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Abstract: Pancreatic ductal adenocarcinoma (PDAC) is a highly fatal malignancy with poor survival
outcomes. In addition, oxysterol-binding protein-like (OSBPL) family members are reported to
be involved in lipid binding and transport and play critical roles in tumorigenesis. However,
relationships between PDAC and OSBPL family members have not comprehensively been elucidated.
In this study, we used the Oncomine and GEPIA 2 databases to analyze OSBPL transcription
expressions in PDAC. The Kaplan–Meier plotter and TIMER 2.0 were used to assess the relationships
between overall survival (OS) and immune-infiltration with OSBPL family members. Co-expression
data from cBioPortal were downloaded to assess the correlated pathways with OSBPL gene family
members using DAVID. The expressions of OSBPL3, OSBPL8, OSBPL10, and OSBPL11 were found
to be highly upregulated in PDAC. Low expressions of OSBPL3, OSBPL8, and OSBPL10 indicated
longer OS. The functions of OSBPL family members were mainly associated with several potential
signaling pathways in cancer cells, including ATP binding, integrin binding, receptor binding, and
the renin-angiotensin system (RAS) signaling pathway. The transcription levels of OSBPL gene family
members were connected with several immune infiltrates. Collectively, OSBPL family members are
influential biomarkers for the early diagnosis of PDAC and have prognostic value, with the promise
of precise treatment of PDAC in the future.

Keywords: pancreatic ductal adenocarcinoma; biomarker; OSBPL2; OSBPL3; OSBPL5; OSBPL6;
OSBPL7; OSBPL8; OSBPL9; OSBPL10; OSBPL11

1. Introduction

Pancreatic ductal adenocarcinoma (PDAC) is the most lethal malignancy among all
types of cancers—with a 5-year survival rate of 5%—because it is not easily diagnosed at an
early stage. In an earlier published study, it was estimated that PDAC would become the

Biomedicines 2021, 9, 1601. https://doi.org/10.3390/biomedicines9111601 https://www.mdpi.com/journal/biomedicines

https://www.mdpi.com/journal/biomedicines
https://www.mdpi.com
https://orcid.org/0000-0002-0902-3968
https://orcid.org/0000-0001-8809-239X
https://orcid.org/0000-0002-6354-3315
https://orcid.org/0000-0002-4137-5074
https://doi.org/10.3390/biomedicines9111601
https://doi.org/10.3390/biomedicines9111601
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/biomedicines9111601
https://www.mdpi.com/journal/biomedicines
https://www.mdpi.com/article/10.3390/biomedicines9111601?type=check_update&version=1


Biomedicines 2021, 9, 1601 2 of 20

second-deadliest cancer in the United States by 2025. Although several medical interventions
have made excellent progress, including surgery and chemotherapy, PDAC still has poor
treatment outcomes and a high mortality worldwide (http://www.iacr.com.fr/, accessed on
15 April 2021). Therefore, finding novel and robust biomarkers for prognoses in patients with
PDAC is crucial.

The oxysterol-binding protein (OSBP)-like (OSBPL) protein families are composed
of nine members and which are intracellular lipid-binding/transport proteins that are
necessary for lipid transport and maintaining a balance of cholesterol in the body [1].
Their structures include a lipid-binding domain and membrane-targeting determinants
(an N-terminal pleckstrin homology (PH) domain) [2], which are typically positioned at
the membrane contact sites and are used to exchange inter-organelle small molecules and
information [1,3,4]. Moreover, due to their critical roles in cellular functions, including
migration, proliferation, and vesicular trafficking [5], they are involved in a variety of
human malignancies. For instance, the upregulation of OSBPL3 can promote colorectal
cancer tumorigenesis [2], and OSBPL5 may become a potential indicator of diagnosing of
prostate cancer [6,7]. OSBPL2, OSBPL7, and OSBPL8 were also reported to be overexpressed
in cholangiocarcinoma [8]. OSBPL10 may become a prognostic marker for gastric cancer [9]
and B-cell lymphoma [10]. OSBPL11 is a potential marker for hepatocellular carcinoma [11].
An overall analysis of the functions of OSBPL families for prognoses in patients with PDAC
still needs to be explored.

