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Abstract: For the sake of solving the optimization problem of urban waste collection and transportation
in China, a priority considered green vehicle routing problem (PCGVRP) model in a waste management
system is constructed in this paper, and specific algorithms are designed to solve the model. We
pay particular concern to the possibility of immediate waste collection services for high-priority
waste bins, e.g., those containing hospital or medical waste, because the harmful waste needs to
be collected immediately. Otherwise, these may cause dangerous or negative effects. From the
perspective of environmental protection, the proposed PCGVRP model considers both greenhouse
gas (GHG) emission costs and conventional waste management costs. Waste filling level (WFL) is
considered with the deployment of sensors on waste bins to realize dynamic routes instead of fixed
routes, so that the economy and efficiency of waste collection and transportation can be improved.
The optimal solution is obtained by a local search hybrid algorithm (LSHA), that is, the initial optimal
solution is obtained by particle swarm optimization (PSO) and then a local search is performed on
the initial optimal solution, which will be optimized by a simulated annealing (SA) algorithm by
virtue of the global search capability. Several instances are selected from the database of capacitated
vehicle routing problem (CVRP) so as to test and verify the effectiveness of the proposed LSHA
algorithm. In addition, to obtain credible results and conclusions, a case using data about waste
collection and transportation is employed to verify the PCGVRP model, and the effectiveness and
practicability of the model was tested by setting a series of values of bins’ number with high priority
and WFLs. The results show that (1) the proposed model can achieve a 42.3% reduction of negative
effect compared with the traditional one; (2) a certain value of WFL between 60% and 80% can realize
high efficiency of the waste collection and transportation; and (3) the best specific value of WFL is
determined by the number of waste bins with high priority. Finally, some constructive propositions
are put forward for the Environmental Protection Administration and waste management institutions
based on these conclusions.

Keywords: waste collection and transportation; vehicle routing problem; waste bins with high
priority; greenhouse gas emissions; waste filling level

1. Introduction

Municipal solid waste (MSW) management is regarded as a challenging matter for contemporary
cities [1,2] due to quick growth in the amount of waste, high waste collection costs [3], limited treatment
capacities [4] and environmental problems [5]. In China, as the economy grows rapidly, the quantity
of MSW has been growing significantly and the mean rate of growth has been around 3.5% [6].
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There are several factors contributing to this social phenomenon such as urbanization [7], booming
of population [7], and improvements of living standard [7], among others. Under such intricate
circumstances, the application of operational research methods can make decision-makers benefit from
programming [8].

MSW activities are grouped in five stages of waste life-cycle: generation, collection and
transportation, transformation, treatment and final disposal [8,9]. The cost of waste collection
and transportation accounts for 60–80% of total Waste Management System (WMS) costs, which is
the critical factor in the fiscal spending of WMS, improvements in this field will play a significant
role in saving municipal expenditure [10,11]. Thus, this article focuses on operational decisions at
the second stage, collection and transportation. Waste collection refers to the use of waste collection
vehicles to load waste from waste collection points. Waste transportation means the activity of taking
the collected waste to the disposal center [12].

Moreover, some peculiar kinds of waste are supposed to be collected and transported with the
least delay possible, because of their passive impact on people’s health, such as chemical waste,
hospital waste, electronic waste (E-waste) [10] and waste close to gas stations and fuel stations [13]
etc. In particular, during the global pandemic of COVID-19, the importance and necessity of giving
priority to medical waste disposal are highlighted. Bins containing such waste should be collected as
soon as possible to minimize the negative impact on the environment and human lives. In this regard,
it is important to give high collection priority to such waste bins with negative effect, which will be
taken into consideration as one of the critical factors in the proposed priority considered green vehicle
routing problem (PCGVRP) model and solutions.

As a rule, the activity of waste collection and transportation is carried out by means of a fleet
of vehicles aiming at emptying waste bins on the basis of predefined schedules [7,14,15]. However,
this conventional waste collection is based on a lot of speculation about whether the filling levels of
waste bins could vary from overflowing, partial filling, to completely emptying, which would lead to
unnecessary resources consumption [16]. For these reasons, wireless sensor networks (WSN) have
been deployed in MSW to achieve remote monitoring filling levels of waste bins [17]. In the meantime,
waste collection trucks can communicate with waste bins with sensors by the Internet of things system
to acquire the data about the status of bins [18–20].

Lastly, it is worthy of mention that the growth of waste is closely related to environmental
deterioration [7], which is because that the activity of waste collection and transportation consumes a lot
of fuel resulting in GHG emissions [7,21–23].Therefore, taking into account its effect on the environment,
sustainable management of waste collection and transportation with the objective of minimizing GHG
emissions is indispensable both for resource savings and environmental conservation [24].

Due to the increasing amount of waste and the increasing difficulty of SWM, many areas have
established laws on waste collection and transportation, including all kinds of waste such as hazardous
waste [25], chemical waste [26], E-waste [27], roundwood waste [28], construction waste [29], and
so on. In particular, there has been an increase in laws and regulations on hazardous waste and
E-waste collection [30,31] over the past two decades, for their particularity and harmfulness. Generally
speaking, the purpose of this legislation is to reduce its impact on the environment. Therefore, we
can see that waste collection and transportation has been paid increasing attention in legislation and
by citizens.

This paper concentrates on collecting waste from waste bins and transporting them to waste
disposal centers. More specifically, we propose a waste collection and transportation model that
gives high collection priority to specific waste. We replace conventional fixed routes with dynamic
systems that respond to the actual filling levels of sensor-based waste bins. This allows us to reduce the
probability of collecting overflowing or empty waste bins. In the meantime, we consider the reduction
of GHG emissions in the model and, accordingly, design a better and greener PCGVRP model. To sum
up, this paper aims to reduce the cost, GHG emissions and negative impact of waste in the process of
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waste collection and transportation. The novelty lies in the consideration of the collection priority of
different waste and the application of sensor-based waste bins.

