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ABSTRACT

The potency and specificity of locked nucleic acid
(LNA) antisense oligonucleotides was investigated
as a function of length and affinity. The oligonucleo-
tides were designed to target apolipoprotein B
(apoB) and were investigated both in vitro and
in vivo. The high affinity of LNA enabled the design
of short antisense oligonucleotides (12- to 13-mers)
that possessed high affinity and increased potency
both in vitro and in vivo compared to longer oligo-
nucleotides. The short LNA oligonucleotides were
more target specific, and they exhibited the same
biodistribution and tissue half-life as longer oligo-
nucleotides. Pharmacology studies in both mice
and non-human primates were conducted with a
13-mer LNA oligonucleotide against apoB, and
the data showed that repeated dosing of the
13-mer at 1-2mg/kg/week was sufficient to
provide a significant and long lasting lowering of
non-high-density lipoprotein (non-HDL) cholesterol
without increasing serum liver toxicity markers.
The data presented here show that oligonucleotide
length as a parameter needs to be considered in the
design of antisense oligonucleotide and that potent
short oligonucleotides with sufficient target affinity
can be generated using the LNA chemistry.
Conclusively, we present a 13-mer LNA oligonucleo-
tide with therapeutic potential that produce benefi-
cial cholesterol lowering effect in non-human
primates.

INTRODUCTION

Potency and specificity are two key parameters for any
antisense oligonucleotide. Other things being equal,
potency has until now been considered positively
correlated to the affinity of the antisense oligonucleotide
for its target sequence (1,2). Specificity however is affected
by two somewhat conflicting properties. First, the anti-
sense oligonucleotide needs to be long enough in order
to ensure that its target sequence is unique in the tran-
scriptome. Second, as the antisense oligonucleotide is
elongated, its ability to discriminate between the
matched and mismatched sequences, i.e. its intrinsic spe-
cificity, is diminished. Thus, for optimal specificity, anti-
sense oligonucleotides should be as short as possible, but
long enough to maintain specificity for the target. In the
annotated human transcriptome, this requirement can
often be fulfilled with oligonucleotides as short as 12- or
13-mers. Despite this, such short oligonucleotides have so
far not been preferred in the antisense field, and oligo-
nucleotides in the size range of 18-22 nt have traditionally
been used. This size preference is a consequence of the
modest affinity properties of the first and second gener-
ation chemical modifications [e.g. phosphorothioate,
2'-O-methyl and 2’-O-methoxyethyl (MOE)] that do not
enable sufficient target affinity for very short oligonucleo-
tides to exhibit potent pharmacological activity.
Antisense oligonucleotides and siRNAs have recently
been used to target apolipoprotein B-100 (apoB-100;
3-6), and an 20-mer 2’-MOE antisense oligonucleotide is
currently in clinical phase 3 trial (7). Thus, in addition to
its potential for being a therapeutically relevant target for
a new class of therapeutics, apoB is also a convenient
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reference target for assessing key drug parameters of new
classes of antisense oligonucleotides.

The majority of apoB is synthesized in the liver, where
its constitutive expression results in the production and
secretion of very low-density lipoprotein (VLDL) particles
in response to the hepatic lipid content. In plasma, a
fraction of VLDL is metabolized to low-density lipopro-
tein (LDL) (8). Elevated levels of plasma LDL-cholesterol
is known to be a major risk factor for atherosclerosis,
which in turn is the main underlying cause of coronary
heart disease and stroke (9). Given the relationship
between the hepatic apoB expression, hepatic VLDL se-
cretion and plasma LDL levels, inhibition of apoB mRNA
will lead to a reduction of plasma LDL-cholesterol levels.

In this study, we demonstrate that the high affinity of
locked nucleic acid (LNA; 10,11) can be used to construct
very short oligonucleotides with high pharmacological
activity. We investigate how such size reduction affects
key drug parameters such as specificity, potency,
biodistribution and tissue half-life.

MATERIALS AND METHODS
Design and synthesis of LNNA oligonucleotides

A series of LNA antisense oligonucleotides of different
length (10- to 20-mers) were designed with 100%
sequence identity to the cynomolgus monkey and human
apoB mRNA sequences. The 10- to 16-mers were designed
to also have 100% sequence identity to mouse apoB
mRNA. (Genbank accession no.. NM_000384 and
NM_009693 for human and mouse apoB mRNA respect-
ively; the cynomolgus mRNA was sequenced in-house).
All oligonucleotides were designed as gap-mers containing
8-10 DNA nucleotides flanked by 1-5 LNA nucleotides
at both ends with all internucleoside linkages phos-
phorothioated (Table 1).

All oligonucleotides were synthesized using standard
phosphoramidite protocols on an AKTA Oligopilot (GE
Healthcare) at 130 pumol to 8mmol scales employing

Table 1. In vitro properties of oligonucleotides

Oligonucleotides

Oligonucleotide® Length Ty, versus  1Csg in

RNA (°C) Huh-7

cells (nM)

5-TTCAGcattggtattCAGTG-3'  20-mer 77 5.0+1.2
5'-CAGcattggtatTCAg-3’ 16-mer 63 2.7+1.3
5'-CAGcattggtatTCA-3' 15-mer 60 05+13
5'-AGCattggtatTCA-3’ 14-mer 61 02+1.2
5'-GCattggtatTCA-3' 13-mer 57 02+1.3
5'-GCattggtatTC-3’ 12-mer 53 04+14
5'-CattggtatT-3’ 10-mer 44 ND
S'-gcattggtattc-3’ 12-mer PS 34 ND

“Gap-mer oligonucleotides with LNA (capital) and DNA (plain font).
All internucleoside linkages are phosphorothioated. Melting tempera-
tures (71,) of LNA oligonucleotides were measured against complemen-
tary RNA. ApoB mRNA (normalized to GAPDH) ICs, values were
determined  from  three independent experiments (& SD).
Non-detectable 1Cs, values, due to low potency, marked ND.
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custom made polystyrene primer supports. The DNA
monomers were obtained from Proligo (Sigma-Aldrich)
and the LNA monomers and solid support were
produced by Santaris Pharma (commercially available
from Exiqon, Denmark). After synthesis, the oligonucleo-
tides were cleaved from the support using aqueous
ammonia at 65°C overnight. The oligonucleotides were
purified by ion exchange and desalted using a Millipore-
membrane and were finally characterized by LC-MS
(Reverse phase and ESI-MS).

Melting temperature of LNA oligonucleotide/RNA
duplexes (7y,)

The binding affinity of the LNA oligonucleotides,
determined as the melting temperature (7y,), was
measured against complementary RNA sequences as
described in Frieden ez al. (12). In brief, the LNA oligo-
nucleotide and the complementary RNA was dissolved in
RNase free water and mixed with Ty,-buffer (200 mM
NaCl, 0.2mM EDTA, 20mM Na-phosphate, pH 7.0).
The solution was heated to 95°C for 3 min and the oligo-
nucleotides were allowed to anneal at room temperature
for 30min. The duplex T,, values were measured on a
Lambda 25 UV/VIS Spectrophotometer equipped with a
Peltier temperature programmer (PTP6) using PE
Templab software (PerkinElmer). The temperature was
increased from 20°C to 95°C and then down to 25°C at
1°C/min, and the absorption was recorded at 260 nm every
minute. The first derivative and the local maximums of
both the melting and annealing were used to assess the
duplex melting temperatures.