In this study, we systemically analyzed the mRNA transcription levels of OSBPL
mambers and their prognostic value in terms of survival patients with PDAC. Using
multiple bioinformatic analyses, we revealed that the molecular biological functions of
OSBPLs family genes in PDAC, especially OSBPL3, might provide a novel mechanism in the
tumorigenesis and cancer immunology of PDAC. Our findings could be clinically valuable
for developing novel therapeutic strategies, prognosis assessments, and biomarkers for
immunotherapy of PDAC.

2. Materials and Methods
2.1. Oncomine Gene Analysis of OSBPL Family Members in PDAC

The Oncomine bioinformatics tool contains cancer microarray data and a platform for
integrating network data analyses (http://www.oncomine.org/, accessed on 15 April 2021)
that aims to promote whole-genome expression analyses and compare transcription-level
data in target cancers with respective normal tissues [12]. The individual gene transcription
levels of OSBPL2~OSBPL11 were analyzed using Oncomine platform. In this research, we
compared messenger (m)RNA expression levels in cancer tissues with those in normal
tissues and set a cut-off of p = 0.01 and a 1.5-fold change [13–17].

2.2. The Gene Expression Profiling Interactive Analysis 2 (GEPIA 2) Database Analysis of
Clinicopathological Factors of the OSBPL Gene Family

Introduced in 2017, GEPIA 2 is an updated and enhanced version of a website server
(http://gepia2.cancer-pku.cn/, accessed on 15 April 2021), which analyzes the RNA se-
quencing expression data of 198,619 isoforms and 84 cancer subtypes from The Cancer
Genome Atlas (TCGA) and the Genotype-Tissue Expression projects using a standard
processing pipeline. GEPIA 2 was expanded from the gene level to the transcription level
for quantifying gene-level expressions. It thus offers a variety of functions, including tu-
mor/normal tissue expression analyses, cancer types, pathological stages, patient survival
analyses, and correlation analyses [18–20].

2.3. Cancer Cell Line Encyclopedia (CCLE) Analysis

Since cancer cell lines are essential tools for further scientific research, we used the
CCLE to explore the OSBPL family transcription levels in PDAC cell lines [21,22]. The
CCLE is a public access database containing 947 human cancer cell lines, including genomic
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data, analyses, and visualization. Log2-transformed OSBPL family expression values were
exported and plotted using a heatmap format, as we previously described [23–25].

2.4. Kaplan–Meier (KM) Plotter Evaluates the Influence of Expressions of OSBPL Family
Transcription Levels in PDAC

The Kaplan–Meier plotter contains information about the associations of gene expres-
sions with the survival of patients with many kinds of cancers (www.kmplot.com, accessed
on 15 April 2021) [26]. We analyzed the prognostic merits of the target genes [27] with the
KM plotter using median values, hazard ratios (HRs) >1, and a log rank of <0.05 [28–33].

2.5. Analysis of Genetic Alterations by cBioPortal

Information regarding OSBPL alterations in PDAC was assessed using cBioPortal
(http://www.cbioportal.org, accessed on 15 April 2021) [34]. We selected TCGA database,
a publicly available resource that contains multidimensional cancer genomics data. Nowa-
days, cBioPortal provides data from more than 5000 tumor samples from 20 cancer stud-
ies. It offers mutation data, copy number alterations, protein and phosphoprotein lev-
els, microarray-based and RNA-sequencing-based mRNA expression changes, and DNA
methylation values [35].

2.6. GeneMANIA Analysis for Functions and Interactions of OSBPL Gene Family Members

GeneMANIA (http://gepia.cancer-pku.cn/index.html, accessed on 15 April 2021)
is an online tool that offers information on networks, including shared protein domains,
physical interactions, and the co-expression and function of target genes [36].

