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Diabetic kidney disease (DKD) is a devastating condition associated with increased

morbidity and premature mortality. The etiology of DKD is still largely unknown. However,

the risk of DKD development and progression is most likely modulated by a combination

of genetic and environmental factors. Patients with autoimmune diseases, like type

1 diabetes, inflammatory bowel disease, and celiac disease, share some genetic

background. Furthermore, gastrointestinal disorders are associated with an increased

risk of kidney disease, although the true mechanisms have still to be elucidated.

Therefore, the principal aim of this review is to evaluate the impact of disturbances in

the gastrointestinal tract on the development of renal disorders.

Keywords: type 1 diabetes, diabetic nephropathy, chronic kidney disease, gut permeability, inflammatory bowel

disease, gastrointestinal inflammation, contact activation, intestinal alkaline phosphatase

INTRODUCTION

Type 1 diabetes is an autoimmune disorder that is primarily associated with elevated blood glucose
due to loss of the insulin-producing pancreatic beta-cells. Long disease duration and poor glycemic
control increase the risk of micro- andmacrovascular complications, and the incidence and severity
of these complications is modulated by genetic and environmental factors. Diabetic nephropathy,
affecting up to one third of individuals with type 1 diabetes, is a global health problem that is
associated with significant and continuously growing health care costs (1, 2). Diabetic nephropathy
is not only strongly associated with cardiovascular disease, but is also one of the leading risk factors
for premature death in the Western countries (3–5).

The presence and progression of diabetic nephropathy is associated with low-grade chronic
inflammation, which could also be seen as an indication of a systemic infection (6). It is evident
that hyperglycemia by itself increases the risk of bacterial infections (7, 8), and particularly patients
with poor glycemic control are susceptible to respiratory, urinary, skin, and intestinal infections
(9–11). Moreover, severe bacterial infections increase the risk of acute kidney injury especially in
patients with diabetes, in the elderly, and in those with renal impairment and hypertension (12).
Dysbiosis of the gut microbiota has frequently been reported in various autoimmune andmetabolic
disease conditions such as in allergy, asthma, inflammatory bowel disease, celiac disease, systemic
lupus erythematosus, arthritis, chronic kidney disease, diabetes, obesity, and cardiovascular disease
(13–18). Based upon the hygiene hypothesis, frequent exposure to infective microbial agents
in childhood protects from the development of autoimmune diseases later in life. Apparently,
crosstalk between pathogenic and commensal gut bacteria play an important role in this process
(19). In support of this hypothesis, certain viruses and bacteria have been linked to the development
of autoimmunity (20–22).
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It is likely that gastrointestinal disorders associated with
dysbiosis may play a significant role in the development of
diabetic nephropathy, since disruption of the gastrointestinal
wall increases the translocation of microbial compounds, which
have been shown to have proinflammatory and nephrotoxic
properties. In support of this theory, we and others have shown
that elevated systemic levels of bacterial endotoxins are associated
with the development and progression of renal disease (23–26).
Given the large amount of emerging new data suggesting cross-
talk between the gut and the kidneys, the aim of this review is to
explore such interconnections and particularly the link between
gastrointestinal and renal disorders (Figure 1).

GASTROINTESTINAL MANIFESTATIONS IN
PATIENTS WITH DIABETES

In addition to the classical microvascular (retinopathy,
nephropathy, neuropathy) and macrovascular complications
(coronary artery disease, stroke, peripheral vascular disease),
individuals with type 1 diabetes also display gastrointestinal
problems. Although gastrointestinal-related complications are
relatively common in individuals with diabetes, their recognition
and management are often challenging. The most common
gastrointestinal problems are esophageal dysmotility, gastro-
esophageal reflux disease, gastroparesis, and enteropathy, and
the severity of the problems often correlates with the presence
of micro- and macrovascular complications. It is of note that
life-style related factors such as composition of diet and exercise
as well as medication (e.g., metformin, statins, incretin-based
therapies) also have an impact on the gastrointestinal problems
(27). Up to 75% of individuals with diabetes may experience
gastrointestinal symptoms such as early satiety, postprandial
fullness, nausea, abdominal pain, vomiting, bloating, diarrhea

