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Multimorbidity, polypharmacy, and drug- ")
drug-gene interactions following a non-ST ™
elevation acute coronary syndrome:

analysis of a multicentre observational

study
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Abstract

Background: The number of patients living with co-existing diseases is growing. This study aimed to assess the
extent of multimorbidity, medication use, and drug- and gene-based interactions in patients following a non-ST
elevation acute coronary syndrome (NSTE-ACS).

Methods: In 1456 patients discharged from hospital for a NSTE-ACS, comorbidities and multimorbidity (2 2 chronic
conditions) were assessed. Of these, 698 had complete drug use recorded at discharge, and 652 (the ‘interaction’
cohort) had drug use and actionable genotypes available for CYP2B6, CYP2C9, CYP2C19, CYP2D6, CYP3A5, DPYD, F5,
SLCO1BI, TPMT, UGT1A1, and VKORCTI. The following drug interactions were investigated: pharmacokinetic drug-drug
(DDIs) involving CYPs (CYPs above, plus CYP1A2, CYP2C8, CYP3A4), SLCO1B1, and P-glycoprotein; drug-gene (DGls);
drug-drug-gene (DDGIs); and drug-gene-gene (DGGlIs). Interactions predicted to be ‘substantial” were defined as
follows: DDIs due to strong inhibitors/inducers, DGls due to variant homozygous/compound heterozygous genotypes,
and DDGlIs/DGGls where the constituent DDI/DGI(s) both influenced the victim drug in the same direction.
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Results: In the whole cohort, 727 (49.9%) patients had multimorbidity. Non-linear relationships between age and
increasing comorbidities and decreasing coronary intervention were observed. There were 98.1% and 39.8% patients
on 25 and 2 10 drugs, respectively (from n = 698); women received more non-cardiovascular drugs than men (median
(IQR) 3 (1-5) vs 2 (1-4), p=0.014). Overall, 98.7% patients had at least one actionable genotype. Within the interaction
cohort, 882 interactions were identified in 503 patients (77.1%), of which 346 in 252 patients (38.7%) were substantial:
59.2%, 11.6%, 26.3%, and 2.9% substantial interactions were DDIs, DGls, DDGlIs, and DGGls, respectively. CYP2C19 (49.5%
of all interactions) and SLCO1B1 (18.4%) were involved in the largest number of interactions. Multimorbidity (p =0.019)
and number of drugs (p = 9.8 x 107'%) were both associated with patients having = 1 substantial interaction.
Multimorbidity (HR 1.76, 95% Cl 1.10-2.82, p =0.019), number of drugs (HR 1.10, 95% CI 1.04-1.16, p=1.2 X 1073), and
age (HR 1.05, 95% Cl 1.03-1.07, p=89 % 1077), but not drug interactions, were associated with increased subsequent

major adverse cardiovascular events.

Conclusions: Multimorbidity, polypharmacy, and drug interactions are common after a NSTE-ACS. Replication of results
is required; however, the high prevalence of DDGls suggests integrating co-medications with genetic data will improve

medicines optimisation.
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Background
Coronary heart disease (CHD) is a leading cause of mor-
tality worldwide [1]. The age-adjusted CHD death rate is
falling in the developed world [2, 3] leading to a higher
proportion of individuals living with CHD; approxi-
mately half of this decrease is attributable to improve-
ments in interventional and pharmacological strategies,
and the other half to attenuation of risk factors [2]. Add-
itionally, the management of multiple other conditions
has improved. Thus, the number of CHD patients with
multimorbidity, often defined as the co-existence of two
or more chronic diseases [4], is increasing [5].
Multimorbidity increases the prevalence of polyphar-
macy, which some have defined as five or more medica-
tions daily [6]. Polypharmacy however can be appropriate;
for instance, after acute coronary syndrome (ACS), guide-
lines generally recommend dual antiplatelet therapy (as-
pirin and a P2Y;, inhibitor), a high intensity statin, an
angiotensin-converting enzyme inhibitor (ACEI) or angio-
tensin II receptor blocker (ARB), and a beta blocker [7].
However, multimorbidity often further increases the num-
ber of concomitant drugs due to treatment of related con-
ditions, such as ACS risk factors (e.g. hypertension) and
sequelae (e.g. heart failure), and treatment of other co-
existing diseases. As the number of co-prescribed medica-
tions rises, the risk of drug-drug interactions (DDIs) [8, 9]
and adverse drug reactions [10] increases.
Pharmacogenomics is the study and application of the
genomic determinants of drug response. Therapeutic
recommendations (e.g. dose or drug selection) for ‘ac-
tionable’ drug-gene interactions (DGIs) involving germ-
line genotypes have been developed by international
guideline committees for over 75 drugs, which include
cardiovascular drugs and many other commonly pre-
scribed medications [11]. Some drugs, such as warfarin,

have recommendations involving more than one gene
leading to drug-gene-gene interactions (DGGIs). Several
large pharmacogenomics clinical implementation pro-
grammes are underway [12]; for example, the Ubiquitous
Pharmacogenomics implementation study has recruited

7000 patients from seven European sites [12]. There-
fore, although pharmacogenomics is not yet common-
place, it is expected to become increasingly available in
clinical practice in the coming years.

