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Abstract: The thermodynamic consistency of linear viscoelastic models is investigated. First, the
classical Boltzmann law of stress–strain is considered. The kernel (Boltzmann function) is shown to
be consistent only if the half-range sine transform is negative definite. The existence of free-energy
functionals is shown to place further restrictions. Next, the Boltzmann function is examined in the
unbounded power law form. The consistency is found to hold if the stress functional involves the
strain history, not the strain–rate history. The stress is next taken to be given by a fractional order
derivative of the strain. In addition to the constitutive equations involving strain–rate histories,
finding a free-energy functional, consistent with the second law, seems to be an open problem.
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1. Introduction

The modelling of materials with memory through functionals on an appropriate set
of histories shows interesting questions about the correct assumptions on the constitutive
equations. This is the case even for the linear theory of viscoelasticity within the realm of
rational thermodynamics.

The classical linear theory traces back to Boltzmann [1,2] and assumes that the stress
is determined (linearly) by the present value of the strain and the strain history. The
consistency of this model with the second law of thermodynamics is well established.
Here, we re-examine the thermodynamic restrictions and find that the kernel (Boltzmann
function) is required to have a negative half-range sine transform. Well-known forms of the
free-energy functional are shown to be consistent with thermodynamics, only if additional
conditions on the kernel hold.

There are models in linear viscoelasticity where the kernel is unbounded [3]. This is
particularly the case of kernels in a power law form [4–6]. We examine the thermodynamic
consistency and show that the power law form is allowed if the exponent of the kernel is
within (−1, 0) and is applied to the strain history.

The modelling of viscoelasticity, as developed by Pipkin [7], involves the strain–rate
history rather than the strain history. The strain–rate dependence may be justified as more
appropriate to represent the continuity of the stress functional in that small changes in
the strain–rate history produce small changes in the stress. In addition, we might think
that the viscous character of viscoelasticity is more properly described by the strain–rate
history. Mathematical difficulties arise if the strain–rate history is involved along with an
unbounded kernel.

The power law form of the kernel is also characteristic of viscoelastic models with
derivatives of fractional order. Fractional calculus is a well-established scheme in engineer-
ing science, particularly in materials modelling. Despite the extensive literature on the
applications of derivatives of fractional order (see, e.g., [8–10] and Refs therein), it seems
that no definite thermodynamic analysis has been developed so far. Here, the thermody-
namic consistency is investigated by requiring the compatibility—with the second law—of
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a linear dependence of the stress on a fractional derivative of the strain and the existence of
a corresponding free-energy functional.

Notation. We consider a solid occupying a time-dependent region Ω ⊂ E 3. Throughout,
ρ is the mass density, v is the velocity, T is the symmetric stress tensor, ε is the internal
energy, and q is the heat flux. The symbol ∇ denotes the gradient operator in Ω, and ∂t
is the partial time derivative at a point x ∈ Ω, while a superposed dot stands for the total
time derivative, ḟ = ∂t f + v · ∇ f . Cartesian coordinates are used, L is the velocity gradient,
Lij = ∂xj vi, and D = symL is the Eulerian rate of deformation. We let R be a reference
configuration; the motion χ is a function that maps each point vector X ∈ R into a point
x ∈ Ω. The deformation gradient F is defined by FiK = ∂XK χi and J = det F > 0, while
∇R is the gradient in R. The Green–St. Venant strain is E = 1

2 (F
TF− 1), where 1 is the

unit second-order tensor. If A is a second-order or fourth-order tensor, then the inequality
A ≥ 0 (or A ≤ 0) means that A is positive (or negative) semi-definite.

2. Linear Viscoelastic Models

Throughout, we follow a Lagrangian formulation. Let TRR be the second Piola stress
related to the Cauchy stress T, by

TRR = JF−1TF−T . (1)

We then take the (linear) Boltzmann law [1] in the form

TRR(t) = G0E(t) +
∫ ∞

0
G′(s)E(t− s)ds, (2)

where the common dependence on the point X ∈ R is understood and not written. Here,
G0 and G′(s) have values in the space Lin(Sym, Sym) of fourth-order tensors from Sym to
Sym. We let

G(s) = G0 +
∫ s

0
G′(u)du, G∞ = G0 +

∫ ∞

0
G′(u)du. (3)

We assume G′ and G′′ are continuous on [0, ∞). Moreover we let ‖G′‖ = (G′ ·G′)1/2

and assume ∫ ∞

0
‖G′‖(s)ds < ∞. (4)

Since we use the Lagrangian formulation the dependence on the position is through the
reference position X. Hence, both a superposed dot and ∂t denote the total time derivative,
namely the derivative with X fixed.