2. Literature Review

2.1. Research about Waste Collection and Transportation

A vehicle routing problem (VRP) is about the route optimization problem introduced by Dantzig
and Ramser [32] and was applied in the field of waste collection and transportation by Beltrami
and Bodin [33]. Vu et al. [34] studied route optimization of waste collection and transportation and
found that travel distance was the main research factor. Rızvanoğlu et al., used linear programming
and geographic information system analysis to determine the beat routes of waste collection and
transportation and concluded with better linear programming. Yadava and Karmakarb [35] proposed
plausible mathematical and computational modeling approached for sustainable collection and
transportation of municipal solid waste. Miranda et al. [36] developed and implied a mixed integer
linear optimization model for a waste collection system for serving a rural archipelago. Zhao et al. [37]
studied the location and routes problem for hazardous waste with the objective of minimizing cost
and risk.

The traditional method of waste collection and transportation refers to taking all the waste bins
and transport waste to the disposal station by trucks along the settled routes [38]. This process involves
labor costs, fuel costs, maintenance costs, etc., so the cost is very high, accounting for most of the SWM
spending [38]. For these reasons, a lot of research proposed an approach to collect waste according to
the filling levels of waste bins, which are predicted based on either historical data [7,17,39] or sensory
data [18,38] obtained from waste bins and trucks [38]. Abdallah et al. [38] developed a selection
procedure for waste bins to be collected, which have high filling levels based on historical data. Mamun
et al. [17] presented a waste bin monitoring system, which is supported by a sensor technology and
interaction system and the experimental results showed that the system can assist in an optimization
model for route optimization.

Taking into account the impact on the environment of logistics, waste collection and transportation
has gained greater attention in recent years. Leggieria and Haouari [40] established a model of Green
VRP considering environmental issues and exact approach was proposed to solve it. Herdari et. al [41]
took GHG emissions of vehicles into account which was calculated by the flow of WSM and emission
coefficient. Mohsenizadeh et al. [24] developed a bi-objective model to investigate the impact of CO2

emissions from transportation activities of MSW. Reddy et al. [42] proposed a model to decide facility
locations and vehicle routes while accounting for carbon footprint.

It can be seen from the above that there is a wealth of research about waste collection and
transportation and some design routes according to filling levels of waste bins from historical data or
sensors with environmental concerns. However, the impact of different filling levels of sensor-based
bins including costs, collected waste percentage and so on has been rarely considered especially
when taking waste priority into account. Furthermore, it is important to plan the optimal route for
high-priority waste because of its negative effect, which has been rarely studied.

2.2. Research about Priority in a Vehicle Routing Problem (VRP)

Nesmachnow et al. [8] built a waste collection model considering priorities with two objectives,
the shortest distance and the best service respectively. Anagnostopoulos et al. [13] developed and
compared four models for waste collection and transportation considering waste bins with high
priority and found that different models are applicable to different situations. Tirkolaee et al. [10] built
a model of waste collection and transportation, and gave the collection priority, which was realized
by time windows, to some designated sites, including medical centers, hospitals and chemical plants
that might generate harmful waste that needs to be collected as soon as possible. Armas et al. [43]
built a rich VRP model taking the customer priority into account for a trucking enterprise in Spain
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and which is solved by a heuristic algorithm. Molina et al. [44] proposed a comprehensive model
with the definition of different service priorities so as to cope with orders of high priorities as much as
possible. Wang et al. [45] integrated customer service priority into the dynamic programming approach
to optimize vehicle routes by order preference by similarity to ideal solution (TOPSIS).

From the above studies, we can see priority has been considered in some areas, including customer
service, waste management and so on. Therefore, it is necessary to give thought to priority in the
process of waste collection and transportation. However, few articles take consideration of the negative
effects of delayed waste collection.

2.3. Research about Algorithms

VRP has been extensively and deeply studied ever since the 1960s, and a series of solving methods
have emerged, including the exact method, heuristic method and meta-heuristic method [43]. Owing
to the complexity of VRPs, it is not efficient to solve it with exact methods [46]. Hence, the research on
heuristic method and meta-heuristic method is increasingly rich [43].

Along with the discrete particle swarm optimization (PSO), Rau et al. [47] developed a
heuristic method to improve the solution quality of PSO particle to solve a multi-objective problem.
Tirkolaee et al. [10] solved a vehicle routing problem with time window (VRPTW) of waste
collection by a simulated annealing algorithm. Tirkolaee et al. [11] designed an improved ant
colony algorithm for the proposed model of a capacitated arc routing problem (CARP). Wichapa
and Khokhajaikia [48] designed hybrid genetic algorithm (HGA) to solve VRP for infectious waste
transportation. Delgado-Antequera et al. [34] proposed an integrated greedy algorithm coupled
with a variable neighborhood search for a multi-objective routing problem for waste collection
and transportation.

To sum up, there are lots of research of algorithms to solve the waste collection problem.
Nevertheless, they are mostly single algorithms instead of hybrid algorithms that can make the best of
both worlds. The algorithm involved in this paper combines the high efficiency of PSO and the global
optimization capability of simulated annealing (SA) performing better than a single algorithm. With
the consideration of the main characteristics and gaps of the research literature, the paper proposed
an integrated model considering priority and GHG emissions based on waste filling-level data from
sensors for waste collection and transportation, and a hybrid algorithm is designed to solve the model.

3. Model Formulation

3.1. Problem Description

The problem involves obtaining the optimal paths of each vehicle with the objective of minimizing
the total distance, total GHG emissions, total comprehensive costs including vehicle costs and GHG
emissions costs. Waste bins located in specific areas (e.g., hospital, fuel station, gas station) are
characterized as high priority bins which should be collected as soon as possible. The vehicles are
located at the disposal center and start their trips toward the allocated waste bins. When the waste
collection vehicle is fully loaded or the collection task is completed, it must get back to the disposal
center so as to upload the collected waste.