Cell culturing and transfections

Huh-7 cells (obtained from ECACC) were maintained in
complete medium consisting of DMEM (D5671, Sigma-
Aldrich), 2mM GlutaMAX (Invitrogen), 1xNEAA
(Invitrogen), 10% FBS (Biochrom AG) and 25pg/ml
Gentamicin  (Sigma-Aldrich) at 37°C, 5% CO,.
Transfections were performed in 96-well plates (Nunc)
using a final oligonucleotide concentration of 0-20nM.
A total of 7500 cells per well were seeded the day before
transfection. At the time of transfection, the medium was
changed to 80ul OptiMEM (Invitrogen) containing
2.5ug/ml  Lipofectamine 2000 (Invitrogen) per well.
After 7-10 min at room temperature, 20 ul OptiMEM con-
taining oligonucleotide or saline was added. The cells were
incubated with the transfection mix for 4h, whereafter
medium was changed to complete medium and cells
were incubated for an additional 20h. Complementary
DNA was generated directly from each sample using the
TagMan Gene Expression Cells-to-Ct kit (Applied
Biosystems) according to the manufacturer’s instructions.

Mouse studies

Inbred C57BL/6J female mice were obtained from
Taconic (Denmark) and fed ad libitum with a commer-
cially pelleted mouse diet (altromin no 1324, Gentofte,
Denmark) containing 4 wt% fat. The animal facility was
illuminated to give a cycle of 12h light and 12 h darkness.
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The temperature was 21 £+ 2°C and the relative humidity
55 £ 10%.

LNA oligonucleotides were administered to the mice by
tail vein injection (i.v.) based upon body weight. All LNA
oligonucleotides were formulated in saline which was also
used as the control. The LNA oligonucleotides were ad-
ministered at 0.5-25mg/kg/dose. Retro-orbital sinus
blood was collected in S-monovette Serum-Gel vials
(Sarstedt) for serum preparation. At the time of sacrifice,
mice were anesthetized (70% CO,/30% O,) before blood
sampling and cervical dislocation was performed after
which livers and kidneys were collected in RNA-later
(Sigma-Aldrich) or snap frozen in liquid nitrogen. All
mouse experiments were performed according to the prin-
ciples stated in the Danish law on animal experiments, and
were approved by the Danish National Committee for
Animal Experiments, Ministry of Justice, Denmark.

Oligonucleotide content in tissue

Sample and standard preparation. Tissue samples (100 mg)
were collected in 2ml Eppendorf tubes and kept on dry
ice. Extraction buffer 500pul [0.5% Igepal CA-630
(Sigma-Aldrich), 25mM Tris pH 8.0, 25mM EDTA,
100mM NaCl, pH 8.0] containing proteinase K (1 mg/
ml) (Sigma-Aldrich P4850) and two tungsten carbide
beads (3 mm) were added. The samples were homogenized
mechanically by a Retsch MM300 (8 min at 25 revolutions
per seconds) and homogenates were incubated overnight
at 37°C. Control tissue from untreated animals were
spiked with the relevant oligonucleotides at 5-250 pg/g
tissue and treated as described for the samples above.

Extraction of samples, standard and QC-samples. One
milliliter phenol-chloroform—isoamyl alcohol [25:24:1(v/
v/v)], saturated with 10M Tris, pH 8.0, and 1mM
EDTA (Sigma P2069) was added to each tissue samples
and vortexed for 5Smin. Phase separation was achieved by
centrifugation at 4000g for 15min. The aqueous phase
(upper-phase) was diluted 100 times. These dilutions
were kept at 4°C and were stable for up to 2 weeks.

Oligonucleotide content determination by ELISA (13-
mer). Streptavidin-coated strips (Immobilizer
Streptavidin LockWell module plate, Nunc) were washed
three times in 300l 5x SSCT buffer (750 mM NaCl,
75mM sodium citrate, 0.05% Tween-20, pH 7.0). Each
well was incubated for 30min at room temperature
under gentle agitation with 100 ul of a 0.02 uM solution
of biotinylated capture probe (6-mer fully LNA-modified
phosphodiester oligonucleotide complementary to the
5-end of the 13-mer) in 5x SSCT buffer. The wells were
aspirated and washed three times with 300 ul of 2xSSCT
buffer (300mM NaCl, 30mM sodium citrate, 0.05%
Tween-20, pH 7.0). One hundred microliters of the ex-
tracted and diluted oligonucleotide samples (pmol range)
were added to the wells, which were agitated at room tem-
perature for 0.5h. The wells were aspirated and washed
three times with 300 ul of 2x SSCT buffer. One hundred
microliters of a 0.025uM solution of a 5-digitoxinated
conjugated (Dig) detection probe (5x SSCT buffer with
7-mer  fully LNA  modified  phosphorodiester

oligonucleotide, complementary to the 3’-end of the
13-mer) was added to each well and incubated for 1h at
room temperature under gentle agitation. The wells were
aspirated and washed three times with 300 pl of 2x SSCT
buffer. One hundred microliters of anti-Dig-POD Fab
fragments (Roche Applied Science) diluted 1:4000 in
PBS containing 0.05% Tween-20 (pH 7.2) were added to
each well and incubated for 1h at room temperature
under gentle agitation. The wells were aspirated and
washed three times with 300 ul of 2x SSCT buffer. One
hundred microliters of substrate solution (TMB +
Substrate-Chromogen, Dako) was added to each well
and incubated for 3-5min at room temperature under
gentle agitation, after which the incubation was stopped
by addition of sulphuric acid (100 ul, 0.5 M). The intensity
of the color development was measured spectrophotomet-
rically at 450 nm, and the test samples were referenced
against the standard samples.

Cholesterol analysis

Serum was analyzed for total cholesterol using ABX
Pentra Cholesterol CP (Horiba ABX Diagnostics) accord-
ing to the manufacturer’s instructions. The cholesterol
content in serum lipoprotein classes was determined in
fractions separated by ultracentrifugation. The density of
the serum samples was adjusted to 1.067 g/ml by addition
of NaBr, and the samples were then centrifuged for 4 h at
100000 r.p.m. in an Optima MAX table top ultracentri-
fuge using a TLA-100 rotor (Beckman Coulter). The top
(non-HDL fraction, mainly VLDL+LDL lipoproteins)
and bottom (HDL) fractions were isolated and analyzed
for total cholesterol content using the ABX Pentra
Cholesterol CP according to the manufacturer’s
instructions.

Liver enzyme ALT

The activity of alanine-aminotransferase (ALT) in mouse
serum was determined using an enzymatic ALT assay
(Horiba ABX Diagnostics) according to the manufactur-
er’s instructions adjusted to 96-well format. Data were
correlated to a 2-fold diluted standard curve generated
from an ABX Pentra MultiCal solution. The results
were presented as ALT activity in units/liter.

