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Hepatocellular carcinoma (HCC) is the third leading cause of cancer-

related fatalities worldwide. Identification of second-line therapies for

patients with progressive HCC is urgently required as the use of sorafenib

and/or regorafenib remains unsatisfactory. Imatinib, a small-molecule

kinase inhibitor, is used to treat certain types of cancer, and nuclear factor

κB (NFκB) is a positive regulator of cancer cell expansion. The combined

use of tyrosine kinase and NFκB inhibitors may have potential for treating

HCC. The aim of this work was to assess the potential anticarcinogenic

effects of imatinib and sulfasalazine alone or in combination on the human

HCC cell lines HEPG2 and Huh-7. Both drugs were shown to affect the

phosphoinositide 3-kinase/protein kinase B, phosphorylated signal trans-

ducer and activator of translation (p-STAT-3), breakpoint cluster region

protein/Abelson proto-oncogene and NFκB pathways. At the transcrip-

tional level, imatinib and sulfasalazine were found to synergistically down-

regulate c-MET gene expression. When compared with the activities of

either medication alone, combined use of imatinib and sulfasalazine

enhanced inhibition of HCC cell proliferation and extended induction of

apoptosis. In summary, the presented data suggest that sulfasalazine syner-

gistically potentiates the antitumor effects of imatinib.

Hepatocellular carcinoma (HCC) is well known as the

sixth most common harmful cancer type and the third

leading cause of cancer-related fatalities worldwide

[1,2]. No systemic medications for patients with HCC

whose illness advances amid sorafenib treatment exist

[3]. HCC impacts approximately 1 000 000 people

every year worldwide [4]. The most noteworthy HCC

predominance worldwide has been reported in Egypt

[5,6]. Sorafenib, a multityrosine kinase inhibitor, is

considered to be the only systemic treatment for

patients who are not candidates for a locoregional cure

[5,7].

Ongoing studies that address hepatocarcinogenesis

have defined critical components of a few signaling

pathways within the upgrading of cancer advancement,

metastasis and angiogenesis [8]. Several of these path-

ways, such as the protein kinase B (Akt)/mammalian

target of rapamycin, signal transducer and activator of

translation (STAT) and the nuclear factor κB (NFκB)
complex pathways, play critical roles in HCC
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advancement [9–11]. A powerful inhibitor of breakpoint

cluster region protein/Abelson proto-oncogene (BCR/
ABL) tyrosine kinase, imatinib, is believed to be the

standard of care in HCC control. Imatinib cure resis-

tance frequently occurs because of changes within the

BCR/ABL kinase domain [12–15].
BCR/ABL kinase is considered to be an oncogene

that controls and mediates expression of important

downstream proteins that have a role in HCC patho-

genesis [16]. Also, BCR/ABL was found to be overex-

pressed in HCC cases [17].

Patients with HCC need early diagnosis and effec-

tive therapy such as a second-generation tyrosine

kinase inhibitor. Hence it is vital to recognize variables

that may cause patients to have an insufficient reaction

to treatment [12]. Imatinib in combination with other

agents is presently advised. Many anticancer agents

may impact several signaling pathways and lead to

much more effective removal of liver cancer cells

[18,19]. The first drug approved for ulcerative colitis

was sulfasalazine. It acts as a potent and specific inhi-

bitor of NFκB. Recently, it was suggested that sul-

fasalazine has anticancer activities against a number of

human cancers [20].

The determination of second-line therapies for

patients with progressive HCC is urgent because its

improvement after the use of sorafenib and/or rego-

rafenib is still unsatisfactory. This work aimed to assess

the beneficial anticarcinogenic effects of the combina-

tion of imatinib and sulfasalazine on HCC cell lines.