3. Second Law and Free-Energy Functionals

Let θ be the absolute temperature, η be the entropy density per unit mass, qR be the
heat flux in R, r be the energy supply, and ρR be the mass density in R. Following the
approach of rational thermodynamics, we take the balance of energy in the following form:

ρR ε̇ = TRR · Ė−∇R · qR + ρRr (5)

and the balance of entropy in the following form:

ρRη̇ ≥ ρRr
θ
−∇R ·

qR

θ
. (6)

We assume, as with the statement of the second law of thermodynamics, that inequality (6)
holds for any admissible process; that is, for any set of admissible constitutive equations
satisfying the balance equations. By replacing ρRr−∇R · qR from the balance of energy and
considering the Helmholtz free energy ψ = ε− θη, we obtain the second-law inequality in
the following form:

− ρR(ψ̇ + ηθ̇) + TRR · Ė−
1
θ

qR · ∇R θ ≥ 0. (7)
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It is worth remarking that here we follow the scheme of continuum mechanics merely
because this is the customary framework of viscoelasticity. Thermoviscous properties might
be framed within a more general scheme by enlarging the notion of state with appropriate
internal variables, as is the common case in extended irreversible thermodynamics [11,12].
Moreover, nonequilibrium properties might be described by means of rate-type equations,
as is the case, e.g., in [13]. We also observe that inequality (7) shows that occurrence of
flux–force pairs, such as Ė, TRR and ∇R θ, qR. This is not generally the case, as is shown by
balances derived within microscopic statistical approaches [12,14].

As a further simplifying assumption, we let θ be uniform, ∇R θ = 0, so that some
properties of the free energy are conserved while accounting for equilibrium thermal
processes. Hence, inequality (7) simplifies to

− ρR(ψ̇ + ηθ̇) + TRR · Ė ≥ 0. (8)

Furthermore, with reference to the Boltzmann law, let ψ, η, TRR, at time t, be dependent
on the present values θ(t), E(t), and the history Et,

ψ(t) = ψ̂(θ(t), E(t), Et). (9)

Let t0 be any time and let θ, E be constant at all times subsequent to t0. Formally, given
t, t0, with t > t0, consider the static continuation of Et0 ,

Et(s) =
{ E(t0), s ∈ [0, t− t0],

Et0(s), s ∈ (t− t0, ∞),

while θ is constant on [t0, t]. Hence, θ̇ = 0 and Ė = 0 on [t0, t]. Consequently, integration of (8)
on [t0, t] yields

ψ̂(θ(t0), E(t), Et)− ψ̂(θ(t0), E(t0), Et0) ≤ 0. (10)

Assume that the functional (9) satisfies

t→ ∞ =⇒ ψ̂(Et)→ ψ̂(E†), (11)

where E† is the constant history Et(s) = E(t0), s ∈ [0, ∞), and then

ψ̂(E†) ≤ ψ̂(Et0); (12)

for brevity, we omit writing the dependence on the present values θ(t), E(t).
The result,

ψ̂(Et) ≥ ψ̂(E†) (13)

means that among the free energies of the histories Et with a given present value, that
associated with the constant history has the minimum value. This conclusion holds,
irrespective of the linearity of the model.

In light of the dependence on θ, E, Et, inequality (7) becomes

−ρR(∂θψ̂ + η)θ̇ + (TRR − ρR∂Eψ̂) · Ė− ρRdψ̂(Et|Ėt) ≥ 0,

where dψ̂(Et|Ėt) denotes the Fréchet derivative at Et in the direction of Ėt. The linearity
and arbitrariness of θ̇ and Ė imply

η = −∂θψ̂, TRR = ρR∂Eψ̂, dψ̂(Et|Ėt) ≤ 0. (14)

These relations hold for any functional ψ̂(θ, E, Et); to save writing we let θ and E stand
for θ(t) and E(t).
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If ψ̂ is independent of Et, then TRR = ρR∂Eψ̂ is the standard relation characterizing
hyperelasticity. In such a case, it is often assumed that the reference configuration is
natural ([15], §48.2.3) in that ∂Eψ̂ = 0 and

∂ETRR = ∂2
Eψ̂ ≥ 0 (15)

at E = 0. The requirement (15) is viewed as the convexity condition and allows for
the invertibility of TRR(E). A property of ∂2

Eψ̂ is related to wave propagation. If we
look for jump discontinuities a = [[∂nu]], in the direction n, by the equation of motion
ρRü = ∇R · (FTRR), at F = 1, then we find that

a ·A(n)a = ρRU2|a|2 (16)

where U is the speed and A(n) is the acoustic tensor, A(n) = n∂2
Eψ̂n. To guarantee wave

propagation the tensor ∂2
Eψ̂ is assumed to be strongly elliptic ([16], ch. 11),

(a⊗ n) · ∂2
Eψ̂(a⊗ n) > 0 (17)

for all a, n. In the linear case, ∂ETRR = G0 ∈ Lin(Sym, Sym) and G0 > 0 satisfies the
propagation condition (17).

We now go back to linear viscoelasticity and specify TRR in the Boltzmann form (2).
By (14) we find

ρR∂Eψ̂ = G0E +
∫ ∞

0
G′(s)Et(s)ds,

whence, if G0 = GT
0 ,

ρRψ̂(θ, E, Et) = ρRψ0(θ) +
1
2 E ·G0E + E ·

∫ ∞

0
G′(s)Et(s)ds + ρRψ̃(θ, Et), (18)

where G0 and G′ possibly are parameterized by the temperature θ. The functional ψ̃ is
subject to two conditions. First, by (14)3, we have

0 ≥ ρRdψ̂(Et|Ėt) = E ·
∫ ∞

0
G′(s)Ėt(s)ds + ρRdψ̃(Et|Ėt). (19)

Secondly, by (13) it follows that

E(t) ·
∫ ∞

0
G′(s)[Et(s)− E(t)]ds + ψ̃(θ, Et)− ψ̃(θ, E†) ≥ 0. (20)

Inequalities (19) and (20) are necessary conditions on the free energy for the validity
of the Boltzmann law (2).