Apart from the above description we make following assumptions:

• Each waste bin is only collected by one vehicle once.
• There is one disposal center.
• The vehicles must depart from the disposal center and go back to the disposal center when the

task ends.
• There is single type of waste collection vehicle.
• The location of the disposal center and each waste bin are known.

The problem formulation considers the following elements:
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• Each bin, B = {b1, b2, · · · bn}, has a collection priority, which is determined in accordance with the
passive influence of waste.

• A set of vehicles V = {v1, v2 · · · vm} to collect waste, with a maximum capacity.
• A disposal center D where vehicles star and end their trips.
• A set of waste bin filling level L = {l1, l2 · · · ln}, for ∀ i ∈ {1, 2, · · · , n}, li ∈ [0, 1], where li indicates

the percentage of waste bin bi filled by waste.

3.2. Notation

The notations and descriptions are shown in Table 1.

Table 1. Notation of the priority considered green vehicle routing problem (PCGVRP) model.

Sets Unit Description

B Set of waste bins (B = b1, b2, · · · , bi, · · · , bn)
D Waste disposal center
V Set of vehicles (V = v1, v2, · · · , vk, · · · , vK)
Cp kg Maximum load capacity of vehicle

T_D km Total distance of all vehicles
T_EGHG kg Total GHG emissions of all vehicles

T_C CNY Total cost of all vehicles
ε CNY/kg Cost of greenhouse gas (GHG) emissions per unit
e kg CO2e/L Emission coefficient
r L/km Fuel consumption rate per unit distance
r0 L/km Fuel consumption rate per unit distance while vehicle is empty
r∗ L/km Fuel consumption rate per unit distance while vehicle is at full load

r(Q) L/km Fuel consumption rate per unit distance with load of Q

ri j L/km Fuel consumption rate per unit distance while vehicle goes from
waste bin i to j

EGHG kg GHG emissions
q j kg Collected waste at waste bin j
di j km Distance between waste bin i and j
tk
i s Time of vehicle k arriving at waste bin i
λi If waste bin i has a high priority, λi = 1. Otherwise, λi = 0

P f ixed CNY Fixed cost of each vehicle
P f uel CNY/kg Price of fuel consumption

Variable
xk

i j Whether a vehicle k goes from waste bin i to j

3.3. Analysis of Objective Function

The PCGVRP model of waste collection and transportation in this paper considers three kinds of
objectives: minimize total distance (T_D), minimize total GHG emissions (T_EGHG) and total costs
(T_C) including vehicles costs and GHG emissions costs in this paper. Firstly, we analyze the three
objective functions respectively and describe them as mathematical expressions. On this basis, the
PCGVRP model is further determined by the analysis.

3.3.1. Total Distance

T_D =
∑

i∈(B∪D)

∑
j∈(B∪D)

xk
i jdi j (1)

3.3.2. Total Greenhouse Gas (GHG) Emissions

GHG is the emission from fossil fuel consumption in the process of waste collection and
transportation [12] and usually the environmental effect of GHG emissions is approximated by CO2
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equivalents (CO2e). Furthermore, GHG emissions show an approximately linear relation to the fuel
consumption of a vehicle [22], we estimate GHG emissions based on fuel consumption and express its
effect in terms of CO2 during waste collection and transportation activities.

According to the analysis of literature [22], considering the linear relationship of load and GHG
emissions, the GHG emissions can be expressed as follows:

EGHG(Q) = e ∗ d ∗ r(Q) (2)

The fuel consumption rate (FCR) of the vehicle is linearly related to the vehicle load (Q), which
can be expressed by the below equation [49]:

r(Q) = r0 +
(
(r∗ − r0)/Cp

)
∗Q (3)

Therefore, the FCR when vehicle goes from waste bin bi to b j can be expressed as:

ri j = r0 +
(
(r∗ − r0)/Cp

)
∗ (

∑
i∈(B∪D)

∑
j∈(B∪D)

xk
i jq j) (4)

In the PCGVRP model, the total GHG emissions can be expressed as:

EGHG = e
∑
i∈B

∑
j∈B

(di j ∗ r0 +
(
(r∗ − r0)/Cp

)
∗ (

∑
i∈(B∪D)

∑
j∈(B∪D)

xk
i jq j)) (5)

3.3.3. Total Costs

The objectives of minimizing T_D and T_EGHG can only optimize routes either from the
environmental point or from the economic point. However, the objective of T_C can take the
both into consideration, which includes vehicle costs and GHG emissions costs. Vehicle costs can be
divided into fixed vehicle costs and variable vehicle costs. Fixed costs mean the relatively fixed cost
in the working process of waste collection vehicles, such as depreciation expenses, all taxes and fees,
driver’s salary and so on, which can be calculated as:

C f ixed =
∑
k∈V

∑
j∈(B∪D)

xk
0 jP f ixed (6)

Variable costs refer to the cost of fuel from driving between the collection nodes.

C f uel =
∑

i∈(B∪D)

∑
j∈(B∪D)

xk
i jdi jri jP f uel (7)

Therefore, vehicle costs can be expressed as follows:

Cvehicle = C f ixed + C f uel =
∑
k∈V

∑
j∈(B∪D)

xk
0 jP f ixed +

∑
i∈(B∪D)

∑
j∈(B∪D)

xk
i jdi jri jP f uel (8)

GHG emissions can be translated into GHG emissions costs by carbon price. Thus, GHG emissions
costs can be calculated by:

CGHG = εEGHG = εe
∑
i∈B

∑
j∈B

(di j ∗ r0 + (
(
r∗ − r0)/Cp

)
∗ (

∑
i∈(B∪D)

∑
j∈(B∪D)

xk
i jq j)) (9)

Total costs can be calculated as:

T_C = Cvehicle + CGHG (10)
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3.4. Model Construction

In accordance with the above analysis, the mathematical expressions of the PCGVRP model are
as below:

Min T_D =
∑

i∈(B∪D)