Interactions can primarily affect a drug’s pharmacokin-
etics or pharmacodynamics. Many pharmacokinetic-based
interactions arise through the altered function of drug-
metabolising enzymes (e.g. phase I cytochrome P450
enzymes (CYPs)) and transporters (e.g. P-glycoprotein (P-
gp) encoded by ABCBI, and organic anion-transporting
polypeptide 1B1 (OATP1B1) encoded by SLCOIBI).
Interestingly, around half of the 200 most commonly used
drugs undergo CYP-mediated metabolism [13] with
CYP3A4/5, CYP2D6, CYP2C9, CYP2B6, and CYP2C19
responsible for most of this xenobiotic metabolism [14].
Importantly, the function of these enzymes and trans-
porters can be significantly influenced by both interacting
drugs [15, 16] and common genetic variants [11]. Failure
to consider both factors, independently and combined,
can lead to imprecise predictions regarding the function
of drug-metabolising enzymes, transporters, and pharma-
codynamic targets [17]. This may be one reason why it is
currently challenging to predict which patients will be
clinically affected by a DDI and its severity. Therefore, as-
sessment of how DDIs are affected by genetic variation in
one or more metabolic pathways (Fig. 1) is an important
area to investigate to a have fuller understanding of poten-
tial adverse clinical consequences. However, drug- and
gene-based interactions have only been studied together
in real-world patients in a handful of studies [18—20], and
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mediated by drug- and/or gene-based alterations to drug transporters

Fig. 1 Drug-drug, drug-gene, and drug-drug-gene interactions. The hepatic extensive (normal) metabolism of small molecule drug A (yellow
triangles) requires functional drug-metabolising enzyme Z (DME-Z, blue rectangles) for metabolism to metabolite A (blue circles), as shown in 1. In
Il, DME-Z is inhibited by perpetrator drug B (red triangle) leading to reduced drug A metabolism, and hence a drug-drug interaction (DDI).
Similarly in 1l, the function of DME-Z is reduced by genetic variation (red rectangles) conferring a poor metaboliser (homozygous) genotype,
leading to reduced drug A metabolism, and hence a drug-gene interaction (DGI). In IV, a drug-drug-gene interaction (DDG) is depicted whereby
both genetic variation (e.g. a heterozygous intermediate metaboliser genotype) and perpetrator drug B conceivably act together to collectively
reduce DME-Z function, strongly attenuating drug A metabolism. In V, drug A is primarily metabolised by DME-Z, but also a second enzyme,
DME-Y, (flattened red rectangles) involved to a lesser extent is shown. If perpetrator drug B inhibits DME-Z, less drug A is metabolised by DME-Z
and so drug A metabolism is more reliant on DME-Y conversion to metabolite B (green circle). However, if the genotype of DME-Y confers a
reduced function (poor metaboliser DME-Y phenotype depicted in V), then the overall metabolism of drug A will be greatly reduced, constituting
a DDGl. Similarly, if the functions of both DME-Z and DME-Y were affected by genetic variants, a drug-gene-gene interaction (DGGI) would
manifest. The result of all of these interactions is less metabolism and so increased systemic exposure to drug A. These interactions equally apply
to perpetrator drug inducers and genetic variation conferring rapid/ultra-rapid metaboliser predicted phenotypes. Similarly, these interactions
apply to both deactivating metabolism of active drugs and bioactivation of prodrugs. Beyond enzymes, pharmacokinetic interactions can also be
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no studies have focused on patients at the point of hos-
pital discharge nor following a non-ST elevation ACS
(NSTE-ACS).

Therefore, the aim of this work was to determine the
extent of multimorbidity, medication use, and drug- and

gene-based mainly pharmacokinetic interactions in pa-
tients discharged after a NSTE-ACS, to explore the in-
fluence of patient age and sex on these factors, and to
investigate the impact of these factors on subsequent
clinical events.
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Methods

Participants

This investigation utilised the Pharmacogenetics of
Acute Coronary Syndrome (PhACS) study, which has
been described previously [21]. Briefly, PhACS was a
UK 16-site prospective observational study between
2008 and 2013 that recruited 1470 patients hospita-
lised with an NSTE-ACS. Standard data collection in-
cluded medical history and cardiovascular medications
at discharge; other medications were optionally re-
corded in an open-ended medication appendix. Partic-
ipants were followed up for incident events at 1 and
12 months, and the study ended when all had received
12 months follow-up. However, whilst the study was
running, participants recruited earlier were followed
up annually after their 12-month visit. The protocol
was approved by the Liverpool UK (adult) research
Ethics Committee (07/H1005/117), site-specific ap-
proval was granted at all study sites, and written in-
formed consent was ascertained from all study
subjects in accordance with the Declaration of
Helsinki.

In this present study, all PhACS patients alive at dis-
charge from their index hospitalisation (n =1456) were
used to describe clinical characteristics and secondary
prevention cardiovascular drug use, and all with avail-
able genetic data were used to assess the frequency of
actionable genetic variants in pharmacogenes. Patients
whose non-cardiovascular and cardiovascular drugs were
both known at discharge were used to describe total
drug use (7 =698), and of these patients, those who had
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quality-controlled (QC) genetic data were used to assess
all drug and gene interactions (1 = 652, the ‘interaction
cohort’) (Fig. 2).

Clinical characteristics, multimorbidity, and medication
use

Within the whole cohort (n = 1456), sex, age, body mass
index (BMI), smoking, pre-existing comorbidities, raised
troponin at index NSTE-ACS, investigation of index
NSTE-ACS by coronary catheterisation and treatment
by percutaneous coronary intervention or coronary ar-
tery bypass grafting (PCI/CABG), and use of secondary
prevention drugs (aspirin, P2Y;, inhibitor, ACEI/ARB,
beta blocker, statin) at discharge were determined. Co-
morbidities were further subdivided into cardiovascular
and non-cardiovascular conditions. Pre-existing cardio-
vascular multimorbidity was defined as > 2 of the follow-
ing: hypertension, prior myocardial infarction (MI, did
not include index NSTE-ACS), stroke, transient ischae-
mic attack, subarachnoid haemorrhage, and peripheral
artery disease. Pre-existing non-cardiovascular multi-
morbidity was =2 of the following: chronic pulmonary
disease (chronic obstructive pulmonary disease, contem-
porary asthma, bronchiectasis, pulmonary fibrosis), dia-
betes, chronic kidney disease (CKD, serum creatinine >
150 umol/L) or renal transplantation, peptic ulcer disease,
chronic liver disease (alcoholic liver disease, cirrhosis,
autoimmune hepatitis), osteoarthritis, connective tissue
disease (e.g. rheumatoid arthritis, polymyalgia rheuma-
tica), chronic neurological conditions (e.g. epilepsy, motor
neuron disease, dementia, Parkinson’s disease), and any