Materials and methods

Chemicals/Reagents

Imatinib mesylate (#STI571) and sulfasalazine (#1576) were

purchased from Selleck (Selleck Chem, Houston, TX,

USA). 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium

bromide (MTT) reagent was purchased from Sigma-Aldrich

(Hamburg, Germany). ELISA kits for human vascular

endothelial growth factor (VEGF), phosphorylated (p)-Akt,

active caspase-3, p-NFκB, p-STAT-3 and p-BCR/ABL

detection were purchased from Eagle Biosciences Inc.

(Amherst, MA, USA), Abnova Biotechnology Co. (Cam-

bridge, UK), Quantikine (Minneapolis, MN, USA), Ray-

Bio® Biotechnology (Peachtree Corners, GA, USA), Acris

OriGene EU (Herford, Germany) and Sigma-Aldrich,

respectively.

Cell culture

The Homo sapiens HCC cell lines Huh-7 and HEPG2 were

obtained from ATCC (Cat: ATCC® HB-8065™ and

ATCC® PTA-4583; Baltimore, MD, USA). HEPG2 and

Huh-7 cells were preserved in T-25 flasks at 37 °C and 5%

CO2 in an adjusted mixture of Dulbecco’s modified Eagle’s

medium from Lonza BioWhittaker™ (Verviers, Belgium)

and 10% (v/v) FBS from Sigma-Aldrich [21].

At concentrations of 100 μg�mL−1 and 100 U�mL−1,

penicillin/streptomycin (Lonza BioWhittaker™) was used.

PBS, pH 7.2, was obtained from Lonza BioWhittaker™,

and 2.5% trypsin was obtained from Gibco™ Life Tech-

nologies Corporation (New York, NY, USA).

Cell viability assay

The MTT test was applied to check cell viability. For the

most part, 5 × 103 cells were permitted to grow in 96-well

plates. Imatinib, sulfasalazine and a combination of the

two were incubated for 48 h, and then to assist incubation,

I added 10 μL MTT solution (0.5%) to the medium for

4 h. The tested concentrations for imatinib included 40, 20,

10, 5, 2.5, 1.3, 0.6 and 0.3 μM. For sulfasalazine, concentra-
tions to 400, 200, 100, 50, 25, 12.5, 6.3 and 3.1 μM were

used, and for combination treatment, half of the concentra-

tions of each drug described earlier was used. Half of the

concentrations of individual drugs used in the combination

group was used with the aim of investigating the possibility

of minimizing drug doses when using a combination with

the objective of reducing the doses, reducing their toxicities

and side effects and, as a result, improving treatment out-

comes.

To solubilize the insoluble formazan crystals, I added

100 μL DMSO to each well after removing the medium.

The colored complex absorbance (A) was determined at

570 nm with a spectrophotometer. All tests were performed

in triplicate.

The combination index (CI) was calculated using the fol-

lowing formula:

CI ¼ CdrugAX ¼ AX=CdrugA þ CdrugBX=CdrugB

in which drugs AX and BX are the concentrations of

drugs used in combination treatment, whereas drugs A

and B are concentrations of each drug alone.

ELISA

VEGF, p-STAT-3, p-NFκB, p-Akt, p-BCR/ABL and acti-

vated caspase-3 protein levels in cell supernatants and cell

lysate were identified by human ELISA kits following the

manufacturer’s instructions. After HEPG2 and Huh-7 cell

cultivation for 48 h, the medium was then centrifuged at 17

741 g for 5 min. Complete media with 10% FBS were used

as a control.

The levels of the previous parameters assayed by ELISA

in the samples were determined using linear regression

equations. The resulting values were divided by the amount
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of protein (mg) in the sample to express values relevant to

milligrams cellular protein to be normalized to the total

protein level. The Bradford method was applied to measure

the overall protein level by following the manufacturer’s

instructions. The experiments were performed in quadrupli-

cate.

Real-time PCR

Real-time RT-PCR was used to measure the c-MET gene

expression level. In brief, total RNA was extracted by using

an RNA-spin™ total RNA extraction kit using silica-gel

membrane adsorption (Jena Bioscience Incorporated, Jena,

Germany). A NanoDrop 2000 spectrophotometer (Thermo

Fisher, Bedford, MA, USA) was used to measure the con-

centration and purity of the extracted total RNA.