Quantitative whole-body autoradiography

35S was incorporated at the ultimate 5'-phosphate position
of the 12- and 16-mer using a slightly modified version of a
standard protocol (13) where only carbon disulphide was
exchanged with carbon tetrachloride to eliminate
thio-oxidation of the ultimate 5-phosphite with the
solvent (carbon disulphide). After chromatographic puri-
fication the **S-labeled oligonucleotides were administered
intravenously by tail vein injection to inbred C57BL/6J
female mice (Taconic, Denmark) at 9.2mg/kg for the
12-mer and 14.7mg/kg for the 16-mer. Individual mice
were sacrificed at Smin, 15min, 1h, 4h, 2 days, 7 days
and 21 days after injection of each oligonucleotide. Mice
were snap-frozen and sectioned sagittally for whole-body
autoradiography, as described by Ullberg (1977 and 1982;
14,15). Twenty micrometer sections were cut at different



levels with a cryomicrotome at —20°C and freeze-dried for
24h. Sections together with calibration sets of
whole-blood solutions of the **S-labeled oligonucleotide
were chosen for phosphor imaging analysis to best repre-
sent the tissues and organs of interest. Following
exposure, the imaging plates were scanned and the radio-
active content of the tissues and organs from the
radioluminograms were quantified by AIDA software
image analysis (Raytest, Germany). Area under the
curve (AUC) values (nCi-h/mg tissue) were determined
and normalized to the specific radioactivity of each dose
(nCi/g animal weight).

Non-human primate study

Cynomolgus monkeys (30-52 months old) had access
to an expanded complete commercial primate diet
[100 g/animal/day special diet services: OWN (E) short
SQC]. The animals (three males and three females per
dose level) received a Smin i.v. infusion of either saline
or the 13-mer at 2, 8 or 32mg/kg. A total of five admin-
istrations were given at days 0, 7, 14, 21 and 28. Blood
samples were collected from the femoral veins 10 days
before the first administration (Day—10) and once a
week during the experiment (at Days 7, 14, 21 and 28)
prior to the subsequent dose. The animals were fasted
for at least 16h before sampling. Blood samples were
analyzed for ALT, serum apoB protein and serum choles-
terol (LDL and HDL cholesterol levels) by automated
analyzer using commercially available kits (Randox
Laboratories). The animals were sacrificed 24 h after the
last infusion (Day 29). In the two highest dosing groups,
additional animals were included which after the last
infusion were left treatment-free for an additional 7
weeks. Blood was collected from these animals at days
35,42, 56, 70 and 77 after the first administration of oligo-
nucleotide. These animals were sacrificed at the end of the
treatment-free period (Day 77). Liver tissue was collected
in RNAlater or snap frozen in liquid nitrogen.

The cynomolgus monkey study was a part of our
clinical program and was conducted by a certified
contract organization (AAALAC accredited and
approved by the National Ministry of Agriculture) in ac-
cordance with the testing facility’s standard operating
procedure.

Quantitative PCR

Total RNA was extracted from tissue homogenates using
the RNeasy mini kit (Qiagen) according to the manufac-
turer’s instructions. First strand cDNA was generated
from total RNA by a reverse transcription reaction
using random decamers, 0.5pg total RNA, and the
M-MLYV RT enzyme (Ambion), according to manufactur-
er’s instructions. mRNA quantification of selected genes
was carried out using commercially available TagMan
assays (Applied Biosystems). An applied Biosystems
7500Fast real-time PCR instrument was used for amplifi-
cation. Data were analyzed and quantified using 7500Fast
SDS software. ApoB mRNA levels were normalized to
GAPDH or B-actin mRNA and presented relative to
saline control.
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Histopathology

Mouse liver samples were cryosectioned for Oil Red O
staining and formalin-fixed followed by cryosectioning
before hematoxylin and eosin staining in accordance
with previously published method by Moewis (16). The
Oil Red O staining was quantified using an image
analysis system (Leica Q500, Cambridge, UK) and the
percentage of Oil Red O staining calculated as area of
Oil Red O staining relative to total analyzed area.

Statistical analysis

Statistical analysis was performed using one-way ANOVA
with Bonferroni’s Multiple Comparison Test as post test
to determine the exact nature of the differences if the data
followed a Gaussian distribution. Otherwise, the non-
parametric Kruskal Wallis test with Dunn’s Multiple
Comparison test was used as a post test. P <0.05 was
considered to be of statistical significance. The
GraphPad Prism version 4.03 was used for the statistical
analysis of data from the mouse experiments and the
Provantis data acquisition system was used to analyze
the primate data. The primate pharmacodynamic data
(serum apoB mRNA and protein versus oligonucleotide
concentration in liver) were analyzed using an inhibitory
effect E,,.x model (model 103) in the WinNonlin program
(version 5.2.1; Pharsight Corporation).

RESULTS
In vitro properties of LNA oligonucleotides

The target affinity of the LNA oligonucleotides was
measured 7,, determined against the complementary
RNA sequences. The highest 7, was found for the
20-mer (77°C), with T, decreasing as length and LNA
content was reduced (Table 1).

The Huh-7 human hepatoma cell line, which expresses
high levels of apoB mRNA, was used to evaluate the RNA
silencing properties of the oligonucleotides employing
standard transfection procedures. The 15-, 14-, 13- and
12-mer LNA oligonucleotides all potently reduced apoB
mRNA expression in a dose-dependent manner and with
essentially identical ICs, values (~0.5nM). Molecules
below the 12-mer size, i.e. the 10-mer LNA oligonucleo-
tide, did not induce any detectable degree of target inhib-
ition. Above the 15-mer size, i.e. the 16- and 20-mer, target
inhibition decreased with increasing length (ICs, values of
the 16-mer and 20-mer at 2.7nM and 5nM, respectively;
Table 1), despite the fact that target affinity increased. The
12-mer phosphorothioate without LNA nucleotides did
not reduce the expression of apoB mRNA at the concen-
trations used in this experiment.

Potency assessment in mice

The 12- to 16-mer LNA oligonucleotides were formulated
in saline and dosed at 5.0mg/kg i.v. on three successive
days in mice that were subsequently sacrificed 24 h after
the last dose. All oligonucleotides reduced the expression
of apoB mRNA in the liver, and this correlated with a
decrease in the levels of total serum cholesterol at the
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time of sacrifice (Table 2). The two shortest, the 12- and
13-mer, were found to be the most potent, resulting in
~80-90% reduction in both apoB mRNA and total
serum cholesterol relative to the saline control. In com-
parison, the 16-mer produced only a 16% reduction in
apoB mRNA and a 35% reduction in total serum choles-
terol (Table 2). The reductions in total cholesterol were
primarily due to a reduction in non-HDL cholesterol re-
sulting in an improved HDL/non-HDL ratio with all
tested oligonucleotides. No significant changes were
observed in serum ALT with any of the oligonucleotides
(Table 2).

Mis-match specificity in mice

The expected advantage of shorter oligonucleotides to dis-
criminate between the correct and mismatched targets was
examined by comparing the potency of the 12-, 14- and
16-mers to that of single-base mismatched versions of
these oligonucleotides which created an A—A mis-match
to the apoB target in the oligonucleotide gap. This single
mismatch results in an 8.33%, 7.14 % and 6.25% theor-
etical mis-pairing for the 12-, 14- and 16-mer, respectively
and caused a decrease in the 7T, values compared to the
fully matched LNA oligonucleotides. The relative change
in target affinity (AT,,) increased with the increased per-
centage mis-pairing; 16°C (12-mer), 10°C (14-mer) and
8°C (16-mer) confirming the improved intrinsic specificity
for shorter oligonucleotides. The potency of the three sets
of matched/mis-matched oligonucleotides was evaluated
in vivo in mouse livers and kidneys. As the fully matched
LNA oligonucleotides was found to have different
potencies (vide supra), the animals were dosed at 2.5, 5.0
and 25 mg/kg for the 12-, 14- and 16-mer, respectively, to
establish a similar level of hepatic apoB mRNA reduction.
The mice were dosed on three successive days, and
sacrificed 24 h after the last dose. In the liver, the perfect
matched LNA oligonucleotides exhibited an equal 75%
reduction of apoB mRNA, whereas none of the
mis-matched LNA oligonucleotides produced any effect
(data not shown) thus preventing any conclusion on spe-
cificity versus length. In kidney, however, the mis-matched
oligonucleotides showed to be less potent as size decreased
an observation which was even further augmented by an
increased potency of the matched oligonucleotides
(Figure 1).