Consider the functional

ρRψG = ρRψ0(θ) +
1
2 E ·G∞E− 1

2

∫ ∞

0
[E(t)− Et(s)] ·G′(s)[E(t)− Et(s)]ds (21)

and investigate the consistency with the requirements (19) and (20). We first observe that
ρRψG is in the form (18). Splitting the dependence on E(t) and that on Et we have

ρRψG = ρRψ0(θ) +
1
2 E ·G∞E− 1

2 E ·
( ∫ ∞

0
G′(s)ds

)
E + E ·

∫ ∞

0
G′(s)Et(s)ds

− 1
2

∫ ∞

0
Et(s) ·G′(s)Et(s) ds. (22)

Since
∫ ∞

0 G′(s)ds = G∞ −G0, it follows that ψG has the form (18) with

ρRψ̃(θ, Et) = − 1
2

∫ ∞

0
Et(s) ·G′(s)Et(s) ds. (23)
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At constant histories, namely when Et(s) = E(t) ∀s ≥ 0, we have

ρRψG = ρRψ0(θ) +
1
2 E ·G∞E. (24)

Hence, it follows that ψG has a minimum value at constant histories if—and only if—
the following holds ∫ ∞

0
[E(t)− Et(s)] ·G′(s)[E(t)− Et(s)]ds ≤ 0 (25)

where
G′(s) ≤ 0 ∀s ∈ [0, ∞). (26)

Now, assuming G′ = G′T we have

ρRdψG(Et|Ėt) =
∫ ∞

0
Ėt(s) ·G′(s)[E(t)− E(t− s)]ds. (27)

Observe that Ėt(s) = −∂sE(t− s) = ∂s[E(t)− E(t− s)]. Moreover, letting

EEE(t, s) := E(t)− E(t− s)

we have

∂s{EEE(t, s) ·G′(s)EEE(t, s)} = 2∂s{EEE(t, s)} ·G′(s)EEE(t, s) + EEE(t, s) ·G′′(s)EEE(t, s).

Hence, an integration by parts yields the following:

ρRdψG = 1
2
[
EEE(t, s) ·G′(s)EEE(t, s)

]∞
0 −

1
2

∫ ∞

0
EEE(t, s) ·G′′(s)EEE(t, s)ds.

Since G′(∞) = 0 and EEE(t, 0) = 0, the boundary terms (at s = 0, ∞) vanish. Hence,
inequality (14)3 holds for any history Et if—and only if—the following holds:

G′′(s) ≥ 0 ∀s ∈ [0, ∞). (28)

Thus, the conditions (26) and (28) are necessary and sufficient for the consistency of
the free-energy functional ψG.

The functional ψG for the free energy traces back to Volterra [17,18]. The thermody-
namic consistency of ψG has been investigated by Graffi [19,20].

The results (26) and (28) have been obtained in the literature through various ap-
proaches; see, e.g., [21], where scalar-valued relaxation functions are considered. It is worth
emphasizing that these restrictions follow up on the selection of a (nonunique) free-energy
functional, as is the case also for the next example.

As with the previous scheme, let G0 − G∞ > 0. A further free-energy functional
satisfying (18) is

ρRψD(θ, E, Et) = ρRψ0(θ) +
1
2 E ·G∞E + Ψ(E, Et), (29)

where

Ψ(E, Et) = 1
2

∫ ∞

0
G′(s)[E(t)− Et(s)]ds · (G0 −G∞)−1

∫ ∞

0
G′(s)[E(t)− Et(s)]ds. (30)

To verify the thermodynamic consistency of the functional (29), we first observe that
the minimum property of ψD at constant histories is apparent. Next, we note that

ρRψD(θ, E, Et) = ρRψ0(θ) +
1
2 E ·G∞E− 1

2 E · (G∞ −G0) + E ·
∫ ∞

0
G′(s)Et(s)ds

+ 1
2

∫ ∞

0
G′(s)Et(s)ds · (G0 −G∞)−1

∫ ∞

0
G′(s)Et(s)ds.
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Hence, the form (18) holds with

ρRψ̃ = 1
2

∫ ∞

0
G′(s)Et(s)ds · (G0 −G∞)−1

∫ ∞

0
G′(s)Et(s)ds.

Furthermore, we verify the requirement dψD(Et|Ėt) ≤ 0. Since

ρRdψD(Et|Ėt) =
∫ ∞

0
G′(s)Ėt(s)ds · (G0 −G∞)−1

∫ ∞

0
G′(s)[E(t)− Et(s)]ds

an integration by parts yields

ρRdψD(Et|Ėt) =
{[

G′(s)[E(t)− Et(s)]
]∞

0 −
∫ ∞

0
G′′(s)[E(t)− Et(s)]ds

}
·(G0 −G∞)−1

∫ ∞

0
G′(s)[E(t)− Et(s)]ds.

The vanishing of the boundary terms implies that

ρRdψD(Et|Ėt) = −
∫ ∞

0
G′′(s)[E(t)− Et(s)]ds · (G0 −G∞)−1

∫ ∞

0
G′(s)[E(t)− Et(s)]ds.

Consequently, dψD(Et|Ėt) ≤ 0 for any history Et if—and only if—the following holds:

G′′(s)(G0 −G∞)−1G′(s) ≤ 0 ∀s ∈ [0, ∞). (31)

Remark 1. It is worth emphasizing that the restrictions (14) hold for possibly nonlinear models.
Inequalities for G′,G′′ are related to linear models.