/

Alive at discharge,
n = 1456

CVD and non-CVD drugs
known at discharge, n = 698

genotype for inclusion in the interaction cohort)

PhACS, n =1470

Interaction cohort: CVD drugs, non-
CVD drugs, and quality controlled
genetic data available, n = 652
Fig. 2 Study cohort selection process. There were 1470 patients included in the PhACS study, of whom 1456 were discharged alive from their
index NSTE-ACS; 1357 had array genetic data available following standard quality control procedures; CYP2D6 genotype was available in 728 after
determination of copy number variation in those on CYP2D6 substrates; 698 had non-cardiovascular disease (CVD) drugs at discharge recorded in

their case report form (CRF) medication appendix, in addition to CVD drugs explicitly required in the CRF; and in 652 patients (the interaction
cohort), CVD drugs, non-CVD drugs, and genetic data were available (although patients not on a CYP2D6 substrate did not require CYP2D6

T~

Quality-controlled genetic
array data, n=1357

CYP2D6 genotype,
n=728
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cancer. Only physical illnesses were recorded in PhACS;
mental health disease data were not available. Overall
multimorbidity was defined as > 2 of any of the above car-
diovascular and non-cardiovascular conditions, in keeping
with the Academy of Medical Sciences definition [22].

The individually recorded discharge medications in
those with complete drug data (n = 698) were grouped to-
gether according to the British National Formulary
chapter-level categories [23]. However, drugs in the skin,
eye, and ear/nose/oropharynx chapters were combined
here due to being mainly non-oral. An ‘Other’ category
was also constructed, consisting mainly of small numbers
of drugs from the malignant disease/immunosuppression
and gynaecology/urinary tract disorder chapters. A patient
was counted for a category if they were on one or more
drugs within that category.

Identification of actionable genetic variants

Participants were genotyped using the Illumina
HumanOmniExpressExome-8 v1.0 BeadChip at Edinburgh
Genomics (Roslin Institute, Scotland). The genetic QC and
imputation for PhACS have been described previously, with
1357 patients passing all QC [24]. The following action-
able variants were extracted: CYP2B6*6/*9 (rs3745274),
CYP2C9*2 (rs1799853), *3 (rs1057910), CYP2C19*2
(rs4244285), *17 (rs12248560), CYP3AS5*3 (rs776746),
CYP2D6*3 (rs35742686), *4 (rs3892097), *9 (rs5030656),
*10 (rs1065852), *41 (rs28371725), DPYD HapB3
(rs56038477), F5 (rs6025), SLCOIBI*5/*15 (rs4149056),
TPMT*3B (rs1800460), *3C (rs1142345), *3A (rs1800460
with rs1142345), UGTIAI -364C>T (rs887829), and
VKORC1 1173C>T (rs9934438). The variant allele of
UGTIAI rs887829 is in linkage disequilibrium (=~ 0.99)
with the tandem nucleotide repeat polymorphism
(UGT1A1%28) [25]. Of these 18 variants, 10 contained im-
puted values (information scores all > 0.7, indicating good
imputation quality). If required, imputed genotypes were
categorised as wild-type (imputed score 0—0.3), heterozy-
gous (0.7-1.3), and homozygous (1.7-2).

CYP2D6 copy number variants (CNVs) were identified
with the TagMan™ copy number assay (Thermo Fisher
Scientific) in those on CYP2D6 substrate drugs (n = 728).
qPCR data were acquired using Quantstudio 6 Flex
Real-Time PCR System (Thermo Fisher Scientific) and
analysed with CopyCaller v2.1 software (Life Technolo-
gies). CYP2D6 genotype to metaboliser phenotype trans-
lation was based on recent consensus recommendations
from the Clinical Pharmacogenetics Implementation
Consortium (CPIC) and Dutch Pharmacogenetics Work-
ing Group (DPWGQG) [26], determined from CYP2D6 ac-
tivity score (AS) as follows: poor metaboliser (PM, AS =
0), intermediate metaboliser (IM, AS = 0.25-1), extensive
metaboliser (EM, AS=1.25-2.25), and ultra-rapid me-
taboliser (UM, AS>2.25). The metaboliser phenotypes
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for the other CYPs were determined from CPIC standard
diplotype-phenotype tables [11].

Drug substrates, inhibitors, and inducers for drug-drug
interactions

Drug substrates, inhibitors, and inducers for CYP1A2,
CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, and
CYP3A4/5 are listed in Additional files 1, 2, and 3 [15, 16,
27] and were based on the US Food and Drug Administra-
tion (FDA) clinical tables [15] and the Indiana University
cytochrome P450 drug interactions Flockhart Table™ [16]
(both accessed January 2019), with specific input from the
literature when required [27]. Tobacco smoke constituted
a CYP1A2 inducer.

Substrates and inhibitors for drug transporters, P-gp
and SLCOI1BI1, are in Additional file 4 [15, 28-30].
Transporter substrates/inhibitors were extracted from
the FDA clinical tables [15] with supplementation of P-
gp substrates and addition of P-gp inducers from Wess-
ler et al. [28]; no SLCO1BI inducers were listed. Assess-
ment of the strength of transporter inhibitors/inducers
was based on relevant literature [28—30].

A DDI was present if a patient was on a victim drug and
perpetrator drug that influenced the victim drug through
one or more investigated enzymes/transporters; autoinhi-
bition/autoinduction was not considered interactions.