Table 2. In vivo potency of LNA oligonucleotides

Quantitative whole-body autoradiography

To understand whether the different potencies of the 12-
to 16-mer LNA oligonucleotides were the consequence of
differences in biodistribution or tissue half-life, the 12-mer
and the 16-mer LNA oligonucleotides were covalently
labeled at the %-internucleoside bond with *°S, and
injected i.v. in mice at identical molar concentrations
[labeled LNA oligonucleotides are highly stable in
tissues, allowing a correlation between the presence of
radioactivity and intact oligonucleotide (11,17)]. Mice
were sacrificed at different time points after dosing,
ranging from 5min to 21 days, snap-frozen, sectioned,
subjected to whole-body autoradiography, and quantified
by using whole-blood solutions of the *>S-labeled oligo-
nucleotides as reference standard. The two LNA oligo-
nucleotides exhibited a very similar distribution pattern
across different tissues (Figure 2A and B). The highest
levels of radioactivity/oligonucleotide accumulation were
found in kidney cortex, liver, bone marrow, spleen, ovary,
uterus and adrenal cortex (Figure 2C). Furthermore, in
the liver, the distribution rate and peak value time were
similar for the two oligonucleotides, 75 nCi-h/mg and 4 h,
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ApoB mRNA expression
(% of saline control)
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ATm =8°C ATm=10°C | ATm=16°C

16-mer 14-mer 12-mer
Figure 1. Mismatch specificity in mice. Mice were administered
i.v. injections of saline, the 12-, 14- and 16-mer and their respective
one mismatch versions at 2.5, 5 and 25mg/kg, respectively on three
successive days and sacrificed 24h after last dose. Kidneys were
analyzed for apoB mRNA expression normalized to GAPDH (in
percent of saline control group). Data represent mean values + SD,
n=>5. MM indicates mismatch and PM perfect match. AT, values
represent the difference in 77, between PM and MM oligonucleotides
measured against RNA complementary to the perfect match
oligonucleotides.

Parameter LNA oligonucleotide

Saline 16-mer 15-mer 14-mer 13-mer 12-mer
ApoB mRNA in liver (% of saline group) 100 = 15° 84 + 9*P 78 + 18° 18 + 6° 7+ 3° 8 +2°
Total cholesterol in serum (mg/dl) 84 + 13% 55 + 10° 54+ 7° 22 + 5° 10 + 2°¢ 14 + 3¢
HDL/(non-HDL) ratio* 24+ 0? 4+ 18¢ 54 18 11 + 4° 10 + 6> 8 + 3b°¢
ALT in serum (U/L) 52 £ 17 42 £ 8 25+5 68 + 14 55+8 75 £ 15

Mice were administered 5Smg/kg LNA oligonucleotide i.v. on three successive days and sacrificed 24 h after last dose. ApoB mRNA expression in
liver was normalized to GAPDH levels (in percent of saline control group). Absolute total serum cholesterol levels, lipoprotein fractions and ALT
were measured in serum. “™“Values in the same row but with different superscript letters are significantly different (P < 0.05). *Values for non-HDL
(mainly VLDL+LDL) and HDL represent percent of total serum cholesterol recovered in the respective fraction after ultracentrifugation. Data

represents mean values + SD, n = 6.



respectively. The elimination half-lives in liver were found
to be 9 days for the 12-mer and 14 days for the 16-mer.

Single dose studies in mice

To examine the pharmacological properties of a short
LNA oligonucleotide, the 13-mer was seclected for
further in vivo studies. Mice were administered single i.v.
injections at 5, 10, 15, 20 or 25 mg/kg and sacrificed 24 and
48 h after dosing. The liver content of the 13-mer was
measured and found to correlate linearly with dose level
(R*=0.88), at ~0.7 ug oligonucleotide/g liver for each
1.0mg/kg dosed (Figure 3A). The apoB mRNA expres-
sion reached maximum reduction at the dose levels 10—
15mg/kg at 24 and 48 h after dosing (>83%, Figure 3B).
Higher doses of the oligonucleotide (resulting in higher
liver content), did not produce further significant reduc-
tion in either the expression of the apoB mRNA or total
serum cholesterol 48 h after dosing. The reduction in apoB
mRNA was rapid and preceded the effect on total serum
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Figure 2. Quantitative whole-body autoradiography. Tissue distribu-
tion in mice of two **S-labelled oligonucleotides, the 12- and 16-mer
(A and B, respectively), administered i.v. Individual mice were sacrificed
at 24 h post-administration, snap-frozen and sectioned for whole-body
autoradiography. Following exposure the imaging plates were scanned,
tissues and organs intensity were quantified by image analyses. (C)
Area under the curve values normalized to the specific radioactivity
of the dose levels of 16-mer (dark bars) and 12-mer (white bars).
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cholesterol, which increased from 24 to 48 h after dosing.
Thus, the maximum effect in mice in this study was
reached at a dose of 10-15mg/kg, which corresponds to
an accumulation of 7-11pg of the 13-mer per gram of
liver.

The duration of effect in mice was studied after single
1.v. injections of 0.5, 1.0, 2.5 and 5.0 mg/kg of the 13-mer.
The mice were sacrificed 1, 3, 8, 16 and 32 days after
dosing. A single dose resulted in a rapid and dose-
dependent reduction of liver apoB mRNA expression
and total serum cholesterol (Figure 4). The lowest and
highest dose (0.5mg/kg and 5mg/kg), respectively,
resulted in a reduction in apoB mRNA expression of
47% (P <0.01) and 78% (P < 0.001) and total serum chol-
esterol of 25% (P <0.05) and 52% (P <0.001) already
1 day after dosing.
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Figure 3. Single dose in mice. Mice were administered a single i.v. in-
jection of 5, 10, 15, 20 and 25mg/kg of the 13-mer and sacrificed 24
and 48h after dosing. (A) The 13-mer oligonucleotide content was
measured in liver and presented as function of dose level at 24h
(crosses) and 48h (boxes) after dosing. The linear correlation
(R*>=0.88) showed oligonucleotide content of ~0.7pug oligonucleo-
tide/g liver for each 1 mg/kg administered. (B) Liver apoB mRNA ex-
pression (crosses) and serum total cholesterol (circles) were measured
for all dose levels 24 h (solid line) and 48 h (dashed line) after dosing.
Data are expressed as percentage of respectively, apoB mRNA and
serum total cholesterol in saline control and presented as mean
values = SD, n = 5/dose level and time point. The apoB mRNA ex-
pression was normalized to the expression of GAPDH.
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The effect of a single dose was long lasting, and
correlated with the estimated elimination half-life of 9—
14 days determined for the 12- and 16-mer (vide supra).
At the highest dose (5.0 mg/kg), hepatic apoB mRNA ex-
pression and total serum cholesterol were reduced by
~90%, 3 days after dosing (P <0.001), and the effect
was still significant after 3 weeks (Figure 4).