FIGURE 1 | Gastrointestinal manifestations in autoimmune-mediated diseases

are associated with the development of chronic kidney disease.

and/or constipation affecting their quality of life (28). Although
many of these symptoms could be attributed to diabetes-related
autonomic neuropathy, the etiology of these gastrointestinal
problems often remains unclear. However, in individuals with
diabetes, a relationship between cardiovascular autonomic
neuropathy and small-bowel bacterial overgrowth has been
reported (29, 30).

Exposure to antibiotics may lead to disruption of the normal
microbiota, which eventually could lead to colonization of
pathogenic microbes (e.g., Helicobacter pylori, Clostridium
difficile, Candida etc,). In individuals with type 1 diabetes in the
UK, the rate of gastrointestinal infections was ∼2-fold higher
compared to the general population (8). The frequent use of
antibiotics, which often disrupts the balance of the normal
intestinal microflora, has also been shown to correlate with
the severity of diabetic nephropathy in patients with type 1
diabetes (7). However, chronic gastrointestinal symptoms could
also arise from the presence of other systemic diseases such as
celiac disease, lactose intolerance, irritable bowel syndrome, and
inflammatory bowel disease. Type 1 diabetes and inflammatory
bowel disease are multifactorial autoimmune diseases, which
share many genetic and immunological aspects (31, 32). Both
are chronic diseases that are associated with increased risk
of cardiovascular disease and premature mortality (33, 34).
Despite the potential overlaps, earlier studies have not been
able to demonstrate a higher risk of diabetes in patients with
inflammatory bowel disease (35–38). However, in a recent
study from the UK, the prevalence of clinical inflammatory
bowel disease in adult individuals with type 1 diabetes was
∼6-fold higher compared to non-diabetic controls (1.5 vs.
0.3%, respectively) (39). Nevertheless, although gastrointestinal
manifestations are frequently reported in individuals with
diabetes, the potential impact of gastrointestinal-related
disorders on the development and progression of diabetic
nephropathy remains to be elucidated (40).

GASTROINTESTINAL MANIFESTATIONS IN
PATIENTS WITH RENAL DISEASES

Chronic kidney disease is a multifactorial disorder primarily
associated with the gradual loss of kidney function over time.
Based on a large systematic review and meta-analysis comprising
nearly seven million adult patients, the global estimate of the
prevalence was about 13% (41). Diabetes is one of the leading
causes, and the prevalence of chronic kidney disease is about 5
times higher among individuals with diabetes than in the general
population (42). Patients with advanced chronic kidney disease
carry a significantly higher risk of premature mortality due to
increased risk of infection related diseases (43, 44). Consequently,
sepsis is a severe life-threatening condition especially in patients
with impaired renal function (45, 46).

A key problem in chronic kidney disease is the gut dysbiosis
and the accumulation of uremic toxins. These uremic toxins are
derived from the diet, the protein metabolism, and the metabolic
action of the gut bacteria. The most intensively studied toxins are
p-cresylsulphate and indole sulfate. Tyrosine and phenylalanine
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are the main sources of p-cresol, while indole originates from
tryptophan. These intermediate by-products are absorbed from
the gut and finally sulfated by the liver. The accumulation of
the uremic toxins has many adverse effects, and for instance the
accumulation of urea increases the urea influx into the intestinal
lumen, where it is hydrolyzed to ammonia by microbial urease.
Consequently, ammonium hydroxide, a by-product of ammonia,
increases the intestinal pH leading to mucosal irritation and
structural damage. The uremic condition in combination with
chronic inflammation and impaired renal function may increase
the risk of kidney disease progression (47, 48).