4. Restrictions Induced by Periodic Histories

We now examine the restrictions on the Boltzmann function G′ induced by a particular
set of functions of θ and E. Consider functions θ(t) and E(t), such that θ(t + d) and E(t + d)
for any time t. Consequently,

Et(s) = Et+d(s) ∀s ∈ [0, ∞)

and hence the history Et is periodic, with period d. This in turn implies that

ψ(t + d) = ψ̂(θ(t + d), E(t + d), Et+d) = ψ̂(θ(t), E(t), Et) = ψ(t),

where ψ̂ is also periodic. Moreover, let η = η̂(θ) and N be the integral of η̂(θ), so that

dN(θ(t))
dt

= ηθ̇.

Now, N(θ(t)) is periodic too, with period d. Hence, the integration of (8) over t ∈ [0, d]
results in ∫ d

0
TRR · Ė dt ≥ 0; (32)

and the same conclusion follows for any function η(θ, E, Et), if attention is restricted to
isothermal processes, then

θ̇ ≡ 0. In view of (32) and (2), we have∫ ∞

0
Ė(t) ·G0E(t)dt +

∫ d

0

{
Ė(t) ·

∫ ∞

0
G′(s)Et(s)ds

}
dt ≥ 0, (33)

for any periodic functions E with period d. Here, we do not assume the symmetry of G0
and G′.
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To exploit the inequality (33), we consider harmonic strain tensor functions

E(t) = E1 cos ωt + E2 sin ωt,

E1, E2 being arbitrary symmetric tensors; Hence, d = 2π/|ω|. Substituting in (33), and
integrating, we obtain

ω
{

E2 · [G′c −G′Tc ]E1 − E1 ·G′sE1 − E2 ·G′sE2 + E2 · [G0 −GT
0 ]E1

}
≥ 0, (34)

where G′c and G′s are the ω-dependent cosine and sine transforms of G′; they are defined on
R by

G′c(ω) =
∫ ∞

0
G′(u) cos ωu du, G′s(ω) =

∫ ∞

0
G′(u) sin ωu du, ω ∈ R.

Let ω → ∞. By Riemann’s lemma, it follows that

G′c(ω)→ 0, G′s(ω)→ 0.

Inequality (34) then reduces to

E2 · [G0 −GT
0 ]E1 ≥ 0. (35)

First, inequality (35) holds, e.g., for any E2 with E1 and−E1, only if E2 · [G0 −GT
0 ]E1 = 0

for any pair E2, E1. Next, the arbitrariness of E1, E2 implies that G0 −GT
0 = 0, namely

G0 = GT
0 . (36)

We now let ω → 0. As we show in a while,

lim
ω→0

G′s(ω) = 0, lim
ω→0

G′c(ω) =
∫ ∞

0
G′(u)du = G∞ −G0. (37)

Hence, taking the limit of (34) as ω → 0 we find

G∞ = GT
∞. (38)

Finally, let E1 = E2 = E. Inequality (34) reduces to

ω E ·G′s(ω)E ≤ 0

or
ω G′s(ω) ≤ 0. (39)

The requirements (36)–(39) are necessary for the consistency of (2) with the second law
of thermodynamics. By having recourse to Fourier series, we can prove that they are also
sufficient [2]. We now derive some consequences of (39).

By the inversion formula, we have

G′(u) =
2
π

∫ ∞

0
sin ωu G′s(ω)dω. (40)

Integration of (40) with respect to u yields

G(u)−G0 =
2
π

∫ ∞

0

1− cos ωu
ω

G′s(ω)dω. (41)

Inequality (40) then implies

G0 −G(u) ≥ 0 ∀u ∈ [0, ∞). (42)
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Inequality (42) means that G(u) has a maximum at u = 0 or that the instantaneous
elastic modulus G0 is the maximum value of G(u). However, this need not imply that G is
monotone, decreasing as we might expect. It follows from (40) that, if G′s(u) = Ĝg(u) and
g is monotone decreasing, then G′ is negative, and G is monotone decreasing.

If G′′ ∈ L1(R+), then an integration by parts yields

G′s(ω) =
∫ ∞

0
G′(u) sin ωu du = −

[
G′(u)

cos ωu
ω

]∞
0 +

1
ω

∫ ∞

0
G′′(u) cos ωu du.

Hence, we have
ωG′s(ω) = G′(0) +G′′c (ω),

where G′(0) stands for G′(0+). Consequently,

lim
ω→∞

ωG′s(ω) = G′(0). (43)

Equation (43) in turn implies that

G′(0) ≤ 0.