Multiple dose study in mice

The data from the single dose studies indicated that dosing
once weekly or biweekly would be sufficient to achieve
sustained and significant reductions in serum cholesterol.
Accordingly, a multiple dose study was conducted in
which mice were dosed with the 13-mer either once
weekly (Group 1) or biweekly (Group 2) for a total of 7
weeks. In both groups, mice received the 13-mer i.v. at 1.0,
2.5 or 5.0mg/kg. The mice in Group 1 received a total of
seven doses, and the mice in Group 2 received a total of
four doses of each concentration. In both groups, serum
sampling for cholesterol analysis was conducted weekly
and immediately before administration of the next dose.
Livers were collected for apoB mRNA analysis at the end
of the study (Day 49), 1 week after the last dose.
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Figure 4. Duration of effect in mice. Mice were administered a single
i.v. injection of saline (diamonds) or 13-mer at 0.5 (white boxes), 1
(dark boxes), 2.5 (crosses) and Smg/kg (circles). Livers were analyzed
for (A) apoB mRNA expression normalized to GAPDH and (B) serum
total cholesterol levels (both in percent of control groups) at days 1, 3,
8, 16 and 32 after administration. (Data represent mean values = SD,
n=>5).

Reductions in hepatic apoB mRNA levels at the end of
the study were ~70%, 80% and 90% for dose levels 1.0,
2.5 and 5.0mg/kg, and were similar both in mice dosed
weekly and biweekly (data not shown).

These reductions in apoB mRNA expression were par-
alleled by a significant decrease in apoB containing lipo-
proteins (non-HDL) throughout the study. At 1mg/kg
weekly dosing, non-HDL cholesterol levels were gradually
reduced throughout the dosing period, reaching ~80%
reduction compared to saline control level at the end of
the experimental period (Figure 5A). The 2.5mg/kg
weekly dose further improved the effect after the first 2
weeks, and led to a ~90% reduction in non-HDL levels
relative to saline control at the end of the study.
Consistent with the substantial activity of the 2.5mg/kg
dose, no further reduction in non-HDL cholesterol was
observed with the 5mg/kg dose. All three dose levels
also affected HDL cholesterol levels, albeit significantly
less (P <0.001) than the effects on non-HDL cholesterol,
reaching 40-60% relative to saline levels at the end of the
study (Figure 5B).

Biweekly dosing produced a rather similar picture
between the three dose groups as weekly dosing,
although both the rate of reduction and maximum reduc-
tion at the end of the study was smaller on both measured
parameters, non-HDL (Figure 5C) and HDL cholesterol
(Figure 5D). Similar to what was observed in the weekly
dosing group the effect on HDL in biweekly dosing was
also significantly less than the effect on non-HDL
(P <0.001). Overall, the HDL/non-HDL ratios at the
end of the study were identical for the two different dose
regimens, ~4-fold increase compared to saline treated
animals.

Multiple dose study in non-human primates

Wild-type mice have at least 70% of their serum choles-
terol carried as part of HDL particles, whereas
cynomolgus monkeys have almost equal distribution
between HDL and non-HDL cholesterol (18). Thus,
cynomolgus monkeys more closely resemble humans that
have ~70% of serum cholesterol in LDL particles (19).
Male and female cynomolgus monkeys were therefore
used in a multiple dose study, where they were dosed i.v.
with the 13-mer once a week for 4 weeks (a total of 5
doses). The dose levels were 2, 8 and 32 mg/kg/week. A
recovery group from the saline and the two highest dose
level groups were kept treatment-free for an additional
period of 7 weeks.

Following treatment with the 13-mer, LDL cholesterol
levels were reduced in a dose-dependent manner. Close to
maximal effect was reached already after the second ad-
ministration where the dose levels 2, 8 and 32mg/kg/week
resulted in ~45%, 70% and 90% reduction in LDL chol-
esterol, respectively, and the LDL cholesterol remained
hereafter at similar levels for the rest of the treatment
period in all dose groups, relative to saline (Figure 6A).
In the mid- and high-dose groups, LDL cholesterol was
also significantly reduced throughout the recovery phase,
with significant reductions still evident 7 weeks after last
dose (Figure 6A). The LDL cholesterol levels correlated
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Figure 5. Multiple dosing in mice. Mice were administered i.v. injections weekly (group 1, left panel) or biweekly (group 2, right panel) for 49 days
with either saline (diamonds) or the 13-mer at 1 (dark boxes), 2.5 (crosses) or 5mg/kg (circles) (arrows on bottom figure indicates dosing days).
Serum was analyzed for non-HDL cholesterol (mainly VLDL+LDL) (A and C) and HDL cholesterol (B and D) at 0, 14 and 49 days after first

administration. (Data represent mean values = SD, n = 7).

linearly with serum apoB protein concentration with a
correlation coefficient R* = 0.94 (data not shown).

During the treatment period, HDL cholesterol was also
affected in a dose-dependent manner, albeit significantly
less than non-HDL, and only marginally—if at all—at the
lowest dose (Figure 6B). HDL cholesterol remained
reduced in the high dose group during the 7 weeks of
recovery whereas it returned to the saline control level in
the mid-dose group (Figure 6B).

Liver apoB mRNA expression was determined for all
three dose groups at the end of the treatment period
(Day 29), and the end of the recovery period (Day 77)
for the mid- and high-dose groups. ApoB mRNA was
reduced in a dose-dependent manner, reaching a 90%
reduction in the high-dose group (Figure 6C) at the
end of dosing, where also LDL cholesterol was reduced
by ~90% (vide supra). ApoB mRNA levels increased
during the recovery period but were still reduced by
35% and 70% in the mid- and high-dose groups, respect-
ively at Day 77.

The amount of LNA oligonucleotide in liver was
measured in all animals at the end of the dosing period,
and was found to correlate closely with the reduction in
both apoB mRNA and serum protein (Figure 7). The best
estimated non-linear regression fit appeared to follow the
inhibitory effect E,.x model (R*> = 0.90 for mRNA and
R? = 0.88 for protein). According to this fit, a 50% reduc-
tion in apoB mRNA and protein was obtained at a liver
concentration of the LNA oligonucleotide of ~10 and
15 pg/g liver, respectively.

Although small fluctuations were observed in serum
ALT levels for the monkeys in the 32 mg/kg/week group,
no statistically significant changes were recorded for any
of the groups throughout the entire experimental period
(Figure 6D).

DISCUSSION

LNA has been used extensively to inhibit RNA expres-
sion. In addition, LNA gapmers have been described as
a highly potent class of oligonucleotides for mRNA inhib-
ition (11,20). These molecules are usually designed with a
central DNA segment (6—10 nucleotides) that is flanked
at each molecular terminus by 2-4 LNA nucleotides.
This design is particularly potent for three synergistic
reasons: the LNA nucleotides provide a high binding
affinity for the target; the central DNA region triggers
RNase H cleavage activity; and since all the phosphate
groups are thioated, the gapmer is highly nuclease resist-
ant. All these basic properties of LNA oligonucleotides
have been extensively commented on in the literature
(17,21-31).