The A of total RNA was measured at 260 and 280 nm

using Tris-EDTA buffer as a blank. The ratio of A260/A280

was applied to determine the purity of total RNA. The

extracted RNA concentration was expressed as nanograms

of total RNA per microliter.

Real-time RT-PCR assays were performed using the Sen-

siFast™ One Step RT-PCR kit with SYBR
®

Green Hi

ROX (#BIO-73001; Bioline Life Science Company, Swedes-

boro, NJ, USA), which was designed for highly repro-

ducible first-strand cDNA synthesis and subsequent

quantitative PCR in a single tube, and the internal control

used was β-actin.

Relative quantification (RQ) values for the tested gene

were calculated using the ΔΔCT method with adjustment

for β-actin expression relative to the expression level of con-

trol, for which RQ = 1. Log10 RQ was applied to calculate

fold changes using the formula Log10RQ = 102�ΔΔCt

(Log10RQ = 0 indicates no change in expression;

Log10RQ = 1 indicates that the tested gene is expressed at

a level 10 times greater than that of the control sample; and

Log10RQ = −1 indicates that the tested gene is expressed at

a level 10 times lower than that of the control sample).

The 2�ΔΔCt method was used to calculate the relative

expression levels. The sequences of the primers were blasted

against NCBI/Primer Blast. The experiments were per-

formed in quadruplicate.

The c-MET and β-actin primer sequences are: c-MET

forward, 50-GAAAATTGACTTAGCCAACCGAGAG-30

and c-MET reverse, 50-CACCACTGGCAAAGCAAAA-

TAGAAA-30 (the GenBank database accession number for

these sequences is NC_000007.13); and β-actin forward, 50-
AGTTGCGTTACACCCTTTCTTG-30 and β-actin reverse,

50-TCACCTTCACCGTTCCAGTTT-30 (the GenBank

database accession number for these sequences is NC_

000007.14).

Cell culture experiments were carried out in the medical

research institute, and RT-PCR experiments were carried

out in the Faculty of Medicine at Banha University.

Statistical analysis

The results are displayed as the mean � standard error

(SE). One-way ANOVA was used to analyze the results

obtained by Tukey’s post hoc test. GRAPHPAD PRISM software

(version 3.0) (San Diego, CA, USA) was applied to per-

form statistical analyses. For all statistical tests, the level of

significance was set at P < 0.05.

Results

In vitro MTT assay cytotoxicity study

The half-maximal inhibitory concentration (IC50) val-

ues of imatinib were 1.0 and 1.2 μM in Huh-7 and

HEPG2 cells, respectively, whereas the IC50 values for

sulfasalazine were 250 and 253 μM in the two cell

types, respectively. The IC50 values for the drugs used

in combination were 95 and 100 μM for sulfasalazine

and 0.4 and 0.47 μM for imatinib, as shown in Fig. 1.

CI calculated using the aforementioned formula indi-

cated that there is a synergistic effect between both

medications in which the CI values were 0.78 and 0.79

in Huh-7 and HEPG2 cells, respectively. These IC50

values were found to be equivalent to those previously

reported results.

Effects of imatinib, sulfasalazine and their

combination on protein and gene expression

levels in Huh-7 and HEPG2 cell lysates

Effects of imatinib (1, 1.2 µM), sulfasalazine (250,

253 µM) and their combination on p-NFκB, p-Akt, p-
BCR/ABL, p-STAT-3 and caspase-3 protein levels in

Huh-7 and HEPG2 cell lysates

This work revealed that 3 days of treatment of both

cell types with both drugs produced significant

decreases in p-NFκB, p-Akt, p-BCR/ABL and p-

STAT-3 protein levels when compared with the control

(P < 0.001).