∑
j∈(B∪D)

xk
i jdi j (11)

Min T_EGHG = e
∑
i∈B

∑
j∈B

(di j ∗ r0 + (
(
r∗ − r0)/Cp

)
∗ (

∑
i∈(B∪D)

∑
j∈(B∪D)

xk
i jq j)) (12)

Min T_C =
∑

k∈V

∑
j∈(B∪D)

xk
0 jP f ixed +

∑
i∈(B∪D)

∑
j∈(B∪D)

xk
i jdi jri jP f uel

+εe
∑
i∈B

∑
j∈B

(di j ∗ r0 + (
(
r∗ − r0)/Cp

)
∗ (

∑
i∈(B∪D)

∑
j∈(B∪D)

xk
i jq j))

(13)

Subject to: ∑
k∈V

∑
i∈(B∪D)

xk
i j = 1,∀ j ∈ (B∪ D) (14)

∑
k∈V

∑
j∈(B∪D)

xk
i j = 1,∀i ∈ (B∪ D) (15)

∑
i∈(B∪D)

xk
i j =

∑
j∈(B∪D)

xk
i j = 1,∀i ∈ (B∪ D), k ∈ V (16)

∑
i∈(B∪D)

∑
j∈(B∪D)

xk
i jq j ≤ Cp,∀ k ∈ V (17)

(λi − λ j)(tk
i − tk

j) ≤ 0,∀i, j ∈ B, k ∈ V (18)∑
i∈(B∪D)

∑
j∈(B∪D)

xk
i j ≤ |S| − 1, S v {1, 2, · · · , N}, S , { },∀ k ∈ V (19)

xk
i j ∈ {0, 1},∀i, j ∈ (B∪ D), k ∈ V (20)

Firstly, the three objective functions (11)–(13) are to minimize total distance, total GHG emissions
and total costs, respectively, whereas each waste bin is only collected once by one vehicle, as stated by
constraint (14). A vehicle starts from the disposal center and goes back to the disposal center after
visiting a waste bin, which is imposed by Equations (15)–(17) guarantees that the maximum capacity is
respected by all routes. Constraint (18) ensures the collection service for the high priority waste bins
while Constraint (19) eliminates sub-tours. Finally, Equation (20) specifies the types of the variables.

4. Algorithm

4.1. Algorithm Design

The exact solution method is inefficient for solving the medium and large VRPs in real life [43].
For this reason, we pay attention to meta-heuristic methods which can generate suitable high-quality
solutions within a rational computational time. In order to obtain high-quality solutions to practical
problems, this paper proposes a hybrid local search algorithm based on PSO and SA algorithms. Its
basic process is shown in Figure 1.
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Firstly, the PSO algorithm is applied to generate an initial solution, and then local search will be
operated to produce new solutions based on the initial solution. Finally, a SA with the ability to escape
from local optimums is deployed to decide the optimal global solution.

4.2. Particle Coding and Decoding

For a vehicle routing problem with n waste bins, a 2n dimension space is constructed, and each
waste bin corresponds to a two-dimensional value: (1) the vehicle number a that completes the waste
bin collection; (2) the order b of the waste bin in the route of vehicle a. That is, (1) the position P of each
particle is a 2n dimension vector: where Xa represents the collection vehicle corresponding to each bin
in the waste collection service, total n dimensions; (2) Xb represents the order of each waste bin in the
corresponding vehicle route, total n dimension. For example, suppose the number of waste bins to be
collected in a waste collection activity is 10, and there are three vehicles in charge of waste collection.
If, at a certain time, the position vector of a particle is shown in Table 2.

Table 2. Particle coding.

Waste Bin Number 1 2 3 4 5 6 7 8 9 10

Xa 1 1 1 2 2 2 2 3 3 3
Xb 1 3 2 3 1 2 4 2 3 1

Taking waste bin 3 as an example, Xa dimension is 1, which means that the waste bin 3 is collected
by the vehicle 1; Xb dimension is 2, which means that the order of waste bin 3 in the route of vehicle 1
is 2, and so on; the corresponding solution of this particle is shown in Table 3.

Table 3. Particle decoding.

Vehicle Number Vehicle Route

1 0-1-3-2-0
2 0-5-6-4-7-0
3 0-10-8-9-0
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4.3. Constructing Initial Optimal Solution Based on Particle Swarm Optimization (PSO) Algorithm

4.3.1. Initialization and Fitness Function

• Initialization

Set the parameter of PSO as shown in Table 4, and the initialized position and velocity of the ith
population is described as Equation (21).

xi = rand(lPar). ∗ (xmax − xmin) + xmin
vi = rand(lPar). ∗ (vmax − vmin) + xmin

(21)

Table 4. Parameters of particle swarm optimization (PSO).

Parameters of PSO Description

itmax Maximum number of iterations
lPar Length of particle code
nPop Number of population

r1 Learning factor1
r1 Learning factor2
c1 Acceleration factor 1
c1 Acceleration factor 2

vmax Maximum velocity
vmin Minimum velocity

[xmin, xmax] Particle range
ω Inertia weight
rω Inertia weight damping ratio

• Fitness Function

The fitness function value is a quantitative index for judging the pros and cons of the particle
position. According to the three kinds of objective functions in Section 3.3, the three corresponding
types of fitness functions can be constructed as Equations (22)–(24).