2.7. STRING Analysis for OSBPL Family Members and Other Related Proteins

The goals of the STRING database (http://string-db.org/, accessed on 15 April 2021)
are to collect and integrate information by predicting protein-protein interaction (PPI) data
for multiple organisms. In this study, we investigated OSBPL gene family members and
their connected proteins of PPI networks [37].

2.8. Co-Expression Materials Obtained from DAVID through cBioPortal

The Database for Annotation, Visualization and Integrated Discovery (DAVID)
(http://www.linkedomics.org/, accessed on 15 April 2021) is a useful bioinformatics tool
for evaluating the relevance of target genes. In this research, we acquired the co-expression
data of OSBPL family members from the cBioPortal platform, and performed analyses
using gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and BIO-
CARTA of DAVID to identify closely correlated neighbor genes of related pathways [36].
The second part determined the biological processes, disease biomarker networks, and
breast neoplasm cell-cell signaling pathways using a MetaCore analysis. Furthermore, a GO
analysis was also implemented to describe genes and gene products from three categories:
cell compositions, molecular functions (MFs), and biological processes (BPs) [38–40].

2.9. Analysis of Protein Expressions in Clinical Human Specimens

The OSBPL family protein expressions were further evaluated using the publicly
available Human Protein Atlas (HPA) platform, which contains images of tissue microar-
rays labeled with antibodies alongside 11,250 human proteins. These microarrays contain
sections from 46 normal human tissues and more than 20 types of human cancer [41–43].

2.10. Tumor Immune Estimation Resource (TIMER) 2.0 contains Materials of Immune-Infiltration
of OSBPL Gene Family Members

We used TIMER 2.0 (http://timer.comp-genomics.org/, accessed on 15 April 2021) to
explore the infiltration levels of immune cells in 31 tumor types in more than 10,000 samples
extracted from the TCGA database [44,45]. The TIMER 2.0 database was used to determine
abundances of tumor infiltrates based on gene expression analyses. The DiffExp module
with default parameters was used to obtain the different expression levels of OSBPL family
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genes in normal and tumor tissues. B cells, cluster of differentiation 8-positive (CD8+)
T cells, CD4+ T cells, neutrophils, macrophages, and dendritic cells (DCs) were selected as
the test types.

2.11. Statistical Analysis

We utilized TCGA Pan-Cancer Atlas, a dataset from cBioPortal (http://www.cbioportal.
org, accessed on 15 April 2021), to obtain patients’ data and query gene expression of different
OSBPL family members. For the survival analysis, the KM plotter was applied; with all
default settings, the overall survival (OS) was preferred, with the J best probe set and median
cut-off values. The log-rank p < 0.05 was considered to be statistically significant.

3. Results
3.1. OSBPL Gene Expressions in PDAC

OSBPL family members are widely expressed in different tumor tissues, but there
are no reports linking OSBPL family genes with PDAC. Therefore, we first identified
the transcriptional levels of OSBPL family members the levels in normal tissues and
cancer tissues by an Oncomine bioinformatic analysis (Figure 1). The data demonstrated
that OSBPL3, OSBPL8, OSBPL10, and OSBPL11 were overexpressed in pancreatic cancer
tissues. In the PDAC dataset of Segara et.al [46], the transcriptional levels of OSBPL3
and OSBPL8 in tumors were higher than in normal samples with a multiple of change
of 2.872. In a dataset of Pei et.al [47], the expression of OSBPL3 was 3.571-fold higher in
PDAC than in normal tissues, and were respectively 3.221- and 1.952-fold higher in the
Badea et.al. [48] and Iacobuzio-Donahue et.al datasets [49]. The OSBPL8 expression level
was also higher in PDAC with a multiple of change of 2.119 in a the dataset of Badea [50].
As for OSBPL10, there were 3.438- and 3.527-fold overexpression levels in pancreatic
carcinoma and 4.158- and 4.814- fold overexpression levels in PDAC, respectively. for
OSBPL11, there was an increase in pancreatic carcinoma with a multiple of change of 1.509.
The Oncomine analysis indicated that there were no significant differences between the
transcriptional levels of OSBPL2, OSBPL7, and OSBPL9. There were lower transcriptional
levels than in normal samples with multiples of change of −2.964 for OSBPL5 [50] and
−4.006 for OSBPL6 [51] (Supplementary Table S1).