Metabolic dysregulation seen in individuals with diabetes
is exacerbated by microbial dysbiosis and associated with
expansion of anaerobic bacteria, defects in the intestinal barrier
function, and increased translocation of microbial compounds,
e.g., bacterial endotoxins. Moreover, significant alterations of the
gut microbiota have been reported in patients with advanced
kidney disease (49, 50). Also, the immunosuppressive treatment
in patients with kidney transplants may have adverse effects
on the gastrointestinal tract (51). Previous studies in animals
and humans have shown that therapies targeting the gut might
provide novel tools for the correction of intestinal metabolism
and microbial dysbiosis in chronic kidney disease (52). For
instance, in collagen type 4α3–deficient mice with progressive
chronic kidney disease, the eradication of anaerobic microbiota
with antibiotics prevented bacterial translocation, reduced the
serum endotoxin levels, and reversed the systemic inflammation
to the level of non-uremic controls (53). Although the results
from dietary interventions in humans are still somewhat
controversial, modulation of the intestinal microbiota by
supplementation with probiotics may have beneficial therapeutic
effects in individuals with impaired renal function (54).

IgA nephropathy is the most common form of primary
glomerulonephritis worldwide. The renal injury is mediated
by deposition of IgA antibodies in the glomerular mesangium
leading to increased local inflammation and renal dysfunction.
Increased reactivity to dietary antigens has been associated
with mucosal inflammation. Interestingly, a recent genome-
wide association study on individuals with IgA nephropathy
of European and East Asian ancestry identified several risk
loci, which have previously been associated with the risk of
inflammatory bowel disease, intestinal epithelial barrier function,
and immune response to mucosal pathogens (55). Furthermore,
increased intestinal permeability, typically seen in inflammatory
bowel disease and celiac disease, has also been reported in
patients with IgA nephropathy (56–58).

KIDNEY MANIFESTATIONS IN PATIENTS
WITH GASTROINTESTINAL DISEASE

The inflammatory bowel disease is a multifactorial disease
primarily associated with microbial dysbiosis, intestinal epithelial
damage, immune dysregulation, and inflammation of the gut.
Despite the growing knowledge, the etiology and pathogenesis
of this complex disease is not yet fully understood. The
incidence of extra-intestinal manifestations (e.g., in the eye,

skin, bone, liver, pancreas, kidney, lung, and the heart) and
other autoimmune related diseases (e.g., celiac disease, type 1
diabetes, sarcoidosis, asthma, psoriasis, and rheumatoid arthritis)
seem to be significantly higher in patients with inflammatory
bowel disease compared to the general population (59, 60). It
has been estimated that 4–23% of patients with inflammatory
bowel disease suffer from reno-ureteral complications (61), of
which the most common are nephrolithiasis, tubulointerstitial
nephritis, glomerulonephritis, and amyloidosis. A significant
proportion of these renal complications are, however, associated
with the use of medication (e.g., aminosalisalicytes, cyclosporine,
azathioprine, and tumor necrosis factor alpha inhibitors) (62).
Based on the histopathologic examination of kidney biopsies,
IgA nephropathy and tubulointerstitial nephritis were the most
common findings observed in patients with inflammatory
bowel disease with subsequent kidney disease (63). Notably,
inflammatory bowel disease patients with active disease have
shown higher urinary albumin levels compared to those in the
remission phase (64, 65).