FitnessD = T_D +M
∑

k∈V
max(

∑
i∈(B∪D)

∑
j∈(B∪D)

xk
i jq j −Cp, 0)

+M
∑

k∈V
max(

(
λi − λ j

)
(tk

i − tk
j), 0)

(22)

FitnessE = T_E +M
∑

k∈V
max(

∑
i∈(B∪D)

∑
j∈(B∪D)

xk
i jq j −Cp, 0)

+M
∑

k∈V
max(

(
λi − λ j

)
(tk

i − tk
j), 0)

(23)

FitnessC = T_C +M
∑

k∈V
max(

∑
i∈(B∪D)

∑
j∈(B∪D)

xk
i jq j −Cp, 0)

+M
∑

k∈V
max(

(
λi − λ j

)
(tk

i − tk
j), 0)

(24)

Each fitness function can be divided into three parts:
The first part is the objective function: total distance T_D in Equation (22); total GHG emissions

T_E in Equation (23); total costs T_C in Equation (24).
The second part, M

∑
k∈V max(

∑
i∈(B∪D)

∑
j∈(B∪D) xk

i jq j −Cp, 0) is the treatment of vehicle load
constraints where M is a very large positive number. When the solution corresponding to the position
of a certain particle is overloaded as an infeasible solution, that is,

∑
i∈(B∪D)

∑
j∈(B∪D) xk

i jq j > 0, M can
make the overall fitness value of the particle larger, so that the solution corresponding to this position
is eliminated. In this way, we can avoid the situation where an infeasible solution can survive due
to overload.
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The third part, M
∑

k∈V max(
(
λi − λ j

)
(tk

i − tk
j), 0) is the priority treatment of specific waste bins.

When the solution does not give the priority the specific waste bins, that is,
(
λi − λ j

)
(tk

i − tk
j) > 0, M can

make the overall fitness value of the particle larger, so that the solution corresponding to this position
is eliminated. In this way, we can promise priority to the specific waste bins.

4.3.2. Obtaining Optimal Solution

In each iteration, each particle records its current optimal value through comparison, indicated as
pbest

i (t), and all particles have a common global optimal value, indicated as gbest(t).

4.3.3. Particle Status Update

For each particle, update velocity according to Equation (25), and when velocity exceeds the range,
take the value according to the boundary as shown by Equation (26).

vi(t + 1) = ωi(t) + c1r1
(
pbest

i (t) − xi(t)
)
+ c2r2

(
gbest(t) − xi(t)

)
(25){

i f vi(t + 1) > vmax, vi(t + 1) = vmax

i f vi(t + 1) < vmax, vi(t + 1) = vmin
(26)

After updating velocity, the position of particle i will be updated according to Equation (27).

xi(t + 1) = xi(t) + vi(t + 1) (27)

In Equation (25), inertia weight (ω) is the ability of the particle to remain in motion at the previous
moment and is very important in PSO algorithm. In this paper, a time-varying weight is used which is
expressed in Equation (28).

ω(t + 1) = ω(t) ∗ rω (28)

4.3.4. Terminating Condition

Finally, the appearing of population quantity nPop is the termination of the evolutionary.

4.4. Local Search

Next, a series of local search operations will be performed on the optimal individuals generated by
PSO algorithm so as to improve the quality of the final optimal solution. Three local search operations
designed in this paper are as below:

Swap operation: if a random number p ∈ (0, 1/3], two points will be chosen at random in the
present coding sequence. Next the positions of two selected points are exchange. As we can see in
Figure 2, if the two selected points are 1 and 6, “623451” will be exchange for “123456”.
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1 2 3
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456

Figure 2. Swap operation. (a) Route before swap operation and (b) route after swap operation.

Reverse operation: if a random number p ∈ (1/3, 2/3], two points will be chosen at random in the
present coding sequence. Next, the point sequence between the two selected points is reversed. As we
can see in Figure 3, if the two point are 2 and 5, “2435” will be exchange for “2345”.
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Figure 3. Reverse operation. (a) Route before reverse operation and (b) route after reverse operation.

Insert operation: if a random number p ∈ (2/3, 1], two points will be chosen at random in the
present coding sequence, and then the first selected point will be inserted after the second selected
point. As we can see in Figure 4, if the two point are 5 and 2, “5342” will be exchanged for “3425”.
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Figure 4. Insert operation. (a) Route before insert operation and (b) route after insert operation.

4.5. Obtain Optimal Solution Using Simulated Annealing (SA) Algorithm

Fort the new solutions obtained by local search operations, the SA algorithm is considered to
decide the optimal solution. In this section, the Metropolis criterion is applied to new solutions
and obtained local search operations, to decide whether to accept the new solution, as shown in
Equation (29). p represents the possibility to accept new solution. When ∆ f > 0, that is new solution
is worse than the original solution, the possibility to accept it is exp(−∆ f /Ti); When ∆ f ≤ 0, that is
new solution is better than the original solution, the possibility to accept it is 1. When the temperature
reaches the final temperature, the algorithm ends.

p =

{
exp(−∆ f /Ti), ∆ f > 0

1, ∆ f ≤ 0
(29)

5. Numerical Experiment

The calculation results in this part are all executed by a notebook computer equipped with an
Intel core i5− 8250U @1.60GHz and 8 GB o f RAM. The solution algorithm is developed 20 times and
the best solution is used.

5.1. Algorithm Experiment

5.1.1. Test Cases

Here, the capacitated vehicle routing problem (CVRP) benchmark database (Dataset: Christofides
and Eilon, 1969) is employed to test and verify the effectiveness of LSHA. This paper randomly selects
8 cases from the database including small-scale study (Pro1, Pro2, Pro3, Pro4), medium-scale study
(Pro5, Pro6, Pro7) and large-scale study (Pro8), the detailed information is shown in Table 5.
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Table 5. Data about the test instances.

Problems Case Node Capacity

Pro 1 E-n22-k4 22 6000
Pro 2 E-n23-k3 23 4500
Pro 3 E-n30-k4 30 4500
Pro 4 E-n33-k4 33 8000
Pro 5 E-n51-k5 51 160
Pro 6 E-n76-k8 76 180
Pro 7 E-n76-k10 76 140
Pro 8 E-n101-k8 101 100

5.1.2. Parameters Setting

Parameters of vehicles are shown in Table 6 according to references [21,50,51] and parameters of
the proposed algorithm are shown in Table 7 according to references [10,52–54].

Table 6. Parameters of vehicles.