3.2. Associations of Transcription Levels with Clinicopathological Factors of OSBPL Family
Members in Patients with PDAC

Furthermore, we used the GEPIA dataset to compare the transcriptional mRNA
levels of OSBPL family members between PDAC and normal pancreatic samples. The
transcription levels of OSBPL3, OSBPL5, OSBPL8, OSBPL10, and OSBPL11 in PDAC were
found to significantly differ from the levels in normal samples, which indicated that patients
with PDAC had higher expressions of OSBPL3, OSBPL5, OSBPL8, OSBPL10, and OSBPL11
according to a clinicopathological analysis; however, the expressions of OSBPL2, OSBPL6,
OSBPL7, and OSBPL9 in PDAC were not higher than those in normal samples (Figure 2A),
and a box plot also indicated similar results (Figure 2B). In addition, we also explored
expressions of OSBPL family genes in a variety of PDAC cell lines in the CCLE (Figure 3).

http://www.cbioportal.org
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Figure 1. Gene transcript expressions of proteins secreted by oxysterol-binding protein (OSBP)-like (OSBPL) family members
in different types of cancers from the Oncomine database. Statistically significant differences in the mRNA overexpression
of OSBP family genes are shown in red, and differences in downregulation are shown in blue.

3.3. Prognostic Values of OSBPL Family Members in PDAC

The KM plotter was used to evaluate the effects of OSBPL family genes on PDAC
survival statuses (Figure 4). Patients with low transcription levels of OSBPL3 (p = 0.0072;
hazard ratio (HR) = 1.76) and OSBPL10 (p = 0.0089; HR = 1.73) were significantly correlated
with longer overall survival (OS). On the contrary, a high expression of OSBPL6 (p = 0.021;
HR = 0.61) was correlated with a longer OS. OSBPL2, OSBPL5, OSBPL7, OSBPL8, OSBPL9,
and OSBPL11 demonstrated no significance in OS (Supplementary Table S2). We next
further explored potential roles of OSBPL family genes in clinical PDAC specimens; the
data demonstrated that OSBPL2, OSBPL3, OSBPL5, and OSBPL9 had moderate expression
levels and OSBPL5 and OSBPL9 had further strong positive expression levels in PDAC
specimens (Figure 5). These results suggested that certain OSBPL family members could
be biomarkers for the progression of PDAC in patients. The results indicated that the
PLEKH gene family, GAB gene family, ANLN, etc., were associated with OSBPL gene family
members (Figure 6C). Furthermore, we calculated the correlation coefficients between
OSBPL members based on their mRNA expression levels using Pearson’s correlation
analysis. Based on the correlation plot, the results showed relatively large and significant
positive correlations of the OSBPL2 gene with OSBPL3 and OSBPL7; OSBPL3 with OSBPL2,
OSBPL7, and OSBPL10; and OSBPL8 with OSBPL9, OSBPL10, and OSBPL11 (Figure 6D).
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Figure 2. Transcription levels of oxysterol-binding protein (OSBP)-like (OSBPL) family members in
pancreatic ductal adenocarcinoma (PDAC) patients. (A) Expressions of OSBPL members in PDAC)
patients and normal tissue via the GEPIA 2 platform. The q-value cut-off was set to 0.01. (B) The red
star in the pictures indicates a significant difference between PDAC and normal tissues; the p-value
cut-off was set to 0.01 via the GEPIA 2 platform. PAAD in (B) is equal to PDAC. * p < 0.05.
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Figure 3. Heatmap plots representing oxysterol-binding protein (OSBP)-like (OSBPL) family gene expression levels in all
pancreatic ductal adenocarcinoma (PDAC) cell lines acquired from the CCLE database. The upturned blocks in red indicate
overexpression, while the lower blocks in blue indicate underexpression.