Celiac disease is an autoimmune disease mainly associated
with defects in the small intestine. Patients with celiac
disease suffer from diarrhea, malabsorption, weight loss, iron
deficiency, and anemia. Celiac disease is primarily caused by
an aberrant autoimmune reaction toward gluten, which is an
abundant protein present in various grains e.g., wheat, oats,
rye, and barley. The diagnosis of celiac disease requires specific
serologic blood tests (tissue transglutaminase IgA, deaminated
gliadin peptide IgA/IgG, endomysial IgA) and small intestinal
biopsies. Abnormal villous structures, villous atrophy, crypt
hyperplasia, and increased number of intraepithelial lymphocytes
are common endoscopic findings in patients with active disease.
The primary treatment of celiac disease is gluten-free diet, which
results in improvements in many cases (66). In Europe, the
prevalence of celiac disease in individuals with type 1 diabetes is
about 6–8 times higher compared to the general population (67).
Despite the increased risk of celiac disease, many patients with
type 1 diabetes and celiac disease do not display gastrointestinal
symptoms (68, 69). It has become evident that patients with
type 1 diabetes and celiac disease share many genetic (e.g.,
HLA and non-HLA genes) and environmental (e.g., dietary
antigens, viral infections) risk factors. Based on previous clinical
surveys, celiac disease was also associated with other extra-
intestinal manifestations such as endocrine, connective tissue,
and pulmonary disorders (70, 71). Compared to the general
population, patients with celiac disease carry a higher risk of
renal diseases e.g., IgA nephropathy (72–75). Based on eight
Northern European studies, the relative risk of kidney disease
was ∼2-fold higher in patients with celiac disease compared to
those without. Subsequent subgroup analyses in patients with
celiac disease showed ∼1.5-fold and ∼2.6-fold increased risks of
diabetic nephropathy and IgA nephropathy, respectively (76).

POTENTIAL NOVEL THERAPEUTIC TOOLS

Probiotics
Probiotics are living non-pathogenic micro-organisms, the
ingestion of which should provide health benefits to the host.
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Overall, probiotics are thought to have anti-inflammatory,
anti-oxidative, and many other favorable gut-modulating
properties (77). Especially bacterial species belonging to the
genus of Bifidobacterium and Lactobacillus, support the humoral
immune responses against environmental toxins and antigens.
Over the past decade, the impact of supplementation with
probiotics has been intensively studied in individuals with mild
or severe gastrointestinal symptoms e.g., diarrhea, irritable
bowel syndrome, and inflammatory bowel disease (78, 79).
Probiotic treatment with butyrate-producing bacteria (e.g.,
Faecalibacterium prausnitzii, Butyricicoccus pullicaecorum)
may improve epithelial barrier integrity and suppression of
intestinal inflammation (80). Among the newly discovered
gut residing bacteria, Akkermansia muciniphila has shown
promise for the treatment of metabolic disorders (81). In
patients with kidney disease, probiotic supplementation has
also shown some beneficial effects on the glycemic control,
uremic toxins, blood urea nitrogen, oxidative stress, and
markers of inflammation (82–87). Similar trends have been
observed in clinical trials using synbiotics, a combination
of probiotics and prebiotics, which support the growth
and activity of the beneficial micro-organisms in the gut
(54, 88). In a mouse model of acute kidney injury, short-
term probiotic pretreatment decreased the inflammation and
protected the mice from the development of severe kidney
damage (89).

Resistant Starch
Starches are considered prebiotics, which support the health
and growth of the gastrointestinal microflora. Natural plant
starches with high amylose content are resistant to digestion
by intestinal amylases. Enzyme-resistant starches pass the upper
intestinal tract and are finally fermented by the gut bacteria
in the large intestine leading to increased production of
beneficial metabolites. Many of the propitious effects (e.g.,
increased number of butyrate-producing bacteria, reduced cell
proliferation, decreased inflammation, and cellular apoptosis)
are thought to be mediated by an increased production
of short-chain fatty acids including acetate, propionate, and
butyrate. Clinical trials with resistant starches have shown
some promising effects in the management of metabolic
diseases including colon cancer, inflammatory bowel disease,
obesity and diabetes (90). In a recent study in non-obese
diabetic mice, resistant starch diet decreased the number of
autoreactive T-cells and protected the mice against type 1
diabetes (91). In addition to improved glycemic control and
insulin sensitivity (92), resistant starch containing diet could also
exert renoprotective effects e.g., via the vitamin D metabolism
(93). Dietary supplementation of digestion resistant starches has
been shown to ameliorate the progression of kidney disease
in rodents (94, 95). In hemodialysis patients, consumption
of resistant starch for 6 weeks reduced the plasma levels of
uremic toxins (96). Despite these promising effects, more studies
are needed to evaluate the impact of dietary factors on the
gut and the kidney function in patients with chronic kidney
disease (97).

