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accurate noise modeling
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Biological images captured by microscopes are characterized by heterogeneous signal-to-noise
ratios (SNRs) due to spatially varying photon emission across the field of view convolutedwith camera
noise. State-of-the-art unsupervised structured illumination microscopy (SIM) reconstruction
methods, commonly implemented in the Fourier domain, often do not accurately model this noise.
Suchmethods therefore suffer from high-frequency artifacts, user-dependent choices of smoothness
constraints making assumptions on biological features, and unphysical negative values in the
recovered fluorescence intensitymap.On theother hand, supervised algorithms rely on large datasets
for training, and often require retraining for new sample structures. Consequently, achieving high
contrast near the maximum theoretical resolution in an unsupervised, physically principled manner
remains an open problem. Here, we propose Bayesian-SIM (B-SIM), a Bayesian framework to
quantitatively reconstruct SIM data, rectifying these shortcomings by accurately incorporating known
noise sources in the spatial domain. To accelerate the reconstruction process, we use the finite extent
of the point-spread-function to devise a parallelized Monte Carlo strategy involving chunking and
restitching of the inferred fluorescence intensity.We benchmark our framework on both simulated and
experimental images, and demonstrate improved contrast permitting feature recovery at up to 25%
shorter length scales over state-of-the-art methods at both high- and low SNR. B-SIM enables
unsupervised, quantitative, physically accurate reconstruction without the need for labeled training
data, democratizing high-quality SIM reconstruction and expands the capabilities of live-cell SIM to
lower SNR, potentially revealing biological features in previously inaccessible regimes.

Fluorescence microscopy is a method of choice for studying biological
processes in live cells withmolecular specificity. However, the diffraction of
light limits the experimentally achievable resolution for conventional
microscopy to ≈200 nm1, setting a lower bound on the microscope’s ability
to probe the molecular events underlying life’s processes. In response, there
is a strong interest in developing experimental and computational super-
resolution methods that extend microscopy beyond the diffraction limit.
Unfortunately, to date, most superresolution techniques strongly constrain
the sample geometry, sample preparation, or data collection strategy, ren-
dering superresolved live-cell imaging challenging or impossible. For
example, stimulated emission depletion microscopy (STED)2 requires high

laser power and point-scanning, although recent parallelized approaches
have expanded its capabilities3. Localization-4–7 and fluctuation-based8,9

techniques require specific fluorophore photophysics and hundreds to
thousands of images, limiting their applicability to live-cell imaging.
Structured illuminationmicroscopy (SIM)10,11 is an attractive alternative for
superresolved live-cell imaging because it is compatible with standard
sample preparationmethods, requires only about ten raw images per frame,
and uses lower illumination intensity leading to reduced phototoxicity and
photobleaching.

In SIM, structured illumination of a sample, combinedwith incoherent
imaging, translates high-frequency information frombeyond the diffraction
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limit below the microscope band-pass, where it appears as moiré inter-
ference fringes. In linear SIM, this additional information is used in com-
putationally reconstructing the underlying fluorescence intensity map with
theoretically up to double the widefield resolution. By exploiting photo-
physics, non-linear SIM can achieve even larger resolution
enhancements12,13. Many 2D SIM approaches use a set of nine sinusoidal
illumination patterns, both rotated and phase-shifted, to generate near-
isotropic lateral resolution improvement. However, other 2D patterns or
random speckle patterns are also used for similar purposes14,15 often gen-
erated using gratings16 or spatial light modulators17,18.

The computational reconstruction framework used in recovering
information beyond the microscope’s traditional spatial resolution limit
often determines the effective resolution in SIM, due to the choices made in
how to treat contrast degrading noise. Approaching the maximum reco-
verable resolution in the SIM reconstruction as warranted by the data,
therefore, requires correctly treating the main sources of noise, Poissonian
photon emission, and camera electronics19,20 by accurately modeling the
physics of image formation.

Furthermore, the inherently stochastic nature of fluorescence imaging
makes reconstructing the fluorescence intensity map, the product of the
fluorophore density and the quantum yield, naturally ill-posed. Conse-
quently, we must use a model that provides statistical estimates of the
fluorescence intensity map from exposure-to-exposure fluctuations in
photon counts. In the high SNRregime,where photon shot noise dominates
camera noise, average photon counts allow accurate estimation of the noise
statistics from the recorded pixel counts. The ill-posedness of a recon-
struction is, therefore, less severe at high SNR.

However, fluorescence microscopy images often include low SNR
regions due to low fluorophore density or low illumination power. Image-
to-image fluctuations are large in such regions, and both photon shot noise
and camera noise become important21, making it more challenging to
estimate the fluorescence intensity map. For incoherent imaging methods
such as SIM, the effective SNR also depends on the length scales of features
present in the image. The SNR-spatial size relationship is naturally under-
stood in the Fourier domain where short length scales correspond to high
spatial frequencies. As a microscope’s incoherent optical transfer function
(OTF) attenuates high spatial frequency information22, there is loss of
contrast for small spatial features, regardless of the average photon count.
The inherent loss of contrast worsens the ill-posedness of image recon-
struction and makes it very challenging to distinguish small biological fea-
tures from pixel-to-pixel variations in photon shots and camera noise. Put
differently, the effective SNR in the recorded images decreases with
increasing spatial frequency,making the high spatial frequency information
especially susceptible to noise.