By the same token, we have

G′c(ω) = − 1
ω
G′′s (ω)

and then
lim

ω→∞
ωG′c(ω) = 0, G′c(ω) = o(1/ω). (44)

4.1. Proof of (37)

By (4), it follows that for any arbitrarily small ε > 0 there is u0, such that∫ ∞

u0

‖G′(u)‖du < ε. (45)

Inequality (45) implies∥∥ ∫ ∞

u0

G′(u) sin ωu du
∥∥ ≤ ∫ ∞

u0

‖G′(u)‖ | sin ωu|du < ε.

Now, since | sin ωu| ≤ |ωu|, we have

∥∥ ∫ u0

0
G′(u) sin ωu du

∥∥ ≤ ∫ u0

0
‖G′(u)‖ | sin ωu| du ≤ |ω|u0

∫ u0

0
‖G′(u)‖ du→ 0

as ω → 0. Consequently, limω→0 G
′
s(ω) = 0.

Likewise, observe that

G′c(ω) =
∫ ∞

0
G′(u) cos ωu du =

∫ ∞

0
G′(u)(cos ωu− 1)du +

∫ ∞

0
G′(u) du

=
∫ ∞

0
G′(u)(cos ωu− 1)du +G∞ −G0.

For any ε > 0, there is u0, such that

∥∥ ∫ ∞

u0

G′(u)(cos ωu− 1)du
∥∥ ≤ 2

∫ ∞

u0

‖G′(u)‖ du < ε.
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Since | cos ωu− 1| ≤ (4/π)|ω|u then

∥∥ ∫ u0

0
G′(u)(cos ωu− 1)du

∥∥ ≤ (4/π)|ω|u0

∫ u0

0
‖G′(u)‖du→ 0

as ω → 0.

4.2. Remarks about the Half-Range Sine Transform

It seems reasonable to assume that G(u) enjoys the same tensor properties for any
u ∈ [0, ∞). Hence, we let

G(u) = G0g(u), G0 = GT
0 > 0.

and (2) becomes

TRR(t) = G0
{

E(t) +
∫ ∞

0
g′(u)E(t− u)du

}
.

The restriction to periodic histories implies

g′s(ω) =
∫ ∞

0
sin ωu g′(u)du ≤ 0 ∀ω ≥ 0, (46)

and hence
g′(0) ≤ 0, g′s(ω) = O(ω), g′c(ω) = o(1/ω). (47)

A free energy satisfies the second law, if g′(u) ≤ 0, g′′(u) ≥ 0 ∀u > 0.
We now show that g′(u) ≤ 0 ∀u ≥ 0 =⇒ g′s(ω) ≤ 0 ∀ω ≥ 0 by means of the

following:

Lemma 1. Let f : R+ → R+. If f is continuous and monotone decreasing on R+ and f (u)→ 0
as u→ ∞, then

fs(ω) ≥ 0 ∀ω ≥ 0.

To prove (Lemma 1) we first observe that, for any ω > 0, we can partition R+ into
subintervals [2jπ/ω, 2(j + 1)π/ω], j = 0, 1, 2, ... For any subinterval, we have

∫ 2(j+1)π/ω

2jπ/ω
f (u) sin ωu du =

∫ 2(j+1/2)π/ω

2jπ/ω
f (u) sin ωu du +

∫ 2(j+1)π/ω

2(j+1/2)π/ω
f (u) sin ωu du

≤ [ f (
2jπ
ω

)− f (
2(j + 1)π

ω
)]
∫ π/ω

0
sin ωu du =

2
ω
[ f (

2jπ
/ω

)− f (
2(j + 1)π

ω
)] ≥ 0 (48)

and ∫ 2(j+1)π/ω

2jπ/ω
f (u) sin ωu du

≥ f (
2(j + 1/2)π

ω
)
[ ∫ 2(j+1/2)π/ω

2jπ/ω
sin ωu du +

∫ 2(j+1)π/ω

2(j+1/2)π/ω
sin ωu du

]
= 0. (49)

Inequalities (48) and (49) imply

0 ≤
n−1

∑
j=0

∫ 2(j+1)π/ω

2jπ/ω
f (u) sin ωu du ≤ 2

ω
[ f (0)− f (2nπ/ω)].

Now, for any ũ ∈ R+ let n = bũ/2π/ωc and observe that

0 ≤
∫ ũ

2nπ/ω
f (u) sin ωu du ≤ 2

ω
f (2nπ/ω).
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Consequently, for any ũ > 0, we have

0 ≤
∫ ũ

0
f (u) sin ωu du ≤ 2

ω
f (0). (50)

For any ω > 0, taking the limit of (50) as ũ→ ∞ we obtain

0 ≤ fs(ω) ≤ 2
ω

f (0),

while, by definition, fs(0) = 0. This concludes the proof.

Applying the Lemma to f = −g′ ≥ 0, we obtain −g′s(ω) ≥ 0 ∀ω ≥ 0, and hence (46).

5. Examples of Boltzmann Functions
Prony Series

Perhaps the most widely used form of Boltzmann function is the so-called Prony series,
namely a linear superposition of decreasing exponentials,

g′(u) =
N

∑
k=1

ck exp(−αku), ck < 0, αk > 0,

where 1/αk may be viewed as the k-th relaxation time. Hence,

g′(0) =
N

∑
k=1

ck < 0.