Parameter Value

e 3.15 kg CO2e/L
r0 0.16 L/km
r∗ 0.377 L/km
ε 0.025 CNY/kg

P f ixed 100 CNY
P f uel 8 CNY/kg

Table 7. Parameters of LSHA.

Parameter Value

itmax 1000
nPop 20

c1 1.5
c1 1.5
rω 0.99
T0 200
α 0.98

Tend 1
M 5

5.1.3. Results of Algorithm Experiment

The results of PSO and the proposed algorithm are compared in Table 8, including total distance,
total GHG emissions and total costs. To be clear, Figure 5 gives the distance saving, GHG emissions
saving and costs saving of the proposed algorithm LSHA compared with PSO. We can see from Table 6
and Figure 5 that the proposed algorithm outperforms in all three areas.

Table 8. Test results of PSO and LSHA.

Problems
PSO LSHA

Distance GHG Emissions Cost Distance GHG Emissions Cost

Pro 1 649.40 521.70 1738.01 603.72 467.87 1589.71
Pro 2 946.06 737.81 2192.26 900.32 618.46 1886.17
Pro 3 1161.74 884.11 2567.48 1091.85 783.08 2308.36
Pro 4 1352.04 1028.88 3038.76 1210.99 971.73 2892.19
Pro 5 1491.31 1211.97 3608.33 1383.12 1148.54 3402.13
Pro 6 2331.47 1841.55 5622.99 2115.12 1746.72 4936.27
Pro 7 2298.04 1746.65 5779.60 2089.77 1532.66 5043.73
Pro 8 3152.75 2636.75 7562.42 2836.39 2339.05 6411.86
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5.2. Model Experiment

5.2.1. Experimental Design

This paper is concentrated on the optimization and simulation of waste collection and
transportation considering waste bins’ priority. The proposed PCGVRP model is developed in
line with the different priorities of waste bins and real-time waste-filling levels of sensor-based waste
bins. The contents of route optimizations of waste collection and transportation are as follows:
(1) guaranteeing priority collection of specific waste bins; (2) reducing the number of waste bins
collected in one trip based on the actual filling levels of general waste bins; (3) minimizing the distance,
GHG emissions and transportation costs traveled among the waste bins which need to be collected.
A selection flowchart is developed to select the waste bins to be collected and determine the collection
order based on the priority of waste bins and the data of filling levels of general waste bins from
sensors. The flowchart of priority and knowledge-based decision making is presented in Figure 6. It is
worth mentioning that sensor-based waste bins are already in use in some developed cities where the
proposed model considering priority and filling level is applicable.
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In order to verify the PCGVRP model, the case data about waste cited from (Zhang, Ma, Lei and
Fu, 2019) are used. There is a disposal center and 30 waste bins with sensors. All vehicles start from
the disposal center, and transport all collected waste back to the waste disposal center. The working
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time window of the vehicle is 19:00–22:00 and during the algorithm running process, its time window
is converted into 0 to 180 in minutes. The priority of waste bins is defined randomly. Table 9 gives
the detail information of the data including locations, amount of waste and priority of waste bins.
The relevant parameters are set as shown in Table 10.

Table 9. Information about the disposal center and waste bins.

Point X Coordinate Y Coordinate Amount of Waste (kg) Priority

Disposal Center 4.8 4.74 — —
1 0.98 0.08 626.87 General
2 3.6 1.05 566.31 High
3 3.35 2.68 772.5 General
4 1.92 4.27 913.9 High
5 2.46 4.55 918.5 General
6 3.87 1.67 916.67 High
7 0.74 2.35 601.86 High
8 2.43 0.01 772.21 General
9 0.36 1.55 937.47 General
10 3.94 2.43 560.5 High
11 1.97 1.31 928.18 General
12 1.18 3.42 949.89 General
13 0.4 4.56 608.93 General
14 0.4 2.85 538.49 General
15 4.64 1.33 737.11 High
16 1.02 4.64 917.51 General
17 4.78 0.32 734.7 High
18 1.7 3.13 706.88 General
19 0.3 0.54 751.37 General
20 1.72 2.58 562.72 General
21 3.02 4.78 566.14 General
22 3.06 1.36 935.24 General
23 2.78 2.63 801.48 General
24 2.73 3.56 632.65 General
25 1.01 1.07 932.4 High
26 3.94 4.13 529.05 High
27 1.74 0.69 728.88 High
28 4.86 2.19 861.1 General
29 0.58 3.88 669.5 General
30 3.56 3.52 700.61 General

Table 10. Parameter setting.

Parameter Value

t 5 min
P f ixed 100 CNY

v 30 km/h
Capacity 3000 kg

In the following section, five experiments are designed:

• Experiment about different objective functions;
• Experiment about collecting waste in conventional scenario in priority considered scenario;
• Experiment about different number of waste bins with high priority;
• Experiment about different waste filling levels;
• Experiment about different waste filling levels of general waste bins and different number of high

priority waste bins.
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5.2.2. Experimental Results

• Experiment about Objective Function

The first experiment is designed to select objective function: OF1, min T_D; OF2, min T_EGHG;
OF3, min T_C. Effects of the different objective functions are shown in Table 11 and the results
comparison is illustrated in Figure 7a–c. From these diagrams, we can see that on the one hand,
if OF1, min T_D is selected, distance is shorter than the other two cases while GHG emissions is higher
than the one acquired by TOF2, min T_EGHG. On the other hand, if OF2, min T_EGHG is selected, the
environmental protection level of the routes is optimized, but the distance is longer than the one
acquired by OF1, min T_D. For the next experiments, a most common and comprehensive objective
function, T_C, will be taken, which means to transform total distance to total fuel cost and transform
total GHG emissions cost by a conversion factor.

Table 11. Running results with different objectives.