Drug substrates for drug-gene interactions

For DGlIs, substrate drugs were limited to those with a
pharmacogenomic clinical guideline available from
CPIC/DPWG for the above genotyped pharmacogenes
(Additional file 5) [11, 31-41]. For each substrate, only
the genotypes/metaboliser statuses considered actionable
for that drug contributed to a DGI; thus, for example,
CYP2D6 IM was considered a DGI with amitriptyline
but not codeine.

Assessment of drug and gene interactions

We considered pharmacokinetic drug- and gene-based
interactions and two pharmacodynamic interactions:
warfarin-VKORCI rs9934438 (affects warfarin dose) and
oestrogen-containing contraceptives-F5 rs6025 (aug-
ments the risk of venous thromboembolism).

First, we identified and counted the total number of
unique DDIs, DGIs, drug-drug-gene interactions (DDGIs),
and DGGIs of any strength (‘all’ interactions). Second, we
identified those interactions predicted to have a ‘substan-
tial’ effect, defined as follows:

i) DDIs involving strong drug inhibitors/inducers.
Strong CYP inhibitors increase the area under the
concentration-time curve (AUC) of sensitive sub-
strates > 5-fold, strong CYP inducers decrease the
AUC of sensitive substrates by > 80%, and strong
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transporter inhibitors/inducers were determined
from the literature [28—30].

ii) DGIs due to variant homozygous/compound
heterozygous genotypes.

iii) DDGIs due to any strength perpetrator drug and
actionable genotype provided the directions of
effect of the constituent DDI and DGI on the
victim drug were the same (i.e. all interactions
would be expected to increase/decrease victim drug
exposure/response). The same principle was applied
to DGGIs.

The numbers of interactions per patient and gene were
determined. Unless otherwise stated, each interaction in
a given patient was only counted once. Thus, for ex-
ample, a DDGI was counted as one DDGI, whilst its
constituent DDI and DGI were not counted.

Clinical endpoints

The main endpoints of PhACS were major adverse car-
diovascular events (MACE—a composite of cardiovascu-
lar death and non-fatal MI or ischaemic stroke) and all-
cause mortality (ACM) [21]. It was expected that inter-
actions influencing cardiovascular drugs would predom-
inate given PhACS is a cardiovascular cohort. Thus,
these available main endpoints were harnessed to ex-
plore whether interactions and other relevant factors
(see below) might be associated with clinical sequelae. A
calculation of power was not conducted as this assess-
ment was exploratory using available events.

Statistical analysis

Categorical clinical variables are presented as group number
(percentage), age as mean (standard deviation) as normally
distributed, and BMI as median (interquartile range (IQR)
as non-normally distributed; integer count variables are pre-
sented as median (IQR/range) for numbers of drugs and in-
teractions, or number of all comorbidities (percentage).

To assess for baseline differences between the inter-
action cohort and the remainder of the whole cohort,
the following were compared: clinical characteristics and
secondary prevention drug use (Pearson’s chi-squared
test), number of comorbidities and overall number of
cardiovascular drugs (Fisher’s exact test), age (Student’s ¢
test), and BMI (Mann-Whitney U test).

In the whole cohort, age was associated with patient
sex (p=2.0x10"%). Thus, the influence of sex and age
on clinical variables/drug use was ascertained by their
inclusion in appropriate regression (linear/logistic/Pois-
son/negative binomial) models. In all analyses involving
age, when a quadratic relationship with an outcome was
suspected from visual inspection, age and age squared
were entered into the model. In this situation, age was
mean centred before its squared term calculated. When
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a linear relationship was identified, uncentred age was
used.

To investigate the association between multimorbidity
and number of drugs, Poisson regression was used,
whilst logistic regression assessed whether multimorbid-
ity was associated with the number of patients that re-
ceived all five secondary prevention cardiovascular drug
classes (vs < 5); both analyses were adjusted for age.

Multicollinearity was tested between age (or with
mean centred age and age squared), sex, multimorbidity,
number of drugs, and all and substantial interactions
and was not found (highest variance inflation
factor <1.73). Thus, age, sex, multimorbidity, and
number of drugs underwent univariate and multivar-
iable logistic regression with forward (likelihood ra-
tio) variable selection to investigate associations with
patients that have >1 interaction, or >1 substantial
interaction (vs patients with <1). Lastly, univariate
and multivariable Cox’s proportional hazards regres-
sion tested whether age, sex, multimorbidity, number
of drugs, and all or substantial interactions were as-
sociated with time to incident MACE, or ACM, dur-
ing follow-up within the interaction cohort.

In sensitivity analyses, dichotomous multimorbidity
was replaced by number of comorbidities and all rele-
vant analyses repeated. p < 0.05 was taken as statistically
significant as all analyses were exploratory. Statistical
analysis was carried out in the R computing environ-
ment [42] version 3.5.1 or above and IBM SPSS version
24.0 (IBM Corp, Armonk, NY, USA).

Results

Baseline differences in cohorts

Table 1 reports baseline differences between the inter-
action cohort (n=652) and other patients from the
whole cohort (# = 804). The interaction cohort was mar-
ginally older (p =0.012) and included more women (p =
0.040). The main difference was the higher prevalence of
multimorbidity in the interaction cohort (59.0% vs
42.5%, p=3.7 x 1071°).