Image reconstruction challenges are further compounded in SIM
where super-resolved fluorescence intensity maps are recovered by
unmixing and appropriately recombining noisy, low-contrast information
distributed through the collected raw images as shifting moiré fringes.
However, image-to-image variation due to photon shot and camera noise at
the single pixel level can produce intensity fluctuations indistinguishable
from low-contrast fringes. Consequently, during the SIM reconstruction
process, these noisy signals may masquerade as genuine moiré fringes,
leading to high-frequency reconstruction artifacts such as hammerstroke23.
Artifacts typically become particularly pronounced at low SNR and for
moiré fringes near the diffraction cutoff frequency, where the OTF reduces
the contrast as discussed earlier.

Multiple SIM reconstruction tools have been developed to limit arti-
facts in SIM reconstructions. The most common reconstruction
algorithms24 rely on a Wiener filter to deconvolve and recombine raw
images in the Fourier domain. However, these approaches may fail in low
SNR regions and can introduce artifacts indistinguishable from real
structures23,25 due to their sub-optimal treatment of noise. For instance,
performing a true Wiener filter requires exact knowledge of the SNR as a
function of spatial frequency. Unfortunately, it is difficult to estimate the
exact relationship of SNR versus spatial frequency from the sample. Instead,

approaches replace the true SNRwith the ratio of themagnitude of theOTF
and a tuneableWiener parameter26.More sophisticated approaches attempt
to estimate the SNR by assuming the sample signal strength obeys a power-
law27, choosing frequency-dependent Wiener parameters based on noise
propagation models28, or alternatively engineering the OTF to reduce
common artifacts29.

The primary difficulty associated with these approaches, and what
ultimately limits feature recovery near the maximum supported spatial
frequency, is that the noise model is well understood in the spatial domain
while SIM reconstructions are performed in the Fourier domain. Rigorously
translating the noise model to the Fourier domain is challenging because
local noise in the spatial domain becomes non-local in the Fourier domain
and gets distributed across all spatial frequencies.

Manyattempts at avoiding artifacts associatedwithWienerfilter-based
approaches at low SNR24 have proven powerful. Yet they still treat noise
heuristically and typically require expensive retraining or parameter tuning
to reconstruct different biological structures or classes of samples such as
mitochondrial networks30, nuclear pore complexes31, and ribosomes32. For
example, one common strategy is to apply content-aware approaches
relying on regularization to mitigate the ill-posedness of the reconstruction
problem by e.g., smoothing the fluorescence intensity map or using prior
knowledge of the continuity or sparsity of the biological structures. These
approaches include TV-SIM33,MAP-SIM34, Hessian-SIM35,36, and proximal
gradient techniques37–39.

Recently, many self-supervised techniques have been developed as well.
One such technique uses implicit image priors such as deep image priors
(DIP)40–43 andphysics-informedneuralnetworks (PINN)44–46,whichareneural
networkswhose structure itself inherently constrains the output images. These
self-supervised networks are typically optimized iteratively using the input raw
images only but can have a tendency to overfit data without additional reg-
ularizers andmay not be as accurate as fully supervisedmethods. On the other
hand, recently developed deep-learning-based 2D-SIM approaches, including
rDL-SIM47 and DFCAN/DFGAN48 train neural networks in a supervised
fashion torecognize structuresat thecostof requiring largedatasets for training
and have avoided out-of-focus background in 2D SIM data. While these
methods are powerful, developing deep learning approaches that generalize to
different SIM instruments and classes of samples remains an open challenge.
Alternative approaches are therefore greatly needed that operate at low SNR
and thus broadly apply to any mixed SNR sample type.

Here we present Bayesian structured illumination microscopy (B-
SIM), a new SIM reconstruction approach capable of resolving features near
the resolution limit warranted by data. B-SIM handles high and low SNR
SIM data in a fully principled way without the need for assumptions about
biological structures or labeled training data. Consequently, B-SIM simul-
taneously addressesmany desiderata of SIM reconstruction approaches and
offers a powerful general-purpose alternative to deep learning approaches.
Specifically, B-SIM: (1) accuratelymodels the stochastic nature of the image
formation process; (2) permits only positive fluorescence intensities; (3)
eliminates arbitrary constraints on the smoothness of biological features;
and (4) is amenable to parallelized computation. These features are achieved
by working in a parallelized Bayesian paradigm where every part of the
image formation process, including Poissonian photon emission and
camera noise, are naturally incorporated in a probabilisticmanner and used
to rigorously compute spatially heterogeneous uncertainty. Such a physi-
cally rigorous reconstruction method was previously inaccessible
computationally.