Objective1-Distance Objective2-GHG Objective3-Cost

Distance 103.7554 109.4249 110.1329
GHG Emissions 83.1519 78.9363 82.6705

Cost 1208.129 1202.4465 1106.894

Highlighted values represent the optimal values of distance, GHG emissions and cost with different objectives.
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• Experiment about Conventional Scenario and Priority Considered Scenario 

In this section we do the experiment under two scenarios: (1) collect waste in the conventional 
way (conventional scenario, CS), which means all the waste bins have the same priority without 
considering the negative effect of specific waste bins; (2) collect waste considering waste bins’ 
priority (priority considered scenario, PCS). The detailed information about CS and PCS are shown 
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Number Routes High Priority Waste Bin Collection Order Collection Time 
1 {0,27,5,11,0}. 27 1st 16.92 
2 {0,15,1,30,16,0} 15 1st 11.38 
3 {0,10,8,20,12,0} 10 1st 8.22 
4 {0,7,29,14,24,0} 7 1st 15.70 
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Figure 7. Results comparison with different objectives. (a) Objective1-minimized distance, (b)
Objective2-minimized GHG and (c) Objective1-minimized cost.

• Experiment about Conventional Scenario and Priority Considered Scenario

In this section we do the experiment under two scenarios: (1) collect waste in the conventional way
(conventional scenario, CS), which means all the waste bins have the same priority without considering
the negative effect of specific waste bins; (2) collect waste considering waste bins’ priority (priority
considered scenario, PCS). The detailed information about CS and PCS are shown in Tables 12 and 13,
respectively, including service sequence of each route, waste bins with high priority included in each
route, the collection order and collection time of the high priority waste bins. From the two tables, we
can see that under CS, the order of waste bins with high priority is randomly assigned, resulting in the
later collection time. Under PCS, the waste bins with high priority are always first in the collection
sequence and then are collected earlier.

Table 12. Detailed route information under conventional scenario (CS).

Number Routes High Priority Waste Bin Collection Order Collection Time

1 {6,24,9,021,24,9,0} 17 2nd 30.54

2 {0,15,11,7,0} 15 1st 11.38
7 3rd 35.65

3 {0,8,4,12,0} 4 2st 29.03
4 {0,25,14,0} 25 1st 17.59
5 {0,13,29,22,0} - - -

6 {0,27,6,28,0} 27 1st 16.92
6 2nd 29.74

7 {0,23,16,30,0} - - -

8 {0,5,26,10,0} 26 2nd 17.95
10 3rd 28.62

9 {0,3,2,0} 2 2nd 28.62
10 {0,20,19,1,0} - - -

Total 246.03
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Table 13. Detailed route information under priority considered scenario (PCS).

Number Routes High Priority Waste Bin Collection Order Collection Time

1 {0,27,5,11,0}. 27 1st 16.92
2 {0,15,1,30,16,0} 15 1st 11.38
3 {0,10,8,20,12,0} 10 1st 8.22
4 {0,7,29,14,24,0} 7 1st 15.70
5 {0,25,28,3,0} 25 1st 17.59
6 {0,17,22,19,23,0} 17 1st 14.73
7 {0,2,4,21,9,0} 2 1st 12.93
8 4 2nd 30.04
9 {0,26,18,13,0} 26 1st 3.52

10 {0,6,0} 6 1st 10.69
Total 141.72

In order to better compare CS and PCS, a new metric is defined. The waste in waste bins with
high priority has a negative effective, and the longer time the waste accumulates, the greater the
negative effect. Therefore, we quantify the negative effect with the collection time of high priority
waste bins. Figure 8 illustrates the effective comparison. We can see that PCSs negative effect is almost
surrounded by CSs, which means that almost all the collection time of each high priority waste bin
in PCS is earlier than it in CS. In the 10 waste bins with priority, there are six waste bins collected in
PCS much earlier than in CS: No.2, No.6, No.7, No.10, No.17, and No.26; there are 3 waste bins with
priority collected at the same time both in PCS and CS: No.15, No. 25, and No.27; there is only one
waste bin collected in PCS a little later than in CS: No4, which is because the route servicing No.4 waste
bin in PCS contains two waste bins with priority while No.4 is at the second place. On the whole, the
total negative effect of PCS is 141.72 achieving a 42.3% reduction compared with CS. To prove the
overall optimization capability of PCS, besides the comparison of negative effect, Figure 9 gives the
difference of distance, GHG emissions, costs and negative effects between PCS and CS. We take this
kind of operation with CSs distance, GHG emissions, costs and negative effects MINUS PCSs to obtain
the data in Figure 9. We can clearly see that changes in distance, GHG emissions and costs are small
enough to be ignored while the negative effect differs greatly. We know the proposed PCS performs
better in terms of decreasing negative effect, distance, GHG emissions and costs.
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• Experiment about Different Number of High Priority Waste Bins

In order to study the impact of different numbers of high priority waste bins, this section
undertakes the experiment considering different numbers including 0, 5, 10, 15, 20 and 25. It is worth
mentioning that number of total waste bins is constant, 30. So the percentage of waste bins with high
priority increases in Figure 10. We can also see from the figure that the percentage of waste bins with
high priority increases as number increases due to the constant total number of waste bins. As the
percentage increases, the negative effect increases. This is because that with the number of high priority
waste bins increasing, some high-priority waste bins have to share the same car and several of them
will be arranged for later collection resulting in the raising of negative effect.
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• Experiment about Different Waste Filling Levels (WFLs)

In this section, we set different values of WFL and the results are shown in Figure 11. Due to
the increase of WFL, fewer waste bins reach the threshold and are included in the collection route,
resulting in costs and collected waste reduction.
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• Experiment about Different WFLs and Different Number of High-Priority Waste Bins

In this section, we undertake an experiment considering different numbers of high-priority waste
bins and different WTL at the same time and the results are shown in Figures 12–16. It is worth noting
that all the waste bins with high priority will be collected no matter what the WFL is. And the leftover
waste bins with general priority will operate selective collection according to WFLs. We call each
scenario PCS-n. PCS means priority considered scenario and “n” represents the number of waste bins
with high priority.Int. J. Environ. Res. Public Health 2020, 17, x FOR PEER REVIEW 19 of 25 
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Every number of waste bin with high priority (every figure) has three Figures a–c. For example,
a–c in Figure 12 are all sub-Figures of PCS-5. The first sub-Figure of each Figure is a pie chart about the
priority and volume distribution. We take Figure 14 as an example and (a) is the first sub-Figure of
PCS-15. We can see from Figure 14a that the number of waste bins with high priority accounts for half
and the filling level of waste between [0–60%), [60–70%), [70–80%), [80–90%) and [90–100%) accounts
for 17%, 3%, 10%, 0% and 20%.