Apparently, g′ is a bounded monotone decreasing function on [0, ∞). Moreover, since∫ ∞

0
exp(−αku) exp(iωu)du =

[exp{−αk + iω)u}
−αk + iω

]∞

0
=

αk + iω
α2

k + ω2

then

g′c(ω) =
N

∑
k=1

ckαk

α2
k + ω2

, g′s(ω) =
N

∑
i=1

ckω

α2
k + ω2

.

Accordingly, g′c(ω) < 0 and

g′s(ω) < 0 ∀ω ∈ (0, ∞).

Moreover, g′c and g′s satisfy (47).
According to the literature (see [4,8] and the Refs therein), it is of interest to consider

Boltzmann functions in the following power law form:

g′(u) = −u−β, β ∈ (0, 1).

The integral ∫ ∞

0
u−βE(t− u)du (51)

is bounded if Et has compact support, i.e., Et(u) = 0, u ≥ a. The integral (51) is also
bounded if Et has a harmonic dependence,

E(t− u) = E1 cos ω(t− u) + E2 sin ω(t− u). (52)

In the case of (52),∫ ∞

0
u−βE(t− u)du = Iβ(E1 sin ωt− E2 cos ωt) + Jβ(E1 cos ωt + E2 sin ωt),
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where
Iβ =

∫ ∞

0
u−β sin ωu du, Jβ =

∫ ∞

0
u−β cos ωu du.

Both Iβ and Jβ are bounded as β ∈ (0, 1). Instead, if E is constant, then (51) diverges.

6. Viscoelastic Models with Strain–Rate Histories

Based on the observation that the viscoelastic behaviour is a combination of elastic
and viscous effects, Pipkin [7] suggested that the strain–rate history should be involved
rather than the strain history [22]. Hence the constitutive equation might be written in
the form

TRR(t) = G0E(t) +
∫ ∞

0
M(u)Ė(t− u)du. (53)

If M(0) is bounded, then an integration by parts and the assumption M(∞) = 0 yield

TRR(t) = [G0 +M(0)]E(t) +
∫ ∞

0
M′(u)E(t− u)du. (54)

Indeed, G0 + M(0) would be the instantaneous modulus and M′ the Boltzmann
function. In that case, the thermodynamic requirement is

M′s(ω) ≤ 0 ∀ω ∈ [0, ∞). (55)

Yet, it seems that the effect of Ėt on the stress TRR is significant if we cannot pass to (54)
because M(u) is unbounded as u → 0+. Suppose that we cannot integrate by parts and
observe that in connection with the time-harmonic dependence

E(t) = E1 cos ωt + E2 sin ωt

we can repeat the procedure of §4 and require that the functional (53) satisfy

∫ 2π/ω

0
TRR(t) · Ė(t)dt ≥ 0.

This requirement results in

0 ≤
∫ 2π/ω

0
dt{(−ωE1 sin ωt + ωE2 cos ωt) ·G0(E1 cos ωt + E2 sin ωt)

+(−ωE1 sin ωt + ωE2 cos ωt) ·
∫ ∞

0
duM(u)[(−ωE1 sin ω(t− u) + ωE2 cos ω(t− u))]}.

where it follows that

E1 · (GT
0 −G0)E2 + ω[E1 ·Mc(ω)E1 + E2 · [Ms(ω)−MT

s (ω)]E1 + E2 ·Mc(ω)E2] ≥ 0.

Letting ω → ∞, we find again G0 = GT
0 . Now, we let E1 = E2, and obtain

ωMc(ω) ≥ 0 ∀ω ∈ R. (56)

Inequalities (55) and (56) are consistent in that, integrating by parts with M(0) bounded,
we have

ωMc(ω) = ω
∫ ∞

0
M(u) cos ωu du = [M(u) sin ωu]∞0 −

∫ ∞

0
M′(u) sin ωu du = −M′s(ω).

If we let M(u) = M0u−β, β ∈ (0, 1), then M(u) sin ωu→ 0 as u→ 0 and

M′(u) sin ωu = −βM0u−β sin ωu
u
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is integrable. Hence, ωMc(ω) = −M′s(ω) also holds if M(u) ' u−β.
As we show in the next section, in connection with the general context of models of

fractional order, consistency with thermodynamics requires also that there exists a free-
energy functional ψ of the form

ψ(E, Ėt) = 1
2 E ·G0E + E ·

∫ ∞

0
M(u)Ėt(u)du + Ψ(Ėt)

with dψ(E, Ėt|Ët) ≤ 0. The existence of such a functional is investigated.

7. Viscoelastic Models of Fractional Order

Still with attention to both a power law form of the kernel and dependence of the
stress on the strain–rate we may consider the following constitutive equation:

TRR(t) = M
∫ t

−∞
(t− u)−β∂uE(u)du, (57)

M being a dimensional quantity and most likely β ∈ (0, 1). Differently from (53), we
neglect the dependence on the present value E(t). Since we have in mind the standard
notation for models with derivatives of fractional order, in this section, ∂u and ∂t denote
the (total) time derivative at constant reference position X.

While the power law of data may be the physical motivation for assuming constitutive
equations of the form (57), we observe that, if β ∈ (0, 1), then (t− u)−β is not integrable on
(−∞, t]. We then might restrict attention to the set of strain histories with compact support,

F = {E(u) : E(u) = 0 as u ∈ (−∞, a], E(u) ∈ Sym as u ∈ [a, t]},

a being a suitable reference time (called base point in the literature) or to histories, such
that (57) converges. This is the case for time-harmonic histories.