This advancement in noise modeling results in contrast enhancement
near thehighest supported spatial frequencies permitting feature recovery in
low SNR data at up to 25% shorter length scales than state-of-the-art
unsupervised methods. Previous Bayesian approaches49 incorporated sto-
chasticity but until nowhave not correctly incorporated physics due to their
choice of Gaussian process priors that enforce spatial correlations on bio-
logical features, permit negative fluorescence intensity values, and do not
apply at low SNRwhere theGaussian approximation to the full noisemodel
falters.
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Results
B-SIM operates within the Bayesian paradigm where the main object of
interest is the probability distribution over all fluorescence intensity
maps ρ, termed posterior, as warranted by the data. The posterior is
constructed from both the likelihood of the collected raw SIM images
given the proposed fluorescence intensity map together with any known
prior information such as the domain over which the fluorescence
intensity map is defined via a prior probability distribution (see
“Methods”). From the posterior probability distribution, we compute
the mean fluorescence intensity map ρ

� �
that best represents the bio-

logical sample. Furthermore, the posterior naturally provides uncer-
tainty estimates for the fluorescence intensity maps, reflecting spatial
variations in noise due to any heterogeneity.

As shown inFig. 1, to learn the posterior over thefluorescence intensity
maps, ρ, fromwhichwe compute themeanwefirst develop a fully stochastic
image formation model taking into account photon shot noise and CMOS
camera noise. This model allows us to formulate the probability of a can-
didate fluorescence intensity map given input raw images, a calibrated
point-spread-function (PSF), illumination patterns, and camera calibration
maps. As our posterior does not attain an analytically tractable form, we
subsequently employ a requisite Markov Chain Monte Carlo (MCMC)
scheme to draw samples from the posterior, and compute its mean and
associated uncertainty mentioned earlier. Furthermore, we parallelize this
sampling scheme by first noting that a fluorophore only affects a raw image
in a small neighborhood surrounding itself owing to the PSF’s finite width.
By dividing images into chunks and computing posterior probabilities
locally, our parallelized approach avoids large, computationally expensive
convolution integrals.

To validate B-SIM, we reconstruct SIM data in a variety of scenarios
briefly highlighted here, and demonstrate that B-SIM surpasses the per-
formance of existing algorithms both at low SNR and, surprisingly, high
SNR. First, as proof of concept, we consider simulated fluorescent line pairs
with variable spacing generated from a known imaging model and
demonstrate the best performance achievable under ideal conditions. Next,
we consider an experimental test sample with variable-spaced line pairs.
This demonstrates that B-SIM retains excellent performance under well-
controlled experimental conditions. Finally, we analyze experimental ima-
ges of fluorescently labeled mitochondria in live HeLa cells, where experi-
mental imperfections in the illumination, out-of-focus background
fluorescence, and pixel-to-pixel variation in camera noise introduce chal-
lenges in SIM reconstruction. We note here that while 9 raw images cor-
responding to 3 orientations and 3 phase shifts (per orientation) of the
illumination patterns are the standard for SIM to isotropically recover
super-resolved data in the Fourier domain, fewer raw images may be used.
However, the quality of reconstruction would be sample-dependent. If the
features to be recovered have a preferred direction, illumination patterns
perpendicular to that direction may be used to recover the features without
using images for other orientations. Because of this sample dependency and
lack of generality, we did not focus on testing reconstruction quality against
a number of raw images.

In each case, we compare B-SIM with reconstructions using Wiener-
filter based methods, particularly HiFi-SIM29 implementation with the
default choice of parameters, and optimization based approaches, including
FISTA-SIM38,39.Wefind that B-SIMprovides increased fidelity and contrast
for short length scale features at both high and low SNR as compared to
existing state-of-the-art approaches.

Fig. 1 | Bayesian-SIM reconstruction with spatial
domain noise propagation. a SIM involves col-
lecting fluorescence images (left) illuminated by
structured intensity patterns (center). We utilize a
point-spread function model (center)(PSF) and
calibrate the camera noise parameters (right): gain
(g), offset (o), and readout noise (σ). To infer the
underlying fluorescence intensity map, we start
from a small region (orange) and sweep over the
entire sample in a parallelized fashion. b An image
formation model,M, involves the multiplication of
an underlying fluorescence intensity map with illu-
mination patterns and convolution with the PSF to
obtain a noiseless image, μ, which is then corrupted
by photon shot noise and camera noise. c A Monte
Carlo algorithm to sample candidate fluorescence
intensity maps from the posterior probability dis-
tribution. Based on the current sample (orange) we
propose a new sample for the fluorescence intensity
map (blue) and compute its corresponding posterior
probability. Favoring higher probability, we sto-
chastically accept or reject the proposed fluores-
cence intensity map and update the current
fluorescence intensity map. We average many
samples of fluorescence intensity maps after con-
vergence to obtain B-SIM reconstruction (right).
WF and B denote widefield image and B-SIM
reconstruction, respectively.
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Extending beyond unsupervised approaches, we compared the per-
formance of B-SIM to deep learning-based rDL-SIM47 pre-trained on
publicly available TIRF-SIM microtubule data50 provided by the authors
of 47,48 themselves. For the comparison, we generated experimental TIRF-
SIMmicrotubule data using similar experimental conditions as the training
data including camera model, magnification, and numerical aperture. Fol-
lowing the procedure from ref. 47, we denoise the raw SIM images using the
provided microtubule-specific neural network. After denosing, we recon-
struct SIM images usingWiener-filter-based methods. We find that B-SIM
produces improved contrast, as shown in Supplementary Fig. S11, and
demonstrates the difficulty in the generalizability of the currently available
supervised methods.