The second sub-Figure of each figure is about the number of vehicles and negative effect and we
take (b) of Figure 13 as an example. We set five values of WFL, 0%, 60%, 70%, 80% and 90% as abscissa,
which means only the waste bins reaching preset specific WFL will be collected. We study negative
effect and number of vehicles changes in the process of increasing WFL. We can see the number of
vehicles decreasing as the WFL is increasing as a result of reduction of waste bins to collect. Affected
by the decline in the number of vehicles, several waste bins with high priority have to share the same
car resulting in the negative effect raising. Therefore, the negative effect and number of vehicles have
the opposite trend.

The third sub-Figure is about the cost percentage of collected waste and vehicle utilization rate
under different WFL. For the third sub-Figures of all figures, the cost and the percentage of collected
waste have the same trend: decreasing as WFL is increasing. That is because when we set higher
WFL, fewer waste bin can reach it and will be collected resulting in the lower percentage of collected
waste and further reducing cost. Vehicle utilization rate, another indicator, is calculated by dividing
total collected waste by total vehicles’ capacity, representing resource utilization efficiency. Different
number of waste bins with high priority and WFL lead to different vehicle utilization rate. We can find
from all the sub-Figures that there is an effective interval (60–80%) of WFL with high vehicle utilization
rate. The logistic enterprises can increase the efficiency of distribution by optimizing the paths when
WFL is set in this interval. Further excessive value should be avoided to prevent overflowing before
the next collection.

5.3. Analysis of Results

In the paper, the PCGVRP model is developed to optimize the activity of waste collection and
transportation in SWM, which is solved by the improved algorithm of LSHA. By considering specific
waste bins with high priority and filling levels of general waste bins, we study the impact of different
numbers of waste bins with high priority and WFLs on the negative effect, costs, the percentage of
collected waste and vehicle utilization rate. We find that the best value of WFL with high efficiency
should be set according to the number of waste bins with high priority, waste generation rate, waste
management requirements and so on. Some primary points of summary are enumerated below.

(1) For experiment 1, the objectives of minimizing distance, minimizing GHG emissions and
minimizing costs are compared. The objective of minimizing costs is the compromised one
considering both distance and GHG emissions.

(2) For experiment 2, PCS and CS are same in distance reduction, GHG emissions reduction and
costs reduction, while PCS achieves a negative effect reduction of 42.3%.

(3) For experiment 3, the negative effect increases as the number of waste bins with high priority
is increasing.

(4) For experiment 4, the higher the WFL, the lower the percentage of collected waste and the costs.
However, excessive WFL can increase the risk of overflowing before the next collection.

(5) For experiment 5, different distribution of various waste bins (waste bins with high priority, waste
filling level of general waste bins) result in different negative effect, costs, vehicles utilization
rate and so on. The WFL between 60% and 80% can obtain the optimal solution under different
number of waste bins with high priority.



Int. J. Environ. Res. Public Health 2020, 17, 4963 23 of 26

By setting different numbers of waste bins with high priority and different WFLs, it turns out
that the proposed PCGVRP model is applicable and efficient for the activity of waste collection and
transportation in SWM.

On account of the aforementioned summary, this paper comes up with some instructional advice.
From the point of view of SWM institutions, they can take scientific approaches, such as operational
research methods, route optimization, etc., to bring down the total negative effect and total costs.
At the same time, technical means such as sensors are recommended, because they can bridge the
communication between vehicles and waste bins and assist path optimization. In short, waste collection
and transportation can greatly benefit from these technologies. A certain value of WFL between 60%
and 80% is a preferable option to enhance the efficiency of waste collection and transportation and the
exact value of WFL should be decided by the number of waste bins with high priority.

From the perspective of the Environmental Protection Administration, firstly, they should
encourage waste management organizations to take the priority of waste bins into consideration and
minimize the negative effect of specific waste as much as possible. Secondly, they can introduce some
relevant policies to deploy more sensors. Finally, they ought to increase environmental consciousness
and inspire the public waste sorting to ensure that priority waste can be sorted, collected and transported
in a timely manner.

6. Conclusions

Programming a series of vehicle routes well is a challenging task in an effort to decrease collection
and transportation costs, the negative effects of some specific waste and to ensure that all inhabitants
live in a comfortable and healthy environment. Thus, the paper built a model for waste collection
and transportation with the minimized total comprehensive costs including routes costs and GHG
emissions costs. An improved genetic algorithm, LSHA, is designed to solve the proposed PCGVRP
model. Furthermore, the effectivity of LSHA is proved by a contrast experiment using data from
classic CVRP database. After that, the applicability and validity of the proposed PCGVRP model are
confirmed by setting different numerical parameters. The negative effect, costs, vehicles utilization
rate and percentage of collected waste are computed and analyzed separately with different numbers
of waste bins with high priority and WFLs. Bases on the results, some suggestions are provided for
the Environmental Protection Administration and waste collection and transportation organizations.
In the case of COVID-19, the increase of medical waste makes the timely disposal of this waste
particularly important and critical. In further research, multivariate statistical analysis (cluster analysis
and principal component analysis) can be applied to analyze the parameters of PCGVRP Furthermore,
recent and real data can be used to obtain more realistic and reliable conclusions.
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