The levels of p-NFκB, p-Akt, p-BCR/ABL and p-

STAT-3 were significantly decreased in the imatinib-

treated group (25.75%, 59.07%, 61.03% and 28.97%,

respectively) in HEPG2 cells and (31.21%, 54.09%,

67.13% and 26.97%, respectively) in Huh-7 cells com-

pared with the control (P < 0.05 and < 0.001).

Furthermore, the administration of sulfasalazine

mediated a similar but greater effect on p-NFκB, p-

Akt, p-BCR/ABL and p-STAT-3 levels in HEPG2 cells

(49.83%, 40.93%, 34% and 54.71%, respectively) and

in Huh-7 cells (51.45%, 43.93%, 37.23% and 63.91%,

respectively) than in the control (P < 0.001).
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Impressively, the combination treatment exerted a

much more pronounced effect on the aforementioned

parameters in HEPG2 cells (95.72%, 79.84%, 87%

and 81.93%, respectively) and in Huh-7 cells (97.12%,

82.14%, 90.1%, and 83.86 %, respectively), an effect

that was more significant than either treatment alone,

as presented in Fig. 2.

Effects of imatinib (1, 1.2 µM), sulfasalazine (250,

253 µM) and their combination on c-MET gene

expression levels in Huh-7 and HEPG2 cell lysates

As presented in Fig. 3, imatinib and sulfasalazine

caused a marked down-regulation in the expression of

the c-MET gene by 29.64% and 48.74%, respectively,

in HEPG2 cells and 31.74% and 49.84%, respectively,

in Huh-7 cells after normalization to the β-actin gene

compared with the control.

Interestingly, the combination treatment down-regu-

lated the expression of the c-MET gene by 89% and

91%, respectively, in the two cell line types in relation

to the control, an effect that was significantly different

from that of either treatment alone (P < 0.001).

Effects of imatinib (1, 1.2 µM), sulfasalazine (250,

253 µM) and their combination on caspase-3 and VEGF

protein levels in Huh-7 and HEPG2 cell lysates

The data in Fig. 4 reveal a significant increase in the

level of caspase-3 among all of the treated groups

compared with the control. The imatinib-treated group

demonstrated statistically significant increases in cas-

pase-3 levels in both types of cell (75.45% and 79.1%,

respectively) compared with the control (P < 0.05).

Moreover, the administration of sulfasalazine

exerted much more pronounced effects on the afore-

said parameter relative to the control (169.82% and

171.92%, respectively), and the increases were statisti-

cally significant (P < 0.001). Likewise, the combination

regimen exerted tremendous effects on caspase-3 levels

(391.09% and 399.1%, respectively) compared with

the untreated group. This effect was much better than

either treatment alone (P < 0.001).

Interestingly, imatinib produced significant decreases

in VEGF levels in both types of cells (54.07% and

57.21%, respectively) compared with the control group

(P < 0.001). Moreover, sulfasalazine produced signifi-

cant decreases in VEGF protein levels (41.77% and

39.89%, respectively) compared with the control

group.

In addition, treatment with a combination of ima-

tinib and sulfasalazine resulted in the highest signifi-

cant decreases in VEGF protein levels (91.88% and

93%, respectively) compared with treatment with ima-

tinib or sulfasalazine alone.

Discussion

HCC is considered to be one of the deadliest diseases.

Improvements in patient stratification and the

Fig. 1. Cytotoxicity results of imatinib and sulfasalazine in (A) HepG2, (B) Huh-7, (C) combination in HepG2 and (D) Huh-7 using MTT assay.

IC50 values were calculated from these curves using GRAPHPAD PRISM 5 software. Each data point was the mean of four independent

experiments � standard deviation.
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development of novel cures have increased patient sur-

vival. Collectively, HCC is the sixth most common

cause of cancer-related fatalities worldwide [22,23]. In

recent decades, HCC has been determined to be multi-

factorial and originate from an enhanced hepatic

microenvironment that is related to persistent liver ill-

ness and characterized by enormous infection and

fibrosis that mediate the deregulation of a few signal-

ing pathways and the collection of hereditary alter-

ations in ordinary hepatocytes [24].

