs with UC-MSCs revealed
lower differentiation capacity toward osteocytes and adipo-
cytes along with the downregulation of WNT3A, WNT5A,
WNT5B, WNT7B, WNT8A, SFRP1, and SFRP4 in UC-
MSCs compared to BM-MSCs [36]. Consistent with these
observations, the present study revealed a significant enrich-
ment of WNT2, WNT2B, WNT3A, WNT4, WNT5B,
WNT6, and SFRP1 in differentially expressed genes between
preterm and term UC-MSCs (Figure 2(c)). Noticeably,
WNT2, WNT2B, WNT4, WNT5B, WNT6, and SFRP1
were associated with a noncanonical WNT pathway, as
opposed to only WNT3A with a canonical WNT pathway
among these WNT ligands and modulators in UC-MSCs
[12]. In contrast, the enhanced cell proliferation of pre-
term UC-MSCs was abolished by XAV939, which selec-
tively decreased β-catenin expression through Tankyrase1
and Tankyrase2 inhibition and increased Axin1 and Axin2
expression (Figure 5) [24]. Accumulating evidence indicates
that noncanonical WNT signaling can inhibit canonical
WNT signaling [37, 38] and that activation of either
canonical or noncanonical WNT signaling is highly depen-
dent on the cell type and on specific receptors expressed
by the cells [39, 40]. Further understanding of how
WNT signaling pathway controls the GA-dependent prolif-
eration of UC-MSC will be crucial to develop UC-MSC-
based cell therapy.

In summary, preterm UC-MSC proliferation is signifi-
cantly faster than term UC-MSCs, and WNT signaling is
involved in the regulation of this GA-dependent proliferation
of UC-MSCs.
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