This view leads naturally to the modelling via fractional derivatives. In light of the
Caputo fractional derivative [23], for any E ∈ F , we let

Dβ
t E(t) =

1
Γ(1− β)

∫ t

−∞
(t− u)−β∂uE(u)du

where Γ is the Gamma function,

Γ(1− β) =
∫ ∞

0
exp(−t)t−βdt.

By a change of variable, we have

Dβ
t E(t) =

1
Γ(1− β)

∫ ∞

0
u−β∂tE(t− u)du.

Since E ∈ F , E(t− u) = 0 as u > t− a. Instead of restricting the set of histories, we
may replace the integral on [0, ∞) with the integral on [0, a] [24].

Still, for functions in F , we define the fractional derivative of any order. Let n ∈ N
and α ∈ [n− 1, n). Let bαc denote the floor function of α, here bαc = n− 1. We define the
derivative Dα

t in the form

Dα
t E(t) =

1
Γ(bαc+ 1− α)

∫ ∞

0
u−α+bαc∂b

αc+1
t E(t− u)du.

For any α ∈ N we have α = bαc and Γ(bαc+ 1− α) = Γ(1) = 1. Consequently,

Dbαct E(t) =
∫ ∞

0
∂
bαc+1
t E(t− u)du =

[
∂
bαc
t E(t− u)

]∞
0 = ∂

bαc
t E(t).
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We let α ≥ 0. For any α ∈ R+ \ N the fractional derivative Dbαct E(t) is a linear

functional of the history ∂
bαc+1
t Et. If, instead, α ∈ N, then the fractional derivative coincides

with the corresponding time derivative.
A simple example of constitutive equation of fractional order might be considered in

the following form:
TRR(t) = MDα

t E(t), (58)

where M ∈ Lin(Sym, Sym). Hence, we have

TRR(t) =
1

Γ(bαc+ 1− α)
M
∫ ∞

0
ubαc−α∂

bαc+1
t E(t− u)du.

For formal convenience, let

M̃(u) =
1

Γ(bαc+ 1− α)
Mubαc−α.

Hence, the constitutive Equation (58) can be written in the form

TRR(t) =
∫ ∞

0
M̃(u)∂bαc+1

t E(t− u)du, (59)

thus ascribing to M̃ the meaning of kernel, parametrized by the order α and possibly the
temperature θ. If α ∈ N, then (58) becomes

TRR(t) = M∂α
t E(t). (60)

Let α ∈ (0, 1) and hence bαc = 0. Equation (59) simplifies to

TRR(t) =
∫ ∞

0
M̃(u)∂tE(t− u)du. (61)

Observe ∂tE(t− u) = −∂uE(t− u) and then, integrating by parts, we find

TRR(t) =
∫ ∞

0
M̃(u)∂tE(t− u)du = M̃(0)E(t) +

∫ ∞

0
M̃
′
(u)E(t− u)du. (62)

Equation (62) would be the classical form of the Boltzmann law. However M̃(0)
diverges and hence a different approach is in order.

Remark 2. We may wonder about the thermodynamic consistency of constitutive equations of
the form (58) with the second law of thermodynamics. Friedrich [25] considered the stress–strain
relation in the form of the generalized Maxwell model

σ(t) + λαDα
t σ = λβEDβ

t ε,

where σ is the stress, E the spring constant, and ε the strain. It emerged that thermodynamic
compatibility holds, or the solution is thermodynamically reasonable [26], if 1 ≥ β ≥ α > 0. The
consistency with thermodynamics is now investigated in detail.

Fractional Models and Thermodynamic Requirements

Consider models where the constitutive functionals ψ, η, qR, and TRR, at time t, depend
on the set of variables θ(t), E(t), ∂tE(t), ∂

bαc+1
t Et,∇R θ(t). The Clausius–Duhem inequal-

ity (7) yields

−ρR(∂θψ + η)∂tθ + (TRR − ρR∂Eψ) · ∂tE− ρR∂∂tEψ · ∂2
t E

−ρRdψ(∂
bαc+1
t Et|∂bαc+2

t Et)− ρR∂∇R θψ · ∇R ∂tθ −
1
θ

qR · ∇R θ ≥ 0, (63)
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where dψ(∂
bαc+1
t Et|∂bαc+2

t Et) is the Fréchet derivative of ψ with respect to ∂
bαc+1
t Et along

∂
bαc+2
t Et. The linearity and arbitrariness of ∇R ∂tθ, ∂2

t E, ∂tθ imply that

∂∇R θψ = 0, ∂∂tEψ = 0, η = −∂θψ. (64)

Since ψ is independent of ∇R θ, the remaining inequality implies that

(TRR − ρR∂Eψ) · ∂tE− ρRdψ(∂
bαc+1
t Et|∂bαc+2

t Et) ≥ 0. (65)

The heat conduction inequality

qR · ∇R θ ≤ 0

is consistent, though non-necessary, if qR depends on ∂tE(t), ∂
bαc+1
t Et.