We demonstrate here that LNA oligonucleotides, in
length as short as 12 nt, exhibit high antisense activity in
both liver and kidney of mice (32) and non-human
primates. The data further show that both affinity and
size are major determinants for the potency of LNA oligo-
nucleotides. The importance of affinity is illustrated by the
fact that the 12-mer LNA oligonucleotide (7}, = 53°C),
exhibited an ICsy value of 0.4nM, whereas the
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Figure 6. Multiple dosing in non-human primates. Cynomolgus monkeys were administered i.v. injections of the either saline (diamonds) or the
13-mer at 2 (dark boxes), 8 (crosses) or 32 (circles) mg/kg once a week for 28 days (arrows on figures indicates dosing days). Serum was sampled 10
days prior to first administration (Day—10) and every week from the first administration. LDL cholesterol (A), HDL cholesterol (B), ALT activity
(D) in serum relative to saline control group was measured (£SD, n = 10). A subset of animals at the 8 and 32mg/kg dose levels were kept
treatment-free for an additional seven week period (n = 4). ApoB mRNA expression in liver normalized to B-actin and relative to saline control
group (C) at the end of the treatment period (Day 29, £SD, n = 6) and at the end of the treatment-free period (Day 77, £SD, n = 4).

iso-sequential, non-LNA containing, phosphorothioate
oligonucleotide (7, = 34°C) had no effect. The fact that
potency  correlates  positively  with  affinity  for
iso-sequential oligonucleotides has also been described
for other targets (1,2). The 10-mer LNA oligonucleotide
had a much reduced affinity (7, = 44°C), compared to the
12-mer, which is likely the reason that it did not exhibit
any activity.

The importance of size is illustrated by the fact that the
longer oligonucleotides (>14-mer) did not exhibit higher
potencies despite their inherent higher affinities. This
pattern was augmented in vivo where potency decreased
significantly with increasing size, illustrated by the fact
that the 12- and 13-mers were approximately 11 times
more potent than the 16-mer.

Both the 12-mer and the 16-mer LNA oligonucleotides
accumulated identically in the target organs (liver and
kidney) over time in mice, so the differences in potencies
between the differently sized oligonucleotides cannot be
explained by distribution differences. Neither can the
potency differences be explained by differences in tissue
half-lives which appeared to be longer for the 16-mer
compared to the 12-mer.

Taken together, these differences might be explained by
the presence of a ‘threshold affinity’ that an oligonucleo-
tide must achieve in order to exhibit high potency, and
beyond which further increase in affinity will not necessar-
ily correlate with additional potency. At the same time, the
data also indicate that there is a ‘length penalty’ that
reduces potency and which not necessarily is compensated
by increased affinity.

Although only scarcely experimentally supported at this
time, this ‘length penalty’ could be linked to protein
binding. Phosphorothioate oligonucleotides are known
to bind several plasma proteins in a length-dependent
manner (33) so the increased potency of shorter LNA
oligonucleotides could be the result of faster and more
efficient intracellular availability for target hybridiza-
tion—provided by reduced protein binding. Contrary to
this, longer oligonucleotides would bind proteins more
strongly rendering them less efficient for target hybridiza-
tion. Finally, oligonucleotides with more than 15
phosphorothioate linkages have been shown to inhibit
the activity of human RNase H (34) suggesting that this
could be another contributing factor to the observed
‘length penalty’.
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Recently Stein et al. (35) demonstrated that LNA oligo-
nucleotides can be taken up by cells in culture by simply
adding the LNA oligonucleotides without transfection
reagents to the medium, a process termed gymnotic
delivery. The data indicated that in cell cultures under
gymnotic  delivery shorter LNA oligonucleotides
appeared to act faster and be most potent. Furthermore,
it was reported that the potency/length relation found
in vitro correlated with the in vivo outcome (35). These
data indicated that in vitro results obtained under
gymnotic delivery may be more predictive, compared to
classical transfection assays, for the in vivo outcome (35).
As an extension of this work with apoB targeting oligo-
nucleotides (35), a study in cell cultures under gymnotic
delivery using Bcl-2 targeting oligonucleotides was con-
ducted (Supplementary Data). In this study, eight LNA
gapmers were tested, of which seven were truncated from a
22-mer base sequence. It appeared that all three 12-mers
were significantly more potent inhibitors of Bcl-2
compared to the longer ones (>14-mers), and in parallel
to the data described above, the onset of action of the
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shortmers was faster. Work to resolve this mechanism is
currently ongoing in our laboratories.

Our data also indicate that short LNA oligonucleotides
are better at discriminating between matched and
mis-matched target sequences. The AT, (T,, matched-
T\, mis-matched) increased as the LNA oligonucleotide
size decreased, and that correlated in vivo with higher
target specificity (Figure 1). This discrimination was
observed in kidney which accumulates the highest
amount of oligonucleotide per gram tissue, allowing the
mis-matched LNA oligonucleotides to reach concentra-
tions that could exhibit some activity. In the liver, none
of the mismatched LNA oligonucleotides showed any
activity at the doses employed in the study thus preventing
any conclusion on specificity versus length.

The present discussion is based on data obtained with a
single target (apoB) and a relatively small number of
oligonucleotides. Thus, it obviously does not allow for
any generalization as to how affinity and size will affect
the potency and specificity of LNA oligonucleotides
against other targets. It merely points to the fact that
oligonucleotide size as a parameter is important for
potency, and furthermore, the data illustrate that in
order to exploit that parameter for making better anti-
sense oligonucleotides—with higher potency and specifi-
city—a high affinity chemical component like LNA has to
be used.

Inhibiting apoB mRNA serves as a new and potentially
powerful strategy for cholesterol lowering therapies
(7,36-38). With this in mind, the present study was also
directed at understanding what sort of potency could be
achieved in mice, and more importantly, in non-human
primates with appropriately designed LNA oligonucleo-
tides. The most intensively studied LNA oligonucleotide
was the 13-mer, which in mice provided a very potent and
long lasting reduction in all the parameters studied. In
fact, in mice, a single dose of 0.5mg/kg of the 13-mer
administered i.v. without any formulation, reduced apoB
mRNA by 47% and total serum cholesterol by 25% one
day after dosing, and with activity still being significant
one week after. Consistent with these characteristics,
dosing the 13-mer at 1 mg/kg biweekly produced a reduc-
tion in non-HDL cholesterol of ~75% at the end of a
7-week study. In comparison, Crooke et al. (3) reported
that an 20-mer 2-MOE oligonucleotide, dosed twice
weekly for 4 weeks at 50 mg/kg, was able to achieve a
60% reduction in total serum cholesterol in mice at the
end of the study.

Reducing the expression of hepatic apoB prevents liver
secretion of VLDL particles. This gives rise to lipid accu-
mulation in the liver (8,39) and elevations of liver
enzymes, which has been observed after apoB inhibition
employing siRNA (4). Consistent with these reports, we
observed mild accumulation (up to 6-7% of total liver
weight) of neutral lipids in our multiple dose study in
mice, and this was associated with mild increases in
ALT (up to 3-fold; data not shown). Dosing three times
Smg/kg did not cause any significant increase in ALT
(Table 1).