Simulated data: line pairs
To demonstrate B-SIM performance under well-controlled conditions, we
simulated a fluorescence intensity map of variably spaced line pairs with
separations varying from 0 to 330 nm in increments of 30 nm. The sample is
illuminatedbynine sinusoidal SIMpatternswith a frequency 0.9 times that of
theAbbediffraction limit, assumingNA=1.49andemission lightwavelength
λ = 500 nm. With these microscope parameters, the maximum supported
spatial frequency for widefield imaging is 2NA=λ � 168 nmð Þ�1, while the
maximum recoverable frequency in SIM is 3:8NA=λ � 88 nmð Þ�1. We
generated simulated datasets at both high SNR, where photon shot noise is
the dominant noise source, and at low SNR, where both shot noise and
camera noise are significant.

For the high SNR dataset, we generated raw SIM images with up to
≈1000 photons per pixel. In Fig. 2a, b, we show SIM reconstructions of the
fluorescence intensity maps obtained using B-SIM and compare themwith

HiFi-SIMandFISTA-SIM.AthighSNR, all three approaches producehigh-
quality fluorescence intensity maps with minimal artifacts. We find that,
according to the Sparrow criterion, the widefield image resolves the 180 nm
line pair, HiFi-SIM resolves the 120 nm line pair (see Supplementary Fig. S2
for reconstructions using different choices of HiFi-SIM parameters), and
both FISTA-SIM and B-SIM resolve the 90 nm line pair, approaching the
theoretical limit discussed above. To further assess the resolution and
contrast enhancements obtained across various methods, we also plot the
intensity along line cuts showing the line pairs separated by 90 nm and
120 nm. Here we clearly see that B-SIM produces significantly enhanced
contrast for both line pairs, with over ≈40% intensity drop in the center for
the 90 nm line pair as compared to ≈5% drop in the FISTA-SIM recon-
struction. Indeed, in comparison with HiFi-SIM, B-SIM recovers sig-
nificantly higher contrast for line pairs with separations <150 nm. We
attribute the enhanced contrast obtained by B-SIM to its physically prin-
cipled incorporation of noise as compared to other approaches.

We also tested B-SIM’s robustness against errors in illumination pat-
terns for the high SNR dataset. By adding erroneous shifts to the phases of
the sinusoidal patterns used to compute the posterior, we find that the
reconstruction is robust for phase errors up to order 20°. Significant artifacts
appear in the reconstruction for larger errors, as shown in Supplementary
Fig. S1.

Next, we consider a more challenging low SNR simulated dataset with
up to ≈40 photons per pixel in each raw SIM image, Fig. 2c, d. At this signal
level, photon noise results in larger exposure-to-exposure variance, and
camera noise becomes significant. Furthermore, a simple Poissonian or
Gaussian approximation of the noisemodel is not enough for a high-fidelity
reconstruction. Due to the decreasing effective SNR with increasing spatial

Fig. 2 | SIM reconstruction of variably spaced
line pairs. a Simulated line pairs with spacing ran-
ging from 60 to 240 nm in steps of 30 nm at high
SNR. We show the pseudo-widefield (Wf) image
obtained by averaging raw data, and ground truth
(GT) image, together with SIM reconstructions
using Wiener filter (Wi), FISTA-SIM (Fi), and
B-SIM (B). Scale bar 1.5 μm. Colored arrows indi-
cate the line pair resolved according to the Sparrow
criterion. b Line cuts corresponding to the white line
in (a). All reconstruction methods resolve the
120 nm-spaced line pair. Both FISTA-SIM and
B-SIM resolve the 90 nm-spaced line pair, but
B-SIM does so with higher contrast. c Simulated line
pairs as in (a), but at low SNR. d Line cuts corre-
sponding to (c). All reconstruction methods resolve
the 120 nm line pair, but only B-SIM resolves the
90 nm line pair. e Experimental images and recon-
structions of variably spaced line pairs on an Argo-
SIM calibration sample at high SNR. Line pairs have
spacings of 60–330 nm in 30 nm steps. Scale bar
2.0 μm. f Line cuts corresponding to (e). Allmethods
resolve the 120 nm-spaced line pair (right) with
similar contrast, and no methods resolve the 90 nm
line pair (left). gExperimental images as in (e), but at
low SNR. Wiener and FISTA-SIM introduce
reconstruction artifacts. h Line cuts corresponding
to (h). Only B-SIM resolves the 120 nm spaced
line pair.
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frequency, we expect the achievable contrast at shorter length scales to be
lower than that of the high SNR case. This intuition is confirmed in Fig. 2,
wherewefind thatwidefieldonly resolves the210 nmlinepair, insteadof the
180 nm as in the high SNR case. At low SNR, SIM reconstruction becomes
increasingly challenging as evidenced by increasing hammerstroke artifacts
visible in the HiFi- and FISTA-SIM reconstructions. Here, both HiFi-SIM
and FISTA-SIM are unable to resolve separations below 120 nm. However,
we find that B-SIM still resolves the 90 nm line pair without hammerstroke
artifacts.