Fecal Transplantation
The basic principle of fecal microbiota transplantation is to
transfer the normal microbiome from a healthy donor to
individuals suffering from microbial dysbiosis. Isolated stool
preparations can be transferred to the recipient with the
aid of colonoscopy, an orogastric tube, enema, or by orally
given capsules. The fecal microbiota transplantation strategy
has successfully been applied in the treatment of infections
caused by Clostridium difficile and especially in those patients
that do not respond to the antibiotic treatment. It is of
note that chronic Clostridium difficile infections increase the
risk of colon-related complications such as megacolon and
pseudomembraneous colitis. Alternative treatment options have
become increasingly important as the prevalence of antibiotic
resistant bacterial strains have exploded all around the world. The
risk of Clostridium difficile infections is particularly high among
the patients with inflammatory bowel disease—up to eight times
higher risk than in matched controls (98). Also patients receiving
immunosuppressive medication, e.g., patients with a kidney
transplant, have a higher risk of colonization of pathogenic
bacteria. In addition to Clostridium difficile infections, the fecal
microbiota transplantation treatment has also been shown to be
an effective tool for the eradication of gut residing Salmonella and
ESBL-producing E. coli bacterial strains (99, 100). Besides chronic
gastrointestinal infections, the fecal microbiota transplantation
therapy may also offer novel treatment strategies for various
metabolic diseases such as diabetes, obesity, non-alcoholic fatty
liver disease, and inflammatory bowel disease (101, 102).

POTENTIAL NOVEL THERAPEUTIC
TARGETS

In relation to the manifestations of the gastrointestinal diseases,
there are potential novel biological mechanisms associated with
the activity and permeability of the microbial toxins in the gut.
New evidence supports the hypothesis that intestinal alkaline
phosphatase (IAP) and components of the kallikrein-kinin
system play an important role in the detoxification and the
transport of bacterial endotoxins (Figure 2).

Intestinal Alkaline Phosphatase
The human gut contains about 1.0–1.5 kg of bacteria. Notably,
the brush-border enzyme intestinal alkaline phosphatase
(IAP) plays an important role in the gut mucosal defense by
suppressing inflammatory mediators, including microbial
compounds (endotoxins, polyphosphates), and luminal
adenosine triphosphate by dephosphorylation. IAP has also
been shown to be involved in the regulation of duodenal
bicarbonate secretion and fatty acid absorption. A decrease in
the luminal IAP activity could increase the risk of gastrointestinal
disease through changes in the microbial composition, intestinal
inflammation, and the gut permeability (104, 105). Exogenous
administration of IAP has on the other hand been shown to
have potential therapeutic effects. In animal models of intestinal
damage, oral supplementation of IAP reduced the gut epithelial
damage and inflammation (106). Moreover, administration
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FIGURE 2 | Putative interconnections between LPS-detoxification and intestinal barrier function. Intestinal alkaline phosphatase (IAP) detoxifies bacterial

lipopolysaccharides (LPS; endotoxins) by dephosphorylation. Butyrate, a short-chain fatty acid produced as a result of bacterial fermentation, stimulates IAP gene

expression. IAP may also modulate composition of microbial community via regulation of secretory IgA release. Fecal calprotectin is a commonly used marker for

increased neutrophil (NEU) migration and local inflammation in patients with gastrointestinal diseases. Lower luminal IAP-activity may lead to increased production of

toxic LPS-molecules, which in turn may stimulate Factor XII regulated contact activation pathway in the gut. Subsequent activation of kallikrein-kinin system by

endotoxins may potentiate leakiness of the intestinal wall. Modified from Lassenius et al. (103).