In monkeys where the HDL/LDL ratio is closer to the
ratio in human, the 13-mer also demonstrated strong
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potency and long lasting effect. The low-dose group
(2.0mg/kg, administered weekly for 4 weeks) achieved
an oligonucleotide concentration in liver of ~10 pg oligo-
nucleotide/g liver, and produced a reduction in non-HDL
cholesterol of 45%. Notably, this dose level did not sig-
nificantly affect HDL which only was affected at the
higher doses, indicating that dose regimens can be found
that will potently and exclusively affect the non-HDL
components. At this dose level, there were no elevations
in liver enzymes and no accumulation of liver lipids (data
not shown).

Reduction of apoB mRNA expression in monkeys with
a 20-mer 2-MOE oligonucleotide has previously been
reported (38). In this study, the 20-mer was dosed to
high-fat fed cynomolgus monkeys, at 35mg/kg twice a
week for 5 weeks (total of ~385mg/kg), resulting in a
70% reduction in LDL-cholesterol. The ECs, for both
serum apoB protein and liver apoB mRNA was reported
to be reached at 300 pug oligonucleotide/g liver compared
to the estimated ECsq of the 13-mer LNA oligonucleotide
of ~10 and 15pg/g for apoB mRNA and apoB serum
protein, respectively (Figure 7).

In conclusion, we have shown that oligonucleotide
length as a parameter can be exploited to improve the
design of antisense oligonucleotides. We have illustrated
that in order to design potent oligonucleotides it is import-
ant to balance target affinity against oligonucleotide
length, and that the most potent oligonucleotides are
likely among the shortest exhibiting the sequence depend-
ent threshold affinity. The use of LNA provides the target
affinity needed for the design of shorter oligonucleotides
with high in vivo potency and therapeutic potential. Such
molecules delivered systemically without delivery vehicles
were here demonstrated to potently down-regulate apoB
mRNA in liver and lower serum non-HDL cholesterol in
mice and non-human primates.

SUPPLEMENTARY DATA
Supplementary data are available at NAR Online.

ACKNOWLEDGEMENTS

The authors wish to thank Prof. Cy A. Stein, Albert
Einstein College of Medicine, NY, for fruitful discussions
and for reviewing the article. We would like to thank
Heidi W. Hovring, Lisbeth Bang, Rikke Solberg, Louise
Degn Nielsen, Bettina Nordbo, Lene Sodborg Jorgensen,
Gitte Baerentzen, Andreas Rassov and Helle Knudsen for
their excellent technical support.

FUNDING

Funding for open access charge: Santaris Pharma A/S
Kogle Allé 6 DK-2970 Hoersholm Denmark.

Conflict of interest statement. The work presented in
this manuscript is performed at Santaris Pharma,

the company that produces LNA oligonucleotides for
therapeutic purpose.

REFERENCES

. Seth,P.P., Siwkowski,A., Allerson,C.R., Vasquez,G., Lee.S.,
Prakash,T.P., Wancewicz,E.V., Witchell,D. and Swayze,E.E.
(2009) Short antisense oligonucleotides with novel 2'-4
conformationaly restricted nucleoside analogues show improved
potency without increased toxicity in animals. J. Med. Chem., 52,
10-13.

. Swayze,E.E., Siwkowski,A.M., Wancewicz,E.V., Migawa,M.T.,
Wyrzykiewicz, T.K., Hung,G., Monia,B.P. and Bennett,C.F. (2007)
Antisense oligonucleotides containing locked nucleic acid improve
potency but cause significant hepatotoxicity in animals.

Nucleic Acids Res., 35, 687-700.

. Crooke,R.M., Graham,M.J., Lemonidis,K.M., Whipple,C.P.,
Ko00,S. and Perera,R.J. (2005) An apolipoprotein B antisense
oligonucleotide lowers LDL cholesterol in hyperlipidemic mice
without causing hepatic steatosis. J. Lipid Res., 46, 872-878.

4. Nishina,K., Unno,T., Uno,Y., Kubodera,T., Kanouchi,T.,
Mizusawa,H. and Yokota,T. (2008) Efficient in vivo delivery of
siRNA to the liver by conjugation of alpha-tocopherol.

Mol. Ther., 16, 734-740.

. Soutschek,J., Akinc,A., Bramlage,B., Charisse,K., Constien,R.,
Donoghue,M., Elbashir,S., Geick,A., Hadwiger,P., Harborth,J.
et al. (2004) Therapeutic silencing of an endogenous gene by
systemic administration of modified siRNAS. Nature, 432,
173-178.

6. Zimmermann,T.S., Lee,A.C., Akinc,A., Bramlage,B., Bumcrot,D.,
Fedoruk,M.N., Harborth,J., Heyes,J.A., Jeffs,L.B., John,M. et al.
(2006) RNAi-mediated gene silencing in non-human primates.
Nature, 441, 111-114.

. Yu,R.Z., Geary,R.S., Flaim,J.D., Riley,G.C., Tribble,D.L.,
Vanvliet,A.A. and WedelLM.K. (2009) Lack of pharmacokinetic
interaction of mipomersen sodium (ISIS 301012), a
2'-O-methoxyethyl modified antisense oligonucleotide targeting
apolipoprotein B-100 messenger RNA, with simvastatin and
ezetimibe. Clin. Pharmacokinet., 48, 39-50.

8. Olofsson,S.0., Wiklund,O. and Boren,J. (2007) Apolipoproteins
A-I and B: biosynthesis, role in the development of
atherosclerosis and targets for intervention against cardiovascular
disease. Vasc. Health Risk Manag., 3, 491-502.

9. Hansson,G.K. and Libby,P. (2006) The immune response in
atherosclerosis: a double-edged sword. Nat. Rev. Immunol., 6,
508-519.

10. Griinweller,A. and Hartmann,R.K. (2007) Locked nucleic acid
oligonucleotides: the next generation of antisense agents?
Biodrugs, 21, 235-243.

11. Koch,T. and @rum,H. (2008) Locked nucleic acid. In Crooke,S.T.
(ed.), Antisense Drug Technology. CRC Press, Boca Raton,
pp. 519-564.

12. Frieden,M., Christensen,S.M., Mikkelsen,N.D., Rosenbohm,C.,
Thrue,C.A., Westergaard,M., Hansen,H.F., Orum,H. and Koch,T.
(2003) Expanding the design horizon of antisense oligonucleotides
with alpha-L-LNA. Nucleic Acids Res., 31, 6365-6372.

13. Zon,G. and Stec,W. (1991) Phosphorothioate oligonucleotides.

In Eckstein,F. (ed.), Oligonucleotide Analogues, Chapter 4. Oxford
University Press, pp. 102-103.

14. Ullberg,S. (1977) The technique of whole body autoradiography.
Cryosectioning of large specimens. Science tools, LKB Inst. J.,
Special Issue on Whole-body Autoradiography, 2-28.

15. Ullberg,S., Larsson,B. and Tjélve,H. (1982) Autoradiography.

In Glenn,J. (ed.), Biological Application of Radiotracers. CRC
Press, Boca Raton, FL, CRC Press, pp. 55-108.

16. Moewis,G. (1978) Histopatologisk Teknik. Almqvist & Wiksell
Forlag, Stockholm.

17. Fluiter,K., Frieden,M., Vreijling,J., Rosenbohm,C., De

Wissel,M.B., Christensen,S.M., Koch,T., Orum,H. and Baas,F.