Clinical variables, comorbidities, medication use, and
influence of patient age and sex

Patient clinical characteristics and medication use are
shown in Table 2. In the whole cohort (1 = 1456), 72.6%
were male, mean age was 65.1 years old (standard devi-
ation 11.7, range 26.4-93.4), 26.9% had cardiovascular
multimorbidity, 18.1% had non-cardiovascular multi-
morbidity (most commonly diabetes, then osteoarthritis
and chronic pulmonary diseases), 49.9% had > 2 any co-
morbidities, and 4.7% had >5 any comorbidities. The
index NSTE-ACS was treated with PCI/CABG in 45.3%
patients, and 57.5% received a drug from all five second-
ary prevention cardiovascular drug classes at discharge.
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Table 1 Comparison of those included and not included in the interaction cohort

Characteristic Interaction cohort, Not in interaction cohort, Unadjusted
n =652 n =804 p value
Demographics
Sex (male), n (%) 457 (70.1) 600 (74.6) 0.040
Age (years), mean (SD) 66.0 (11.5) 644 (11.8) 0.012
BMI, median (IQR) 283 (25.3-31.8) 279 (249-314) 021
Comorbidities
Smoking, n (%) 185 (284) 180 (22.4) 0.011
Cardiovascular multimorbidity 218 (334) 175 (21.8) 6.1x 107
Non-cardiovascular multimorbidity 167 (25.6) 98 (12.2) 41x107"
All multimorbidity 385 (59.0) 342 (42.5) 37%107"°
Number of comorbidities, n (%)
0 116 (17.8) 205 (25.5) 50x107*
1 151 (23.2) 257 (32.0)
2 152 (23.3) 174 (21.6)
3 107 (16.4) 105 (13.1)
4-5 117 (17.9) 55 (6.8)
6-7 9(14) 8 (1.0)
Index NSTE-ACS
Raised troponin, n (%) 623 (95.6) 765 (95.1) 045
Coronary catheterisation, n (%) 445 (68.3) 529 (65.9) 032
PCI/CABG, n (%) 283 (434) 376 (46.8) 0.20
Cardiovascular drugs at discharge
Aspirin, n (%) 612 (93.9) 758 (94.3) 052
P2Y;, inhibitor, n (%) 556 (85.3) 680 (84.6) 0.81
ACEI/ARB, n (%) 540 (82.8) 1(81.0) 0.39
Beta blocker, n (%) 528 (81.0) 664 (82.6) 034
Statin, n (%) 609 (93.4) 767 (954) 0.026
Number of patients on all five secondary prevention cardiovascular 373 (57.2) 464 (57.7) 0.84
drugs, n 96)"
Number of cardiovascular drugs/patient, median (IQR, range)H 6 (5-7,0-9) 6 (5-6, 2-10) 0.11

ACEl angiotensin-converting enzyme inhibitor, ARB angiotensin Il receptor blocker, CABG coronary artery bypass graft surgery, IQR interquartile range, n (%)
number (percent) of patients, PCl percutaneous coronary intervention, SD standard deviation
TSet:ondary prevention cardiovascular drugs were aspirin, P2Y, inhibitor, ACEI/ARB, beta blocker, and a statin

™Includes secondary prevention and other cardiovascular drugs

In those with full drug data (n = 698), 98.1%, 39.8%, and
6.2% were on at least five, ten, and 15 different drugs, re-
spectively; the median numbers of cardiovascular, non-
cardiovascular, and total drugs per patient were 6 (IQR
5-7, range 0-9), 2 (IQR 1-4, range 0-16), and 9 (IQR
7-11, range 2—26), respectively.

As expected, increasing age was strongly associated
with increased multimorbidity (p=1.8x1072%) and
higher total drug use (p = 2.1 x 107®). Increasing age was
also associated with fewer patients currently smoking
(p = 6.0 x 107) or receiving drugs from all five second-
ary prevention drug classes (p=1.5x10"%) (see Add-
itional file 6, which additionally includes results if age
dichotomised at 65). Interestingly, non-linear relationships

were observed between age and number of comorbidities
(a decline in the rate of acquiring comorbidities at older
age), and especially with both coronary catheterisation
and PCI/CABG for the index NSTE-ACS (a decrease in
interventions at older age, see Additional file 7). No other
non-linear age relationships were detected (including
when investigating interactions, MACE, and ACM).
Women were almost 4 years older on average in the
whole cohort (Table 2). After adjustment for age, women
had more non-cardiovascular multimorbidity than men
(24.2% vs 15.9%, p = 0.008) but there were no differences
between the sexes in cardiovascular multimorbidity
(p=0.12) or overall number of comorbidities (p =
0.60). Trends were observed for fewer women
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Table 2 Clinical characteristics, multimorbidity, and medication use
Characteristic Female, n =396 Male, n = 1057 Adjusted p value® All, n =1456""
Demographics
Age (years), mean (SD) 680 (11.6) 64.1 (11.6) 20%10°8 65.1 (11.7)
BMI, median (IQR) 27.5 (24.2-32.5) 283 (254-31.5) 0.85 28.1 (25.0-31.6)
Comorbidities
Smoking, n (%) 98 (24.7) 266 (25.2) 0.060 365 (25.1)
Cardiovascular multimorbidity, n (%) 104 (26.2) 288 (27.2) 0.12 392 (26.9)
Non-cardiovascular multimorbidity, n (%) 96 (24.2) 168 (15.9) 80x107° 264 (18.1)
All multimorbidity, n (%)""" 217 (548) 507 (48.0) 039 727 (49.9)
Number of comorbidities, n (%)
0 77 (194) 244 (23.1) 0.60 321 (22.0)
1 102 (25.8) 306 (28.9) 408 (28.0)
2 97 (24.5) 227 (215) 326 (22.4)
3 56 (14.1) 155 (14.7) 212 (14.6)
4-5 59 (14.9) 113 (10.7) 172 (11.8)
6-7 5(1.3) 12 (1.0) 17 (1.2)
Index NSTE-ACS
Raised troponin, n (%) 378 (95.5) 1007 (95.3) 091 1388 (95.3)
Coronary catheterisation, n (%) 250 (63.1) 723 (684) 049 974 (66.9)
PCI/CABG, n (%) 156 (39.4) 502 (47.5) 0.082 659 (45.3)
Cardiovascular drugs at discharge
Aspirin, n (%) 371 (93.7) 996 (94.2) 0.82 1370 (94.1)
P2Y;, inhibitor, n (%) 334 (84.3) 899 (85.1) 0.89 1236 (84.9)
ACEI/ARB, n (%) 318 (80.3) 871 (824) 0.61 1191 (81.8)
Beta blocker, n (%) 300 (75.8) 889 (84.1) 18107 1192 (81.9)
Statin, n (%) 367 (92.7) 1006 (95.2) 0.14 1376 (94.5)
Patients on all five secondary prevention cardiovascular drugs, n (%) 205 (51.8) 630 (59.6) 0.081 837 (57.5)
Drug use by category at discharge
N =698"* n =208 n =490 n =698
Gastro-intestinal, n (%) 129 (62.0) 267 (54.5) 0.18 396 (56.7)
Cardiovascular, n (%) 207 (99.5) 490 (100.0) 0.99 697 (99.9)
Respiratory, n (%) 45 (21.6) 99 (20.2) 0.85 144 (20.6)
Central nervous system, n (%) 85 (40.9) 160 (32.7) 0.026 245 (35.1)
Infections, n (%) 17 (82) 33(6.7) 0.65 50(7.2)
Endocrine, n (%) 83 (39.9) 136 (27.8) 0012 219 (314)
Nutrition and blood, n (%) 44 (21.2) 63 (12.9) 0.024 107 (15.3)
Musculoskeletal, n (%) 36 (17.3) 65 (13.3) 037 101 (14.5)
Eye, ear, nose, oropharynx, and skin, n (%) 10 (4.8) 28 (5.7) 033 38 (54)
Other, n (%) 9(43) 41 (84) 0.017 50 (7.2)
Numbers of drugs at discharge
Number of cardiovascular drugs/patient, median (IQR, range) 6 (5-6, 0-9) 6 (5-7, 2-9) 021 6 (5-7,0-9)
Number of non-cardiovascular drugs/patient, median (IQR, range) 3 (1-5, 0-15) 2 (1-4,0-16) 0.014 2 (1-4,0-16)
Number of drugs/patient, median (IQR, range) 9 (8-11,2-22) 9 (7-11, 3-26) 0.20 9 (7-11, 2-26)