Toquantitatively compare the various reconstructionmethods,we also
calculated the mean-square error (MSE) and peak signal-to-noise ratio
(PSNR) using the known ground truth image, as shown in Supplementary
Table S1. For the high SNR data, we find that both B-SIM and FISTA-SIM
more faithfully reconstruct the line pairs than the other methods, and
achieve similar scores.More critically, for the low SNRdata, B-SIMachieves
the highest scores. To further improve the smoothness in the B-SIM results
shown in Fig. 2a–d, it is possible to generatemoreMCMC samples, albeit at
a higher computational cost.

Experimental data: Argo-SIM line pairs
Having demonstrated significant contrast improvement by B-SIM on
simulated data near the maximum achievable SIM resolution, we next
recover fluorescence intensity maps from experimental images of variably
spaced line pairs on an Argo-SIM calibration slide. The line pairs are
separated by distances varying from 0 nm to 390 nm in increments of
30 nm. We illuminated these line pairs with nine sinusoidal illumination
patternswith three orientations, eachwith three associatedphase offsets and
apattern frequencyof≈0.8 times that of theAbbediffraction limit. The peak
emission wavelength for this sample was λ = 510 nm, and the objective lens
had NA= 1.3. Here, the diffraction-limited resolution is ≈196 nm, and the
achievable SIM resolution is≈109 nm.With these parameters, we generated
two datasets, one at high SNR, and one at low SNR per exposure.

Unlike in analyzing simulated line pairswhere the illumination pattern
is specified by hand, in workingwith Argo-SIM slides, wemust estimate the
illumination patterns from the raw fluorescence images as a pre-calibration
step prior to learning the fluorescence intensity map. We estimate pattern
frequencies, phases, modulation depths, and amplitudes from high SNR
images using Fourier domain methods18, and generate one set of illumi-
nation patterns to be used for Wiener, FISTA-SIM, and B-SIM recon-
structions. An independent approach for pattern estimation might not be
feasible in all experimental circumstances. Joint pattern and fluorescence
intensity map optimization is an interesting potential extension of B-SIM.
We do not pursue this further in this work due to the increase in compu-
tational expense entailed in this joint inference.

For the high SNR dataset, we generated raw SIM images with up to
≈200 photons per pixel, Fig. 2e, f. Here, all SIM reconstruction methods
generate high-quality fluorescence intensity maps with minimal artifacts.
HiFi-, FISTA-, and Bayesian-SIM reconstructions all resolve the 120 nm
line pair, with B-SIM resulting in the best contrast. Unlike for the simulated
sample, none of the line pair spacings here are right at the diffraction limit,
explaining why B-SIM does not resolve an extra line pair compared with
other methods here. We also note some ringing in the reconstructions
around line pairs, which we suspect is a side-lobe artifact. These artifacts
typically appear in sparse samples where bright sources of light pollute dim
neighborhoods, resulting in extra background noise that can overwhelm
weak signals in those pixels. This background in combination with Fourier
transforms being performed on small grids for convolutions, results in
oscillations appearing around the main signal peaks.

For the low SNR dataset, we generated raw SIM images with up to ≈40
photons per pixel by using a shorter illumination time.We found thatHiFi-
SIMwas not able to accurately estimate the illumination pattern parameters
from this low SNR data, resulting in artifacts as shown in Supplementary
Fig. S3, so instead, we used our mcSIMWiener reconstruction18. As for the
simulated data, Wiener-, and FISTA-SIM amplify high-frequency noise
leading to significant reconstruction artifacts and these methods no longer

clearly resolve the 120 nm line pairwith high contrast, as shown inFig. 2g, h.
On the other hand, B-SIM introduces fewer high-frequency artifacts and
continues to resolve the 120 nm line pair.

Experimental data: mitochondria network in HeLa cells
Next, we consider B-SIM’s performance on experimental images of
dynamic mitochondrial networks in HeLa cells undergoing constant rear-
rangement in structure through fission and fusion with formations such as
loops30,51,52. We perform live cell imaging to avoid mitochondria fixation
artifacts53 using the same experimental setup as for the Argo-SIM sample.
However, now we collect two sets of images—one with an emission peak of
569 nm to observe evolving mitochondrial cristae and a second with an
emission peak of 660 nm to demonstrate the possibility of higher contrast
reconstructions while reducing background and photodamage. We also
adjust the absolute SIM pattern frequency to remain fixed at ≈0.8 the dif-
fraction limit. As in the previous cases, we collect datasets at different SNR.
In these datasets, due to high variation in fluorophore density along the
mitochondrial network, the photon emission rate or SNR varies sig-
nificantly throughout an image, posing a challenge for existing SIM
reconstruction algorithms.