3.4. Analyses of Genetic Alterations, Co-Expressions, and Interactions of OSBPL Family Members
in PDAC

To further explore, visualize, and analyze the genomic data, we applied OSBPL family
proteomic data to the cBioPortal online bioinformatics tool for PanCancer (TCGA). Based
on the cohort (Figure 6A) demonstrated that among 175 PDAC patients, OSBPL members
were altered in 17 samples and those alterations included mutations and amplifications.
According to the outcome, the rates of genetic alternations of OSBPL members in patients
with PDAC ranged from the highest rate of 2.9% for OSBPL7 to the lowest rate of 0.6% for
OSBPL5. The remaining rates of the OSBPL family genes were 1.7% for OSBPL2, OSBPL3,
OSBPL10, and OSBPL11 and 1.1% for OSBPL6, OSBPL8, and OSBPL9 (Figure 6B). In
addition, we also used GeneMANIA to explore the associations of OSBPL members with
other genes and networks, including the shared protein domains, co-expressions, and
physical interactions, and functions (e.g., sterol binding, alcohol binding, phospholipid,
etc.) of OSBPL family members.
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Figure 5. Protein expression levels of oxysterol-binding protein (OSBP)-like (OSBPL) family members
in clinical pancreatic ductal adenocarcinoma (PDAC) tissues. Protein expression data of OSBPL
family members in cancer specimens were acquired from the Human Protein Atlas. Bar charts show
the IHC staining intensities of OSBPL family proteins from the PDAC dictionary.
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Figure 6. Genetic alterations and an association analysis of oxysterol-binding protein-like (OSBPL) in pancreatic ductal
adenocarcinoma (PDAC) via cBioPortal and GeneMANIA Platform. (A) Summary of genetic alterations in OSBPL members
with PDAC. (B) Individuals showed genetic alterations in OSBPL family genes with PDAC. (C) Gene–gene interaction
networks among various OSBPL family members in PDAC. (D) Correlations between different OSBPL family members in
TCGA PDAC patients; insignificant correlations are indicated by crosses.