ACEl angiotensin-converting enzyme inhibitor, ARB angiotensin Il receptor blocker, CABG coronary artery bypass graft surgery, QR interquartile range, n (%) number (percent)

of patients, PC/ percutaneous coronary intervention, SD standard deviation

TAdjusted for age, except when testing the association between sex and age itself
The sex of three patients was missing from the n = 1456 cohort; thus, these patients were not included in the sex-stratified columns, but were counted in the All column
1The age-adjusted p value for the association between sex and all comorbidities was 0.39 when comorbidities were dichotomised into multimorbidity (>2 vs <2 any
cardiovascular or non-cardiovascular conditions) and p = 0.60 when number of comorbidities was treated as an integer count within negative binomial regression
*Secondary prevention cardiovascular drugs were aspirin, P2Y, inhibitor, ACEI/ARB, beta blocker, and a statin

*For drug categories within the n =698 cohort, a patient was counted if they were on one or more drugs within a given category
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receiving PCI/CABG (39.4% vs 47.5%, p=0.082) or
drugs from all five cardiovascular secondary preven-
tion drug classes (51.8% vs 59.6%, p = 0.081) compared to
men. Notably, women were prescribed more non-
cardiovascular drugs than men (median (IQR) 3 (1-5) vs
2 (1-4), p=0.014). Specifically, a higher proportion of
women received one or more drugs in the central nervous
system category (40.9% vs 32.7%, p = 0.026, mainly antide-
pressants and analgesics), endocrine system category
(39.9% vs 27.8%, p = 0.012, a combination including more
insulin, levothyroxine, bisphosphonates, and oestrogens/
progestrogens), and nutrition and blood category (21.2%
vs 12.9%, p = 0.024; mainly iron supplementation and vita-
min replacement) compared to men. Overall though, total
drug use did not differ between women and men (median
(IQR) of 9 (8-11) vs 9 (7-11), p = 0.20).

All multimorbidity (=2 conditions vs < 2), adjusted for
age, was strongly associated with both increased total
number of drugs/patient (median (IQR) 10 (8-12) vs 8
(7-9), p<2.0x 107 and less patients being prescribed
all five secondary prevention cardiovascular drug classes
(51.4% vs 64.9%, respectively, p = 1.7 x 107%). These associ-
ations persisted when multimorbidity was stratified into
cardiovascular and non-cardiovascular multimorbidity, al-
though non-cardiovascular multimorbidity was particu-
larly strongly associated with fewer patients receiving all
five secondary prevention drug classes (39.2% vs 62.4%,
age-adjusted p = 5.8 x 107).

Patient genotypes

Figure 3 shows patient genotype-based metaboliser phe-
notypes (CYPs) and genotypes (non-CYPs) for actionable
pharmacogenes. Importantly, 98.7% of patients with
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genotypes available for all analysed genes (n =713 inclu-
sive of CYP2D6 CNVs) had at least one actionable geno-
type (range 0—7 actionable genotypes from 11 genes).

Drug and gene interactions

In the interaction cohort (7 = 652), the overall numbers
of different drug substrates, inhibitors, and inducers con-
sidered were 199, 109, and 27, respectively. Twenty-four
drugs with an associated pharmacogenomic guideline
were prescribed in the interaction cohort, 17 of which
contributed to > 1 observed DGI (Additional file 5). The
genes with DGIs were as follows: CYP2C9, CYP2CI9,
CYP2D6, CYP3AS, SLCO1BI1, and VKORCI.