In Fig. 3, we show reconstructions ofmitochondria cristae labeled with
PKmito RED fluorophores. We collected three sets of SIM images by
decreasing the illumination intensity by a factor of 10 each time, starting
from the high SNR images with an average photon count of approximately
762. All of the three reconstructionmethods resolve cristae for the high SNR
SIM images, however, B-SIM clearly produces higher contrast with ≈50%
more dip in intensity in the gaps between cristae compared to both FISTA-
and HiFi-SIM, as shown with line cuts. As the camera noise increases
relative to photo counts, we see FISTA-SIM amplifying noise and is not able
to distinctly resolve cristae from both intermediate- and low SNR images;
see Supplementary Fig. S5 for FISTA-SIM reconstructions using different
choices of regularization parameter.While HiFi-SIM is able to resolve some
cristae at intermediate SNR (see Supplementary Fig. S4 for HiFi-SIM
reconstructions using different parameter choices), B-SIM, in a similar
fashion to the high SNR case, again provides significantly higher contrast.
Furthermore, B-SIM is able to distinctly resolve some cristae gaps thatHiFi-
SIM is unable to, as shown with line cuts. For the low SNR images, the
MATLAB version of HiFi-SIM is unable to estimate patterns correctly, as
shown in Supplementary Fig. S6, resulting in an unusable reconstruction.
We, therefore, use the standard Wiener-SIM implementation18 which, like
FISTA-SIM, significantly amplifies noise. B-SIMon the other handdoes not
show any noise amplification and show cristae structures, however, domi-
nant camera noise causes significant loss of information resulting in small
deterioration of reconstruction quality as compared to higher SNR images.

Unlike for the variably-spaced line pairs, there are no features in the
mitochondrial network of known size we can use to directly infer the
resolution achieved by the various SIMreconstructionmethods. To obtain a
quantitative estimate,we rely on imagedecorrelation analysis54.We estimate
the achieved widefield resolution to be 260 nm compared with 150 nm for
the Wiener reconstruction, and 94 nm for B-SIM, indicating improvement
which broadly agrees with our observations in Fig. 3b, c. Lastly, we do not
report results for FISTA-SIM as the decorrelation analysis relies on phase
correlations in the Fourier domain that are strongly affected by the total
variation (TV) regularization.

We note that decorrelation analysis provides a resolution estimate of
94 nm, smaller than theAbbe limit of 121 nm.However, this does notmean
that B-SIM achieves resolutions better than the Abbe limit. Because dec-
orrelation analysis relies on phase correlations present in the raw data in
Fourier space, it likely indicates that B-SIM effectively smooths the recon-
struction on spatial scales of the order of, and slightly smaller than, the
diffraction limit. On the other hand, decorrelation analysis relies on iden-
tifying themaxima in correlation-versus-resolution curves for a sequence of
high- and low-pass filters.

Now, while mitochondria are commonly imaged using fluorescent
labels that emit near 500 nmwavelength to gain resolution55, the use of far-
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redfluorescent labelsmakes the data presentedhere particularly challenging
for recovering small features inmitochondria networks. On the other hand,
improvement in SIM reconstructions using such labels could be sig-
nificantly advantageous because longer excitation wavelengths can reduce
phototoxicity, background fluorescence, Rayleigh scattering, and Raman
scattering56. Reduction inbackground at longerwavelengths is clearly visible
in the interior of the cells in the widefield image in Fig. 4 as compared with
shorter wavelength images in Fig. 3.

For the high SNR longer wavelength dataset, we generated raw SIM
images with on average ≈41 photons-per-pixel, Fig. 4b. Here, as before,
HiFi- and FISTA-SIM produce reasonable reconstructions showing
high-resolution features. FISTA-SIM introduces reasonably strong
staircase artifacts57. On the other hand, B-SIM achieves significantly
better contrast at short-length scales, more clearly revealing mitochon-
drial morphology. To illustrate the differences in these reconstructions,
we focus on a tubular loop approximately 195 nm in diameter (Fig. 4c)
and display a line cut. HiFi-SIM, on the other hand, is unable to resolve
the central dip in fluorescencewithin the loop.Wenote here that since we
have chosen a relatively background-free region of interest, honeycomb
artifacts should be minimal and the loop is mostly likely real. Further-
more, we estimate the achieved widefield resolution to be 325 nm
comparedwith 180 nm for theWiener reconstruction, and 131 nm for B-
SIM, indicating ≈25% improvement which broadly agrees with our
observations in Fig. 4b, c.

Lastly, for the low SNR dataset, we generated raw SIM images with on
average ≈6 photons per pixel, Fig. 4d. These images were taken approxi-
mately one second later to the high SNR images, and so we expect the
morphology to remain the same. TheHiFi-SIM reconstruction shows high-
frequencynoise amplification artifacts. These are avoided in theFISTA-SIM
by applying a strong regularizer, which, however, significantly reduces the
achievable resolution. On the other hand, B-SIM results in high-resolution
reconstruction. We consider the same mitochondrial loop structure as
before and find that it is resolved in both HiFi- and B-SIM. Applying
decorrelation analysis, we find similar results as before where the widefield
resolution is 430 nm, comparedwith 176 nm for theWiener reconstruction
and 131 nm for B-SIM.

Uncertainty in B-SIM reconstruction and statistical estimators
Bayesian inference using MCMC sampling techniques to draw samples of
candidate fluorescence intensity maps from a posterior naturally facilitates
uncertainty quantification over fluorescence intensity maps. Each MCMC
sample generated by B-SIM represents a candidate fluorescence intensity
map. An appropriate statistical estimator, the mean in this paper, provides
the final representation of the fluorescence intensity map, and the extent of
sample-to-sample variation provides a measure of confidence in that map.