3.5. PPIs and Co-Expression for Pathway Enrichment Analysis of OSBP Family Members in
Patients with PDAC

First, to explore the universally regulated pathways of all OSBPL members, we con-
ducted a PPI evaluation of OSBPL members using the STRING database (Figure 7A).
The sources of PPI networks of active interactions included test-mining, experiments,
databases, co-expressions, neighborhoods, gene fusion, and co-occurrences, and so the
diagram indicates nine members of the OSBPL family and their potential interacted pro-
teins. Furthermore, through the KM plotter and a human protein atlas (HPA) analyses, we
observed that the association between OSBPL3 expression in PDAC with poor prognosis
and the immunohistochemistry also detects significant levels of OSBPL3 expression in
PDAC However, regulation of the OSBPL3-related molecular mechanism remained less
clear. Therefore, in order to comprehensively analyze the co-expression of OSBPL3, in this
research, we downloaded the co-expression file and selected the first 1000 small-p-value
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data from cBioPortal before applying DAVID. In GOTERM MFs, there were correlated
pathways, including ATP binding, integrin binding, receptor binding, etc., as shown in
Figure 7B and Supplementary Table S3. Furthermore, we also analyzed the co-expressions
of OSBPL3 from two different resources, BIOCARTA (Figure 8A) and KEGG (Figure 8B),
and this was processed them by using DAVID analysis. In the BIOCARTA results, there
were four genes (marked by red stars) in steps of the glycosylation of mammalian N-linked
oligosaccharides (4%, p = 7.2× 10−2). In the KEGG diagram, there were 30 genes (3.1%,
p = 5.1× 10−6) in the renin–angiotensin system (RAS) signaling pathway. In addition, the
GeneGo MetaCore annotations of each BP suggested that the genes co-expressed with OS-
BPL3 were involved in cytoskeletal remodeling and ephrin-related pathways and networks
such as “Cytoskeleton remodeling_Regulation of actin cytoskeleton organization by the
kinase effectors of Rho GTPases”, “Inhibition of ephrin receptors in colorectal cancer”, and
“Cell adhesion_Ephrin signaling”; thus, these played essential roles in pancreatic cancer
(Figure 9; Supplementary Table S4).
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Figure 7. Protein–protein interaction (PPI) networks and pathways for the co-expression of oxysterol-binding protein
(OSBP)-like (OSBPL) family members in pancreatic ductal adenocarcinoma (PDAC). (A) PPI networks of various proteins
and OSBPL family members. Colors of the lines express the types of interactions by STRING. (B) Bar plot of gene ontology
(GO) abundances in molecular function (MF)-enriched terms by cBioPortal and DAVID.

3.6. Associations of OSBPL Family Gene Transcriptional Levels and Immune-Infiltration
in PDAC

Based on previous studies in immunotherapy, the tumor microenvironment (TME) of
most cancers can be broadly identified as either tumor-infiltrating lymphocytes (TILs) (hot)
or non-TILs (cold). Unfortunately, PDAC is a typical cold tumor [52]; thus, studies to detect
further potential predictive biomarkers correlated with immunotherapeutic outcomes
are necessary. Therefore, the TIMER database was used to explore the relationships
between OSBPL members and immune cell infiltration (Figure 10) Results showed that
the transcriptional levels of OSBPL2 were positively associated with the infiltration of
B cells and CD4+ T cells (p < 0.05). OSBPL3 expression was positively associated with
the infiltration of B cells, neutrophils, and DCs (p < 0.05). OSBPL5, OSBPL6, OSBPL8,
OSBPL10, and OSBPL11 were positively associated with the infiltration of B cells, CD8+ T
cells, macrophages, neutrophils, and DCs (p < 0.05). OSBPL7 was positively associated with
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the infiltration of B cells, CD8+ T cells, CD4+ T cells, and macrophages (p < 0.05). OSBPL9
was positively correlated with the infiltration of CD8+ T cells, macrophages, neutrophils,
and DCs (p < 0.05). These results suggested that OSBPL genes may play critical roles in
cancer immunology and could be biomarkers for immunotherapy.
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patients. (B) Bar plot of KEGG-enriched terms of OSBPL3 in patients with PDAC.
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Figure 9. MetaCore pathway analysis of the co-expression gene network of oxysterol-binding protein-like 3 (OSBPL3)
in pancreatic cancer patients. Downstream pathway analyses revealed that “Cytoskeleton remodeling_Regulation of
actin cytoskeleton organization by the kinase effectors of Rho GTPases” might play an important role in pancreatic
cancer development.