Overall, 882 interactions in 503 (77.1%) patients were
identified, whilst 346 substantial interactions occurred in
252 (38.7%) patients (Fig. 4a). Almost half (45.0%) of all
interactions were DDIs with 41.2% DGIs, 12.7% DDGIs,
and 1.1% DGGIs. For substantial interactions, 59.2%
were DDIs, 11.6% DGIs, 26.3% DDGIs, and 2.9% DGGIs.
The observed DGGIs were due to either warfarin/
CYP2C9/VKORC1 or amitriptyline/CYP2D6/CYP2C19
interactions. A complete breakdown of all and substan-
tial interactions is in Additional files 8 and 9,
respectively.

Of those with interactions, the median number (range)
of all and substantial interactions per patient was 1 (1-
9) and 1 (1-5), respectively (Fig. 4b). Interactions involv-
ing CYP2C19 were the most common (49.5% of all in-
teractions), followed by SLCO1B1 (18.4%), CYP3A4/5
(13.8%), and P-gp (11.4%, Fig. 4c). Almost a third of all
and substantial interactions involved transporters (P-gp,
SLCO1B1, Fig. 4c). CYP2C9, CYP2C19, CYP2D6, and
SLCO1B1 mediated both drug- and genotype-based
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30 | 30
20 | 20
10 10
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CYP2B6 CYP2C9 CYP2C19 CYP2D6 CYP3A5
BEM ®IM mPM =RM mUM

Fig. 3 Patient pharmacogene genotypes. Proportions of genotype-based CYP metaboliser phenotypes (a) and non-CYP pharmacogene genotypes
(b) observed across the whole cohort with quality-controlled array genetic data available (n =
CYP2D6 (n = 728). The number of patients with CYP2B6, F5, and CYP2D6 available was less due to exclusion of patients with imputed genotypes outside
the predefined imputation acceptance range, and determination of CYP2D6 copy number variation in patients on a CYP2D6 drug substrate (see the
‘Methods' section). Overall, 713 patients had genotypes available for all analysed genes. EM, extensive (normal) metaboliser; IM, intermediate metaboliser;
PM, poor metaboliser; RM, rapid metaboliser; UM, ultra-rapid metaboliser; WT, wild-type; HET, heterozygous; HOM, homozygous for the variant allele
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1357), except for CYP2B6 (n=1347), F5 (n = 1346), and
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interactions (Fig. 5). CYP2CI19 interactions were the
most common as 84.7% of patients were prescribed the
CYP2C19 substrate, clopidogrel, and 44.2% a proton
pump inhibitor (44.4% of these were (es)omeprazole,
52.8% lansoprazole, 2.8% other), which are CYP2C19
substrates and inhibitors. The majority of SLCO1B1 in-
teractions were due to atorvastatin (79.9% of patients re-
ceived) or, to a lesser extent, simvastatin (10.0%

received). Thus, whilst DDIs made up 41.5% (202/487)
of all CYP2C19-mediated interactions, 96.7% (175/181)
of SLCO1B1-mediated interactions were dependent on
SLCO1BI rs4149056 (77.9% DGls, 18.8% DDGIs).

The median number (IQR, range) of interactions in
those with and without multimorbidity was 1 (1-2, 0-9)
and 1 (0-2, 0-4), respectively. Multimorbidity (p =
0.019) and number of drugs (p = 9.8 x 107'°) were both
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Fig. 5 Interactions mediated by CYP2C9, CYP2C19, CYP2D6, and SLCO1B1. This figure displays the number of identified all (@) and substantial (b)
interactions mediated through the three CYP enzymes (2C9, 2C19, 2D6) and transporter (SLCO1B1) that were directly influenced by both drug-
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to the high frequency of clopidogrel prescribing and, to a lesser extent, proton pump inhibitors, although many SLCO1B1-based interactions
were also found due to atorvastatin and simvastatin

associated with patients that have >1 substantial inter-
action, and number of drugs (p = 3.8 x 10™°) with >1 all
interaction, in multivariable analysis. Neither patient sex
nor age was associated with all/substantial interactions
(Additional file 10).

Survival analysis

There were 114 MACE and 74 ACM during a median
follow-up of 19 months from hospital discharge within
the interaction cohort. In multivariable survival analysis,
age (p=89x1077), multimorbidity (p=0.019), and
number of drugs (p = 1.2 x 10~%) were associated with an

increased risk of MACE, and age (p=1.9x107"%) and
number of drugs (p=4.0x10"*) with increased ACM
(Table 3). Whilst number of substantial interactions was
borderline associated with MACE in univariate survival
analysis (p = 0.053), it was not associated when added to
the selected multivariable model (p = 0.89).

Sensitivity analysis

When multimorbidity was replaced by number of co-
morbidities, all results remained equivalent, although the
association between comorbidities and patients with >1
substantial interaction, adjusted for number of drugs,
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Table 3 Associations with time to major adverse cardiovascular events and all-cause mortality

MACE ACM
HR (95% Cl) p value HR (95% Cl) p value
Univariate analysis
Sex (F vs M) 9 (1.02-2.18) 0.038 140 (0.88-2.24) 0.16
Age 5 (1.04-1.07) 20%107° 1.09 (1.06-1.11) 19%107"°
All multimorbidity 269 (1.73-4.20) 12x107° 2.75 (1.56-4.84) 48x107"
Number of drugs 5(1.10-121) 20x1078 1.14 (1.08-1.21) 30%x10°°
Number of all interactions 1.16 (0.995-1.34) 0.058 1.01 (0.83-1.23) 093
Number of substantial interactions 1.23 (0.997-1.51) 0.053 1.11 (0.84-1.46) 047
Multivariable analysis
Age 1.05 (1.03-1.07) 89x 1077 1.08 (1.06-1.11) 19%107"°
All multimorbidity 1.76 (1.10-2.82) 0.019 - -
Number of drugs 1.10 (1.04-1.16) 12x107° 1.12 (1.05-1.19) 40x107*