In Fig. 5a–d, we show reconstructions performed on high SNR
simulated line pairs and experimental HeLa cell images of the previous
sections along with line cuts of mean fluorescence intensity map and 50%

Fig. 3 | SIM reconstruction of evolving mito-
chondrial cristae at 569 nm emission at
different SNR. a 1024 × 454 pseudo-widefield (Wf)
image of the mitochondria network in HeLa cells
labeled with PKmito REDdye. Scale bar 5 μm. b SIM
raw image (R) and reconstructions using Wiener
filter (Wi), FISTA-SIM (Fi), and B-SIM (B) meth-
ods. γ parameter shows the average photon count in
the image. Scale bar 2 μm. Line cuts from the three
reconstructions are compared in the rightmost
panel. c Same as in b at intermediate SNR. In the raw
image, the left triangular half shows an image with
the same color scaling as in (b). The right half
rescales the image for visual convenience.We do not
show line cuts for the FISTA-SIM reconstruction as
it has significantly deteriorated. d Same as in c but at
very low SNR. We do not compare line cuts as both
FISTA- and Wiener-SIM reconstructions have sig-
nificant noise amplification. The three sets of raw
images at different SNRwere taken at approximately
1.2 s intervals.
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confidence intervals computed from posterior probability distributions
shown as heatmaps. We confirm the existence of features that appear in
B-SIM reconstructions in the previous sections based on very low absolute
uncertainties where intensity dips occur between line pairs and in the center
of loop-like structures in the mitochondria network. In the supplementary
Fig. S7, we show the posterior distributionswith confidence intervals for the
low SNR reconstructions of the previous sections, as well as how to use
MCMC samples collected by B-SIM to generate a visual representation of a
posterior probability distribution.

In the B-SIM reconstructions presented in this paper, our preference
for mean as the estimator is motivated by computational convenience. We
find it easier to parallelize the process of generating MCMC samples by
placing no expectation that fluorescence intensitymaps be smooth, a priori.
However, due to the ill-posedness arising from diffraction and noise, the
lack of smoothness constraints results in most MCMC samples predicting
pointillistic fluorescence intensity maps as they far outnumber probable
smooth maps. With such a large degeneracy in the posterior distribution,
recovering the most probable sample representing the true (smooth)
fluorescence intensity map is a computationally prohibitive task. An effi-
cient alternative is to use an integrative statistical estimator like themean to
recover pixel-to-pixel correlations in biological features warranted by the
collected data. Supplementary Fig. S8 shows how the smoothness of the
fluorescence intensity map for high SNR simulated line pairs of Section
“Simulated data: line pairs” improves as the number of MCMC samples
used to compute the mean is increased.

Additionally, in Fig. S8, we show maps of the inverse of the posterior
coefficient of variation (CV), computed as the posterior mean to standard
deviation ratio. In the same spirit as SNR for the Poisson distribution,
inverse CV can be used to compare reconstruction quality in different
regionsof the image and is indicative of the effective SNRwediscussed in the
introduction resulting from diffraction or the OTF attenuating high-
frequency information, making SIM reconstruction increasingly ill-posed.
Indeed, in the case of simulated line pairs, the inverse CV decreases with

separation as shown in Fig. S7. This increase in uncertainty in fluorescence
intensity maps results from the increased model uncertainty where
numerous candidate fluorescence intensity maps predict raw images nearly
identical to the ones producedby the ground truthwith similar probabilities.
In fact, out of the approximately 400 samples or candidate fluorescence
intensity maps collected by B-SIM for the line pairs, the similarity in
morphology to the ground truth decreases with separation.While over 50%
of the samples have two peaks for the 120 nm separated line pair, a large
number of samples predict a merging of the two lines for the unresolvable
60 nm separated line pair and only about 15% of the samples have
two peaks.

Discussion
We have developed a physically accurate framework, B-SIM, to recover
super-resolved fluorescence intensity maps with maximum recoverable
resolution from SIM data within the Bayesian paradigm. We achieved this
by incorporating the physics of photon shot noise and camera noise into our
model, facilitating statistically accurate estimation of the underlying fluor-
escence intensity map at both high and low SNR. Our method standardizes
the image processing workflow and eliminates the need for choosing dif-
ferent tools or ad hoc tuning reconstruction hyperparameters for different
SNR regimes or fluorescence intensity maps. We benchmarked B-SIM on
both simulated and experimental data, and demonstrated improvement in
contrast and feature recovery in both high and low SNR regimes at up to
≈25% shorter length scales compared with conventional methods. We
found that B-SIM continues to recover superresolved fluorescence intensity
mapswithminimal noise amplification at low SNR, where Fouriermethods
are dominated by artifacts. Furthermore, because our Bayesian approach
recovers a probability distribution rather than a singlefluorescence intensity
map, we used it to provide absolute uncertainty estimates on the recovered
fluorescence intensity maps in the form of posterior variance and inverse
CV to compare the quality of reconstruction in different regions. Lastly, we
found B-SIM to be robust against phase errors in pattern estimates.