Furthermore, when investigating relationships between immune cells and cancer cells
in the TME, we noted that not only were cancer cells expressing OSBPL members, but
furthermore that most immune cells invaded PDAC tumors and their subtypes with a high
OSBPL expressions in multiple immunological de-convolution approaches. We further
employed quantification algorithms (xCell, CIBERSORT, CIBERSORT abs.mode, EPIC,
MCP-counter, TIMER, and quanTIseq) from TIMER to study relationships between OSBPL
expressions and a comprehensive list of immune cells. As shown in Figure 11, OSBPL
members exhibited the strongest positive correlations with the levels of CD4+ T cells, M1
macrophages, neutrophils, monocytes, and cancer-associated fibroblasts, while showing
negative correlations with CD4+ T cells, type 2 helper T (Th2) cells, and monocytes by
QuanTIseq. In particular, we utilized six- of the OSBPL gene family with the highest
expressions, including OSBPL3, OSBPL5, OSBPL6, OSBPL8, OSBPL10, and OSBPL11, for
further exploration. Among these genes, we observed that OSBPL6, OSBPL8, and OSBPL11
had strong interactions correlated with immune cell infiltration, suggesting that their
important roles in immunological function and the TME.
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Figure 10. Association of expressions of oxysterol-binding protein-like (OSBPL) family members and
tumor-infiltrating immune levels in pancreatic ductal adenocarcinoma (PDAC) using TIMER 2.0 data.
The figures show the expression of each OSBPL family member with tumor purity and several tumor-
infiltrating lymphocyte markers, such as B cell markers, CD8+ T cell markers, CD4 + T cell markers,
macrophages, neutrophils, and dendritic cells. p < 0.05 was considered statistically significant.
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4. Discussion

Pancreatic cancer, even resectable pancreatic cancer, has a very dismal prognosis
despite advances in therapeutic modalities. Further understanding of the tumorigenesis
process and identifying possible prognostic markers are crucial for developing therapeutic
strategies. In previous studies, the OSBPL gene family was found to be a group of potential
biomarkers for early cancer diagnosis. Moreover, in the mechanical regulation of OSBPL
members, a recent study showed that GAB2 and GAB3, co-expressed with the OSBPL gene
family were interrelated with much-shorter progression-free survival in ovarian cancer [53].
Among genes of this family, OSBPL3, OSPBL4, OSBPL5, and OSBL8 were reported to
regulate or interact with other proteins involved in oncogenic signaling [54].
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In this study, we demonstrated that the OSBPL3, OSBPL5, OSBPL8, OSBPL10, and
OSBPL11 expression levels were significantly higher in PDAC. In particular, the OSBPL3,
OSBPL5, and OSBPL6 expression levels were higher in stage IV PDAC. Furthermore,
OSBPL3, OSBPL8, and OSBPL10 overexpression were associated with poor prognoses
for PDAC patients and the co-expression analysis also showed several pathways related
to tumorigenesis (Supplementary Tables S5 and S6). We also performed univariate and
multivariate Cox regression analyses on OS which revealed the clinical impacts of OSBPL
members on PDAC. As a result, we found that clinicopathological parameters and the
value of OSBPL3 expression were significantly correlated with tumor stages in PDAC
(Supplementary Tables S7 and S8). In addition, we demonstrated that high levels of gene
amplification and mutations of OSBPL mambers were notable in PDAC. Furthermore, we
analyzed genes co-expressed with OSBPL gene family members and showed that RAS
signaling pathways were connected to cytoskeletal remodeling, endo-cytosis, adenosine
monophosphate-activated kinase (AMPK) pathways, T-cell receptor signaling pathways,
and the phosphatidylinositol 3-kinase (PI3K)-Akt signaling pathways which are a critical
mechanistic pathways in OSBPL-expressing PDAC.

OSBPL3 is the most-studied gene family member and the main one to be associated
with cancers. OSBPL3 overexpression was found to be involved in cell adhesion and
interaction with R-Ras signaling, which promots tumor progression [2]. We used a PPI
networks analysis to decipher possible biological functions of the candidate genes and
disease progression. In our PPI networks and pathway analyses, we demonstrated the
involvement of OSBPL3 with the ATP-binding, integrin-binding, and receptor-binding
pathways. Meanwhile, from the BICARTA results, we found the co-expression of OSBPL3
with genes that regulate the glycosylation of mammalian N-linked oligosaccharides. In-
deed, OSBPL3 could further regulate integrin function and is upregulated in pancreatic
cancer tissues [55]. OSBPL5 was proved to be a poor prognostic marker among PDAC
patients [56]. In addition, a previous study also showed that OSBPL5 interacts with the
mammalian target of rapamycin (mTOR), and the PI3K/AKT/mTOR pathway is usually
active in cancer [54]. Altogether, upregulation of these genes promotes tumor growth.