ACM all-cause mortality, C/ confidence interval, HR hazard ratio, MACE major adverse cardiovascular events
All types of interaction (drug-drug, drug-gene, drug-drug-gene, and drug-gene-gene) were counted to determine numbers of all and numbers of predicted

substantial interactions per patient

was reduced to borderline
Additional file 11).

significance (p =0.071,

Discussion

The main findings of this study are: multimorbidity,
polypharmacy, and drug interactions are common post-
NSTE-ACS; drug- and gene-mediated perpetrators are
involved in 85.5% (59.2% DDIs, 26.3% DDGIs) and
40.8% (11.6% DGIs, 26.3% DDGIs, 2.9% DGGIs) of iden-
tified substantial interactions, respectively; and both
multimorbidity and number of drugs increase the risk of
substantial interactions. Importantly, older age, multi-
morbidity, and number of drugs were associated with
increased MACE, but despite trends, no statistically sig-
nificant associations were found between all/substantial
interactions and MACE or ACM. Lastly, differences in
drug use were observed based on patient age and sex,
and increasing age was associated with reduced coronary
intervention.

The prevalence of multimorbidity is increasing [5]
and so recognition of its clinical impact is important.
We found multimorbidity post-NSTE-ACS to be asso-
ciated with increased drug use, yet a lower likelihood of
being prescribed secondary prevention medications, in
keeping with other studies [43, 44]. Furthermore, multi-
morbidity and number of drugs were both associated
with an increased likelihood of predicted substantial in-
teractions. Of note, the interaction cohort had a higher
proportion of patients with multimorbidity relative to
the whole cohort, likely from exclusion of patients with
no drug entries in their medication appendix due to be-
ing unable to ascertain whether this was accurate or
represented missing data. Nevertheless, as clopidogrel
and atorvastatin were the two most common victim

drugs and were prescribed to similar extents across the
whole cohort, the main interaction findings remain
plausibly applicable to other cardiovascular patients, al-
though further investigation in separate cohorts to
determine generalisability is warranted. Still, the inter-
action cohort was likely enriched for patients with
extreme polypharmacy and interaction burden; conceiv-
ably, it is these patients that may benefit the most from
comprehensive medicines optimisation incorporating
pharmacogenomics.

Importantly, the interactions assessed here included
both genetic risk variants and drug perpetrators. In fact,
98.7% of patients had at least one actionable pharmaco-
gene. In practice, only a small proportion of identified
DDIs lead to clinically significant events [45]. Thus, 5—
15% of older patients might suffer clinically significant
adverse reactions involving drug interactions, whereas
35-60% have an identified DDI [45]. The reasons for
this are complex [46], but genetic factors likely play a
role, and therefore, identification of DDGIs is plausibly
important, although these remain currently a novel and
under-investigated subset of interactions. Still, the pro-
portion of substantial interactions identified as DDGIs
here (26.3%) was similar to estimates (19-22%) from the
two previous studies in clinically heterogeneous patient
populations [18, 19]. The reason(s) for the slightly higher
DDGI estimate here likely pertains to considering
SLCO1BI as well as CYPs, and assessing NSTE-ACS pa-
tients enriched for multimorbidity mostly taking clopi-
dogrel that requires CYP2C19 bioactivation.

One example of a cardiovascular DDGI is between
warfarin and simvastatin, whereby simvastatin reduces
warfarin dose requirements by 25% and 43% in
CYP2C9*3 heterozygous and homozygous patients,
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respectively [47]. Nevertheless, a quantitative estimate of
the impact of most DDGIs on victim drug systemic ex-
posure is currently unavailable. A general principle ap-
pears to be that drug inhibitors decrease the metabolism
of victim drugs to a greater extent in CYP EMs and IMs
compared to PMs [48]. Nevertheless, this is not always
the case; for example, the CYP2D6 inhibitor, fluoxetine,
increased risperidone exposure in CYP2D6 PMs as well
EMs, possibly due to the effects of its metabolite (nor-
fluoxetine) on a secondary pathway of risperidone me-
tabolism (CYP3A4) [48, 49].

Moving forward, it will be important to characterise
DDGIs and understand their clinical sequelae in larger
patient datasets. In this study, despite a univariate signal,
no association between substantial interactions and
MACE was observed. Thus, larger patient cohorts and
additional use of other endpoints potentially more dir-
ectly related to interactions, such as (causality-assessed)
adverse drug reactions and all-cause hospitalisation,
should be utilised. Irrespective, as pharmacogenomics
becomes more available in clinical practice, prescribers
will be faced with combining genetic, co-medication,
and comorbidity (e.g. renal/hepatic impairment) infor-
mation together when making prescribing decisions.
This is not trivial, and prescribers should ideally be sup-
ported with electronic clinical decision support systems,
which in turn will often require increasing interoperabil-
ity between different healthcare information systems
(e.g. between primary/secondary care, and blood test re-
sults/medication data) alongside national and inter-
national structures to review and implement evolving
evidence. Increasing the clinical evidence base of specific
DDGIs will help prioritise DDGIs for incremental
implementation.

This study assessed multimorbidity, polypharmacy, and
drug- and gene-based interactions within a UK-based
NSTE-ACS cohort. However, it does have limitations. Be-
yond the limited patient sample size, mental illness diag-
noses could not be included as comorbidities, no clinical
frailty scale was recorded, and non-cardiovascular drug
data were only established in a subset of patients.

Conclusions

This study demonstrated that multimorbidity, polyphar-
macy, and drug interactions are common after a NSTE-
ACS, with CYP2C19 and SLCOI1BI being involved in the
largest number of identified interactions. Multimorbidity
and drug use were linked to interactions and clinical
events. Differences in prescribing patterns between pa-
tients based on age and gender were identified. The high
prevalence of DDGIs emphasises the need for further
DDGI research and for healthcare systems to consider in-
tegration of medication information with genetic data and
other clinical factors to enhance medicines optimisation.
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