This kind of defect encouraged me to combine sul-

fasalazine and imatinib to evaluate the effects of both

drugs on many of these signaling pathways in HCC.

This work is the first to investigate the sites of interac-

tion and the synergism between imatinib and sul-

fasalazine that could be mediated through the NFκB,
BCR/ABL and p-STAT-3 signaling pathways. This

study demonstrates significant down-regulation at the

c-MET gene level, in which the studies of Santacat-

terina et al. [25] and Mesarwi et al. [26] were in

concordance with the results that showed that the

expression of the c-MET gene was preferentially

focused in hepatocytes. Because the c-MET gene was

found to be encoding the hepatocyte growth factor

receptor, Parizadeh et al. [27] pointed out the impor-

tance of evaluating the transcriptional level of the c-

MET gene.

Moreover, the c-MET gene was found to be a

potent proto-oncogene for hepatocyte growth and

regeneration. A previous study demonstrated that c-

MET gene expression affects and contributes to the

expression of important downstream genes and their

pathways, such as NFκB, BCR/ABL and p-STAT-3

[28].

In addition, our study revealed that activated p-

NFκB serves as a mediator in HCC by inducing cell

viability and growth and causing up-regulation of anti-

apoptotic proteins. Our results showed that up-regula-

tion of caspase-3 and down-regulation of Akt and p-

STAT-3 downstream proteins levels occurred. Up-

Fig. 3. Effects of imatinib (1, 1.2 µM), sulfasalazine (SSZ) (250, 253 µM) and their combination on c-MET gene expression levels in (A)

HEPG2 and (B) Huh-7 cell lysates. All treatments were performed for 3 days. The results are presented as the mean � SE (n = 4). Average

fold decrease in c-MET gene expression is shown on the log scale. Statistical analysis was performed using one-way ANOVA followed by

Tukey’s post hoc test at P < 0.05 compared with the control (*), imatinib-treated (#) and SSZ-treated ($) groups.

Fig. 2. Effects of imatinib (1, 1.2 µM), sulfasalazine (SSZ) (250, 253 µM) and their combination on p-NFκB, p-Akt, p-BCR/ABL, p-STAT-3, and
caspase-3 protein levels in (A) HEPG2 and (B) Huh-7 cell lysates. All treatments were performed for 3 days. The results are presented as

the mean � SE (n = 4). Statistical analysis was performed using one-way ANOVA followed by Tukey’s post hoc test at P < 0.05 compared

with the control (*), imatinib-treated (#) and SSZ-treated ($) groups.
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regulation of caspase-3 was found to be mediated

through p-NFκB inhibition.

Our results could be caused by the arguments under-

lined by Aggarwal [29]: (a) two major inflammation

pathways, transcription factors p-NFκB and p-STAT-

3, are stimulated by risk factors for cancer; (b) cancer

malignancy occurs; and (c) in many cancer types, p-

NFκB and p-STAT-3 are continuously active [30].

Our data showed that imatinib produced significant

reductions in NFκB, BCR/ABL, p-STAT-3, p-Akt and

VEGF protein expression levels, while causing a signif-

icant increase in caspase-3 expression [31]. Our find-

ings corroborate the results of other studies [32–38],
which could be linked to the fact that imatinib causes

a reduction in p-NFκB activity and downstream proin-

flammatory signaling in lymphocytes. In murine air

liquid interface cells, imatinib caused a decrease in

lipopolysaccharide-induced lung p-NFκB expression.

This work shows the effects of imatinib on the c-

MET gene expression level, which could be attributed

to the crosstalk between the BCR/ABL and VEGF/
VEGFR pathways with collaboration toward boosting

propagation and metastasis in endothelial cells [38,39].