Furthermore, we analyzed genes co-expressed with of OSBPL3. We showed that
the RAS signaling pathways that are connected to cytoskeletal remodeling, endocytosis,
mitogen-activated protein kinase (MAPK) pathways, T-cell receptor signaling pathways,
and PI3K-Akt signaling pathways, are play a critical mechanistic pathways in OSBPL-
expressing PDAC. The RAS pathway was also reported to modulate tumor growth, angio-
genesis, and tumor metastasis in pancreatic cancer [57]. Taken together, OSBPL3 might
play a crucial role in tumorigenesis through regulating several critical signaling pathways.

In addition, previous studies show that PDAC is characterized as having a low tumor
mutational burden (TMB)—defined as the total number of somatic mutations per coding
area of a tumor genome—due to limited expressions of neoantigens, which activate T cells,
in contrast to other solid tumors [58], thus leading to poor immune surveillance and poor
responses to immunotherapy. Futhermore, tumor immune cell infiltration might serve as
predictive markers for host immune responses to cancer [59]. Therefore, it is critical to
identify the correlations between OSBPL members and immune infiltration, which requires
further investigation for clinical applications. In our studies, we found that the expressions
of OSBPL members were strongly related to various types of immune infiltrates. For
example, several OSBPL members were positively correlated with the infiltration of B cells,
T cells, macrophages, DCs, and neutrophils.

B cell subsets in PDAC were reported to upregulate immunosuppressive cytokines
and inhibit T-cell-mediated tumor immunity [60]. The impact of the infiltrating of T cells
on the TME is worth further investigation, and different subsets with distinct functions
have been demonstrated. The loss of balance of T cell subsets might further facilitate
tumorigenesis [61]. Furthermore, macrophages and neutrophils are crucial for the immuno-
suppressive TME and tumor progression [62]. Correlations between the transcription levels
of OSBPL gene family members and immune cells clarified that OSBPLs members play
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significant roles in the immune control of PDAC. Taken together, OSBPL members could
be biomarkers or novel therapeutic strategies for immunotherapy of PDAC.

5. Conclusions

In summary, by synthesizing diverse high-throughput databases, our research illus-
trates that OSBPL gene family members are potential therapeutic targets for PDAC and
have great prognostic value. OSBPL3 and OSBPL8 were enhanced in PDAC patients and
were able to forecast poor prognoses. Building on these results, we hope to provide fresh
inspiration for developing therapies and clinical applications in the future.
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sociations of prognoses with transcriptional mRNA levels of oxysterol-binding protein-like (OSBPL)
family members in patients with pancreatic ductal adenocarcinoma (PDAC), Table S3: The Gene
Ontology (GO) function abundance research of oxysterol-binding protein (OSBP)-like (OSBPL)family
and interrelated genes in pancreatic ductal adenocarcinoma (PDAC) using the cBioPortal and DAVID,
Table S4: Pathway analysis of genes coexpressed with oxysterol-binding protein like-3 (OSBPL3) from
public breast cancer databases using the MetaCore database (with p < 0.01 set as the cutoff value),
Table S5: Pathway analysis of genes coexpressed with oxysterol-binding protein like-8 (OSBPL8) from
public breast cancer databases using the MetaCore database (with p < 0.01 set as the cutoff value),
Table S6: Pathway analysis of genes coexpressed with oxysterol-binding protein like-10 (OSBPL10)
from public breast cancer databases using the MetaCore database (with p < 0.01 set as the cutoff
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overall survival (OS) outcome. Factors showing significant relationship with OS from univariate
analysis were then used for multivariate analysis from breast TCGA database. HR, hazard ratio;
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node, metastasis) stage).
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