of exogenous IAP to mice suppressed the Salmonella and
Clostridium associated disease activity and improved survival
(107, 108). Interestingly, in IAP-knockout mice, the development
of the metabolic syndrome was also prevented by oral IAP
supplementation (109, 110). Both recombinant and bovine
IAP has been utilized in human clinical trials. Promising
results has so far been obtained from the treatment of patients
with rheumatoid arthritis, heart surgery, sepsis, acute kidney
injury, and inflammatory bowel disease (110–112). The histone
deacetylase inhibitor butyrate, produced by intestinal bacteria
through carbohydrate fermentation, is a positive activator of IAP
gene expression. Oral butyrate supplementation has also shown
beneficial effects in individuals with various gastrointestinal
problems such as irritable bowel syndrome, inflammatory bowel
disease, diverticulitis, and traveler’s diarrhea (113). Butyrate has
also been shown to alleviate renal fibrosis, inflammation, and
kidney damage in rodent animal models (114–116).

Importantly, we recently observed in individuals with type
1 diabetes that decreased fecal IAP activity was accompanied
by lower fecal butyrate, and IgA antibody concentrations.
Of note, individuals with uncomplicated type 1 diabetes also
exhibited higher fecal calprotectin concentrations compared
to the non-diabetic controls. It was also shown that oral
IAP supplementation increased the mucosal IgA secretion,
which modulate immunity and host-microbe interactions
in the gut (103, 117). Reduced fecal IAP levels have been
reported in individuals with inflammatory bowel disease, celiac
disease, and type 2 diabetes (118–120). Hypothetically, low
intestinal IAP-activity could result in increased translocation

of cytotoxic bacterial compounds, higher systemic endotoxin
activity, and could thereby increase the risk of kidney or
other organ injuries. In IAP-knockout mice, the dextran
sodium sulfate-induced colitis phenotype was significantly
aggravated compared to dextran sodium sulfate-treated
wild-type mice. Oral administration of calf IAP attenuated
the intestinal inflammation and normalized the mucosal
architecture in dextran sodium sulfate-treated IAP-knockout
mice (121). The first compound heterozygous mutations
in the human ALPI gene leading to IAP deficiency have
recently been described. Two index cases with different IAP
mutations exhibited gastrointestinal manifestations similar
to inflammatory bowel disease (122). A novel deletion-
insertion mutation in the C-terminal end of the hALPI gene,
was recently associated with familial hyperphosphatemia in
Japan (123).

The effects of exogenous IAP administration have been
evaluated in recent human clinical trials involving patients
with sepsis, heart surgery, and rheumatoid arthritis. Of note,
intravenously administrated bovine IAP has been shown
to have promising renoprotective effects in sepsis-induced
acute kidney injury (124–126). In animal models of intestinal
damage, oral administration of IAP reduced gut epithelial
damage, and inflammation (106, 127, 128). Despite these
promising effects in animals, human trials with oral IAP
supplementation are currently at the very early stage (111).
However, endogenous IAP expression could potentially
be enhanced via modulation of the gut microbiome (diet,
probiotics), dietary supplements (e.g., resistant starch, fiber,
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butyrate) or with specific drug-therapy (e.g., Rifampicin,
Zanamivir) (108, 129, 130).

Contact Activation Pathway
Patients with impaired intestinal barrier function also display
anomalous changes in the factor XII (FXII; Hageman factor)
regulated contact activation pathway. Upon contact with
negatively charged surfaces and anionic compounds (e.g.,
glass, heparin, polyphosphates, dextran sulfate, endotoxins)
FXII is autoactivated, which eventually leads to sequential
proteolytic cleavage of the down-stream targets. Cleavage
of high-molecular-weight kininogen leads to subsequent
production of bradykinin, a potent vasodilator of blood
vessels (131). The question arises whether bradykinin release
could also be linked to the increased gut permeability
e.g., bacterial endotoxins, which may in turn boost the
activation of FXII in the submucosal tissue. The increased
gut permeability and translocation of bacterial components
may also aggravate systemic inflammation and renal
damage.