(2005) On the in vitro and in vivo properties of four locked

nucleic acid nucleotides incorporated into an anti-H-Ras antisense

oligonucleotide. Chembiochem., 6, 1104-1109.

—_

o

(5]

wn

~



18.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

Leblanc,M., Belanger,M.C., Julien,P., Tchernof,A., Labrie,C.,
Belanger,A. and Labrie,F. (2004) Plasma lipoprotein profile in the
male cynomolgus monkey under normal, hypogonadal, and
combined androgen blockade conditions. J. Clin. Endocrinol.
Metab., 89, 1849-1857.

. Greeve,J., Altkemper,l., Dieterich,J.H., Greten,H. and Windler,E.

(1993) Apolipoprotein B mRNA editing in 12 different
mammalian species: hepatic expression is reflected in low
concentrations of apob-containing plasma lipoproteins.

J. Lipid Res., 34, 1367-1383.

Koch,T., Rosenbohm,C., Frydenlund,H.F., Hansen,B.,
Straarup,E.M. and Kauppinen,S. (2008) Locked nucleic acid:
properties and therapeutic aspects. In KURRECK,J. (ed.),
Therapeutic Oligonucleotides. The Royal Society of Chemistry,
Cambridge, pp. 103-141.

Braasch,D.A., Liu,Y. and Corey,D.R. (2002) Antisense inhibition
of gene expression in cells by oligonucleotides incorporating
locked nucleic acids: effect of mRNA target sequence and
chimera design. Nucleic Acids Res., 30, 5160-5167.

Elayadi,A.N., Braasch,D.A. and Corey,D.R. (2002) Implications
of high-affinity hybridization by locked nucleic acid oligomers for
inhibition of human telomerase. Biochemistry, 41, 9973-9981.
Elmen,J., Zhang,H.Y., Zuber,B., Ljungberg,K., Wahren,B.,
Wahlestedt,C. and Liang,Z. (2004) Locked nucleic acid containing
antisense oligonucleotides enhance inhibition of HIV-1 genome
dimerization and inhibit virus replication. Febs Lett., 578,
285-290.

Frieden,M., Christensen,S.M., Mikkelsen,N.D., Rosenbohm,C.,
Thrue,C.A., Westergaard,M., Hansen,H.F., Orum,H. and Koch,T.
(2003) Expanding the design horizon of antisense oligonucleotides
with alpha-L-LNA. Nucleic Acids Res., 31, 6365-6372.
Frieden,M., Hansen,H.F. and Koch,T. (2003) Nuclease stability
of LNA oligonucleotides and LNA-DNA chimeras. Nucleosides
Nucleotides Nucleic Acids, 22, 1041-1043.

Griinweller,A., Wyszko,E., Bieber,B., Jahnel,R., Erdmann,V.A.
and Kurreck,J. (2003) Comparison of differnt antisense strategies
in mammalian cells using locked nucleic acids, 2’-OME RNA,
phosphorothioates and small intering RNA. Nucleic Acids Res.,
31, 3185-3193.

Jepsen,J.S., Pfundheller,H.M. and Lykkesfeldt,A.E. (2004)
Downregulation of P2I(WAF1/CIP1) and estrogen receptor alpha
in MCF-7 cells by antisense oligonucleotides containing locked
nucleic acid (LNA). Oligonucleotides, 14, 147-156.

Kurreck,J., Wyszko,E., Gillen,C. and Erdmann,V.A. (2002)
Design of antisense oligonucleotides stabilized by locked nucleic
acids. Nucleic Acids Res., 30, 1911-1918.

Lennox,K.A., SabelJ.L., Johnson,M.J., Moreira,B.G.,
Fletcher,C.A., Rose,S.D., Behlke, M.A., Laikhter,A.L.,

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

Nucleic Acids Research, 2010, Vol. 38, No. 20 7111

Walder,J.A. and Dagle,J.M. (2006) Characterization of modified
antisense oligonucleotides in Xenopus laevis embryos.
Oligonucleotides, 16, 26-42.

Mong,J.A., Devidze,N., Goodwillie,A. and Pfaff,D.W. (2003)
Reduction of lipocalin-type prostaglandin D synthase in the
preoptic area of female mice mimics estradiol effects on arousal
and sex behavior. Proc. Natl Acad. Sci. USA, 100, 15206-15211.
Simoes-Wiist,A.P., Hopkins-Donaldson,S., Sigrist,B.,
Belyanskaya,L., Stahel,R.A. and Zangemeister-Wittke,U. (2004) A
Functionally improved locked nucleic acid antisense
oligonucleotide inhibits BCL-2 and BCL-XL Expression and
facilitates tumor cell apoptosis. Oligonucleotides, 14, 1-11.
Krzystanek,M., Pedersen,T.X., Bartels,E.D., Kjaehr,J.,
Straarup,E.M. and Nielsen,L.B. (2010) Expression of
apolipoprotein B in the kidney attenuates renal lipid
accumulation. J. Biol. Chem., 285, 10583-10590.

Watanabe,T.A., Geary,R.S. and Levin,A.A. (2006) Plasma protein
binding of an antisense oligonucleotide targeting human ICAM-1
(ISIS 2302). Oligonucleotides, 16, 169—180.

Gao,W.Y., Han,F.S., Storm,C., Egan,W. and Cheng,Y.C. (1992)
Phosphorothioate oligonucleotides are inhibitors of human DNA
polymerases and RNAse H: implications for antisense technology.
Mol. Pharmacol., 41, 223-229.

Stein,C.A., Hansen,J.B., Lai,J., Wu,S., Voskresenskiy,A., Hog,A.,
Worm,J., Hedtjarn,M., Souleimanian,N., Miller,P. ez al. (2010)
Efficient gene silencing by delivery of locked nucleic acid
antisense oligonucleotides, unassisted by transfection reagents.
Nucleic Acids Res., 38, 3.

Akdim,F., Stroes,E.S. and Kastelein,J.J. (2007) Antisense
apolipoprotein B therapy: where do we stand? Curr. Opin.
Lipidol., 18, 397-400.

Kastelein,J.J., Wedel,M.K., Baker,B.F., Su,J., Bradley,J.D.,
Yu,R.Z., Chuang.,E., Graham,M.J. and Crooke,R.M. (2006)
Potent reduction of apolipoprotein B and low-density lipoprotein
cholesterol by short-term administration of an antisense inhibitor
of apolipoprotein B. Circulation, 114, 1729-1735.

Yu,R.Z., Lemonidis,K.M., Graham,M.J., Matson,J.E.,
Crooke,R.M., Tribble,D.L., Wedel, M.K., Levin,A.A. and
Geary,R.S. (2009) Cross-species comparison of in vivo

PK/PD relationships for second-generation antisense
oligonucleotides targeting apolipoprotein B-100.

Biochem. Pharmacol., 77, 910-919.

Schonfeld,G., Patterson,B.W., Yablonskiy,D.A., Tanoli,T.S.,
Averna,M., Elias,N., Yue,P. and Ackerman,J. (2003) Fatty liver
in familial hypobetalipoproteinemia: triglyceride assembly into
VLDL particles is affected by the extent of hepatic steatosis.

J. Lipid Res., 44, 470-478.