Moreover, this study showed that imatinib caused

an increase in caspase-3 protein expression levels and

inhibited VEGF-independent angiogenesis. Sul-

fasalazine mediated a comparable pattern with that of

imatinib. However, no immediate data correlating sul-

fasalazine as a potent p-NFκB and/or VEGF and p-

STAT-3 inhibitor with HCC exist.

This study revealed for the first time that sul-

fasalazine can be successful in producing significant

reductions in the protein expression levels of p-NFκB,
BCR/ABL, p-STAT-3, p-Akt and VEGF and cause a

significant increase in caspase-3 expression, which is in

line with other studies [40–45], which could be the

Fig. 4. Effects of imatinib (1, 1.2 µM), sulfasalazine (SSZ) (250, 253 µM) and their combination on caspase-3 and VEGF protein levels in (A)

HEPG2 and (B) Huh-7 cell lysates. All treatments were performed for 3 days. The results are presented as the mean � SE (n = 4).

Statistical analysis was performed using one-way ANOVA followed by Tukey’s post hoc test at P < 0 .05 compared with the control (*),
imatinib-treated (#) and SSZ-treated ($) groups.
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result of the inhibition of NFκB as one possible pathway

for the decrease in VEGF because p-NFκB is consid-

ered to be a potent transcription factor that controls

the expression of many downstream proteins, such as

BCR/ABL, p-STAT-3, p-Akt and VEGF. In addition,

crosstalk between the NFκB and p-STAT-3 pathways

was found. p-NFκB was also found to inhibit Akt

phosphorylation and BCR/ABL. Another study [46]

was in agreement with the present results.

Furthermore, this work revealed for the first time

the final result of sulfasalazine on c-MET gene expres-

sion in HCC in which previous studies showed that

inhibition of c-MET gene expression leads to VEGF

protein level inhibition [47]. Our results agree with

those from another study [48], which showed that p-

NFκB functions as a prosurvival transcription factor

by inducing antiapoptotic genes, including Bcl-2 family

users and caspase-3 inhibitors. p-NFκB inhibition was

shown to improve apoptosis by accounting for the

activation of caspase-3 in which previous studies prove

that inhibition of p-NFκB leads to repression and inhi-

bition of down-regulating the BCR/ABL oncoprotein

[49].

The sulfasalazine/imatinib combination showed bet-

ter modulation of AKT/mammalian target of rapamy-

cin signaling and BCR/ABL protein levels. This work

shows for the first time the effects of the combination

of imatinib/sulfasalazine on p-NFκB, BCR/ABL, p-

STAT-3, p-Akt, VEGF, caspase-3 and c-MET expres-

sion in HCC, thus confirming our aim in this study,

which was to assess the potential development of ima-

tinib and sulfasalazine as a combination treatment and

to determine whether this enhancement is mediated by

these signaling pathways.

Imatinib in combination with sulfasalazine may have

the potential as a new treatment option for the cure of

advanced HCC. Interestingly, coadministration of sul-

fasalazine and imatinib resulted in better modulation

of the selected molecular pathways by leading to a

more significant inhibition of the BCR/ABL, Akt, p-

NFκB and STAT-3 signaling pathways in addition to

a more profound inhibition of inflammation, prolifera-

tion and antiapoptotic effects that may be attributed

to a chemical interaction between the two drugs when

used concurrently.

Conclusion

Our results based on use of the combination of sul-

fasalazine and imatinib confirm the synergistic effects

that can be derived from the use of an anti-inflamma-

tory medication with apoptotic, cytotoxic and antipro-

liferative effects with the tyrosine kinase inhibitor used

for the management and cure of HCC. This kind of

study should be explored in other types of malignancy

and patient with cancer because sulfasalazine can be

used as an adjunct remedy to decrease inflammation

and spread and can mediate the stimulation of apopto-

sis in patients with cancer.
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