Hereditary angioedema is a rare genetic defect, primarily
caused by mutations in the SERPING1 gene, associated with
complement 1 inhibitor deficiency (132). Gene mutations
associated with hereditary angioedema have also been found in
the Factor XII and plasminogen genes (133–136). Moreover, the
non-genetic and non-allergic form of angioedema has frequently
been seen in subjects using angiotensin-converting enzyme
inhibitors (132). Angioedema is commonly characterized by
short-lived episodes of serious edema involving the lungs,
the skin, and the gastrointestinal tract (137, 138). Over
90% of hereditary angioedema patients have experienced
episodic or chronic abdominal pain, which is accompanied
by other gastrointestinal symptoms such as diarrhea, nausea
or vomiting (139). Similar complications have been reported
in individuals with angiotensin-converting enzyme inhibitor-
induced angioedema (140). Based on the surveillance of
antihypertensive medication (angiotensin-converting enzyme
inhibitors/angiotensin receptor blockers) in the UK between
2007 and 2014, gastroenteritis was shown to be a significant
risk factor for acute kidney injury (141). In addition to
the gastrointestinal problems, kidney related disorders
have also been documented in patients with hereditary
angioedema (142–148). Cutaneous and systemic lupus
erythematosus are the most often described autoimmune
conditions associated with hereditary angioedema. It has
been estimated that ∼20–25% of hereditary angioedema
patients with a subsequent lupus diagnosis exhibit renal
complications (149).

Defects in the contact activation pathway have also been
reported in patients with inflammatory bowel disease. Zeitlin
et al. reported significantly higher kinin-forming activity in
the colonic muscle tissue isolated from patients with ulcerative
colitis (150). In patients with inflammatory bowel disease,
increased interstitial kallikrein activity has also been shown
to correlate with the inflammation in the isolated tissue

samples (151, 152). In an animal model of colitis, elevated
levels of portal endotoxins were found in mice treated with
dextran sodium sulfate (153). However, in wild-type mice
with dextran sodium sulfate induced colitis, complement 1
inhibitor treatment reduced the severity of the disease (154).
Furthermore, the use of bradykinin receptor blockers have been
shown to improve the general health condition of mice with
chemically induced colitis (155–157). Moreover, inhibition of the
kallikrein-kinin system reduced peptidoglycan-polysaccharide
induced enterocolitis also in rats (158–160). In support of
these earlier findings, Wang et al. has recently demonstrated
that mice deficient in kallikrein, kininogen, or bradykinin
receptors are protected from dextran sodium sulfate-induced
mucosal damage and inflammation (161). In addition to the
dextran sodium sulfate-induced gut related phenotype, the
presence of other extra-intestinal manifestations should also be
considered. Noteworthy, dextran sodium sulfate-induced colitis
has also been associated with the development of acute kidney
injury in mice (162, 163). There is a substantial number of
studies supporting the impact of the kallikrein-kinin system
on the development of microvascular complications such as
diabetic retinopathy, macular edema, and diabetic nephropathy
in patients with diabetes (164, 165). Apparently, more studies are
needed to elucidate whether the contact activation pathway play a
significant role in the pathogenesis of gastrointestinal and kidney
related disorders.

CONCLUSION

Based on the present overview, interconnections between
gastrointestinal and renal disorders exist. One of the future
challenges is to find diagnostic tools to determine the
incidence of gut related diseases especially among patients
with type 1 diabetes. Early identification and effective
management of gut related disorders may slow down or
even prevent the development of secondary complications
e.g., renal and vascular injuries. In the future novel
treatment strategies could potentially be adapted once the
pathophysiological mechanisms behind the gut-kidney axis has
been clarified.
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