For any given history Et
∗, we can select a history Et, such that ∂tE(t) is arbitrary, while

‖∂Eψ(Et
∗)− ∂Eψ(Et

∗)‖ is as small as we please; this is obtained by letting ψ be continuously
differentiable and Et

∗(u)− Et(u) = 0 as u ≥ a with a arbitrarily small. Hence, it follows

(TRR − ρR∂Eψ) · ∂tE ≥ 0, dψ(∂
bαc+1
t Et|∂bαc+2

t Et) ≤ 0, qR · ∇R θ ≤ 0. (66)

If we assume
∂Eψ = M0E

then we have

TRR = M0E +M1∂tE, ψ = Ψ(E) + ψ̃(θ, ∂
bαc+1
t Et), Ψ(E) = 1

2 E ·M0E,

where M1 is positive definite. This makes the relation for TRR as a Kelvin–Voigt constitutive
model, but leaves TRR free from derivatives of fractional order.

A constitutive equation of fractional order α ∈ (n− 1, n) has the form

TRR(t) =
∫ ∞

0
M̃(u)∂n

t Et(u)du. (67)

By generality and analogy with the linear viscoelasticity we investigate the thermody-
namic consistency of the constitutive equation

TRR(t) = M0E +
∫ ∞

0
M̃(u)∂n

t Et(u)du, M0, M̃(u) ∈ Sym, (68)

where M̃ is the kernel possibly of the fractional-order form. By (66), it follows

ψ(E, ∂n
t Et) = 1

2 E ·M0E + E ·
∫ ∞

0
M̃(u)∂n

t Et(u)du + ψ̂(∂n
t Et).

Hence, we look for the free energy in the form

ψ = 1
2 E ·M0E + E ·

∫ ∞

0
M̃(u)∂n

t Et(u)du− 1
2 µn

∫ ∞

0
∂n

t Et(u) · M̃(u)∂n
t Et(u)du,

µn being a constant introduced for dimensional reasons. The functional ψ is required
to satisfy the inequality (66)2,

dψ(∂n
t Et|∂n+1

t Et) ≤ 0.

Observe that

dψ = E(t) ·
∫ ∞

0
M̃(u)∂n+1

t Et(u)du− µn

∫ ∞

0
∂n

t Et(u) · M̃(u)∂n+1
t Et(u)du

=
∫ ∞

0
[E(t)− µn∂n

t Et(u)] · M̃(u)∂n+1
t Et(u)du
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and that

∂n+1
t Et(u) = ∂n

t ∂tEt(u) = −∂u∂n
t Et(u) =

1
µn

∂u[E(t)− µn∂n
t Et(u)].

Consequently, dψ takes the form

dψ =
1

µn

∫ ∞

0
Q(t, u) · M̃(u)∂uQ(t, u) du,

where
Q(t, u) = E(t)− µn∂n

t Et(u).

We have

Q(t, u) · M̃(u)∂uQ(t, u) = ∂u{ 1
2 Q(t, u) · M̃(u)Q(t, u)} − 1

2 Q(t, u) · M̃′(u)Q(t, u).

Hence, an integration by parts and the assumption M̃(∞) = 0 yield

dψ = − 1
2µn

Q(t, 0) · M̃(0)Q(t, 0)− 1
2µn

∫ ∞

0
Q(t, u) · M̃′(u)Q(t, u)du.

Since M̃(u) is unbounded as u→ 0, we cannot write the limit value M̃(0). In case of
M̃ bounded, the negative definiteness of dψ would imply

1
µn

M̃(0) ≥ 0,
1

µn
M̃
′
(u) ≥ 0. (69)

Two aspects are crucial. First, M̃(0) bounded is inherently in contrast with the kernels
related to the derivatives of fractional order. Furthermore, if M̃(0) is bounded, then
M̃(0), M̃′(u) are both positive or negative definite. This contradicts the view that the
influence on the stress of previous strains (or strain–rates) is weaker for those strains that
occurred long ago.

8. Conclusions

This paper investigates the thermodynamic consistency of three models of linear
viscoelasticity. The classical model due to Boltzmann is consistent, only if the Boltzmann
function G′ has a negative half-range sine transform, G′ ≤ 0. Moreover, consistent free-
energy functionals are subject to the inequality dψ(Et|Ėt) ≤ 0. This in turn is consistent
with the proof that a function −G′ that is decreasing, as is shown by −G′′ = (−G′)′ ≤ 0,
has a positive sine transform, −G′s ≥ 0.

The model involving G′(u) in a power law form, u−β, β ∈ (0, 1), satisfies the required
condition G′s ≤ 0. If, instead, the stress depends on the strain–rate history Ėt, rather than on
Et, then the required consistency condition should be Gc ≥ 0, and this is satisfied. However,
G′(u) ' u−β gives an unbounded response to constant histories.

The idea of the dependence on Ėt traces back to Pipkin [7] and is of interest in con-
nection with the viscoelastic model of fractional order. For definiteness, a viscoelastic-like
constitutive equation is considered in the form (68). Both the unboundedness of the kernel
and the conditions (69) show that a free-energy functional has still to be determined. For
models with derivatives of fractional order, as well as with constitutive equations involving
strain–rate histories, finding a free-energy functional consistent with the second law of
thermodynamics seems to be an interesting open problem.
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