Fig. 4 | SIM reconstruction of mitochondrial
networks at 670 nm emission. a 1024 × 454
pseudo-widefield (Wf) image of the mitochondria
network labeled with MitoTracker Deep Red dye.
Scale bar 5 μm. bWe compare raw image (R),
Wiener filter (Wi), FISTA-SIM (Fi), and B-SIM (B)
reconstruction methods for the inset in (a). At high
SNR, all methods capture superresolution infor-
mation with limited reconstruction artifacts. γ
parameter shows the average photon count in the
image. Scale bar 2.0 μm. c Region of interest corre-
sponding to the orange box in b shown in widefield
(upper-left), Wiener, FISTA-SIM, and B-SIM. Scale
bar 300 nm. Line cuts (right) demonstrate that
B-SIM recovers more superresolution information
than other methods without noise amplification.
d Low-SNR SIM reconstruction of the same sample
using a shorter illumination time. This image is
acquired a few seconds after the images in (b). In the
raw image, the left triangular half shows an image
with the same color scaling as in (b). The right half
rescales the image for visual convenience. e Region
of interest from the inset in (d). Small shifts in the
loop shown in the inset result from the continuously
evolving mitochondria network.
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The generality afforded by our method comes at a computational cost
that we mitigate through parallelization. If implemented naively, image
reconstruction requires the computationof convolutions of thefluorescence
intensity map with the PSF every time we sample the fluorescence intensity
map from our posterior. This computation scales as the number of pixels
cubed. However, the parallelization of the sampling scheme, as we have
devised here based on the finite PSF size, reduces real time cost by a factor of
the number of cores being used itself, moderated by hardware-dependent
parallelization overhead expense.

Moving forward, we can extend and further improve our method in a
number ofways.One improvementwouldbe aGPUimplementationwhere
parallelizationover hundreds of coresmay significantly reduce computation
time. Furthermore, more efficient MCMC sampling schemes, such as
Hamiltonian Monte Carlo58,59, and more informative prior distributions
over fluorescence intensity maps may be formulated to reduce the number
of MCMC iterations needed to generate a large number of uncorrelated
MCMC samples, accelerating convergence to a high-fidelity mean fluor-
escence intensity map.

Additionally, the samplingmethoddeveloped here is generalizable and
applicable to significantly improve other computational imaging techniques
where the likelihood calculation is dominated by convolutionwith a PSF.As
this describes most microscopy techniques, we anticipate our approach will
be broadly useful to the imaging community, particularly dealing with
modalities that are often SNR-limited, such as Raman imaging60,61. Alter-
natively, our approach could be applied to fully-principled image decon-
volution and restoration.

In the context of SIM, our method’s extensions to other common
experimental settings are also possible. For example, other camera

architectures, such as EMCCD, requiring alternative noise models19 are
easily incorporated into our framework. B-SIM’s versatility is also extend-
able by incorporating a more realistic PSF obtained by calibration mea-
surements, learned from the samples directly, or simulated using a vectorial
model to account for refractive index mismatch. One straightforward
extension is 3D-SIM,where amodificationofB-SIMwouldneed to consider
3D-SIM patterns and 3D PSFs allowing for 3D-SIM reconstruction as
shown in Sec. 3D-SIM and Supplementary Fig. S12.

Due to its generality and superior performance at both high and low
SNR, we expect B-SIM to be adopted as a tool for high-quality SIM
reconstruction. Furthermore, in the low-noise regime, fully unsupervised
B-SIM is competitive with deep learning approaches. However, due to the
use of a physics-based model, B-SIM is applicable to arbitrary fluorescent
sample structures with no need to tune model parameters or retrain when
switching from one class of samples to another, for instance, from mito-
chondria networks to microtubules.

Methods
Here we first setup an image formation model to generate noisy diffraction
limited raw images for SIM where a sample is illuminated using multiple
patterns, and then design an inverse strategy to estimate the fluorescence
intensity map ρ(r) in the sample plane. In other words, our goal is to learn
the probability distribution over fluorescence intensity maps given the
collected raw images and pre-calibrated illumination patterns.

We use Bayesian inference, where a probability distribution over
fluorescence intensity maps based on the predefined domain called prior is
updated through a likelihood function that incorporates the experimental
data/images.

Fig. 5 | Uncertainty estimation by B-SIM. aB-SIM reconstruction for the high SNR
simulated line pairs of Section “Simulated data: line pairs”. Scale bar 300 nm.
bMarginal posterior probability distributions for fluorescence intensity at each pixel
along the line cut in (a). The mean is shown in red, along with 50% confidence
intervals in black. Scale bar 120 nm. c B-SIM reconstruction of mitochondria

networks with high photon counts from Section “Experimental data: mitochondria
network in HeLa cells”. Scale bar 2.0 μm. The region of interest (ROI) in the orange
box is shown in the inset. dMarginal posterior distributions along the line cut in c.
Same color map as in (b). Scale bar 195 nm.
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Image formation model
Let ρ(r) be the fluorescence intensity at each point of space in the sample
under amicroscope. In SIM,we illuminate the sample a total ofL times,with
running index l, with sinusoidal spatial patterns given by

IlðrÞ ¼ A 1þml cosð2πkl � r þ θlÞ
� � ð1Þ

whereA is the amplitude,ml is themodulationdepth,kl is the frequency, and
θl is the phase of the lth illumination pattern. This illumination causes the
sample at each point in space to fluorescewith brightness proportional to its
fluorescence intensity multiplied by the illumination at that point. The light
from the sample passes through themicroscope, and this process ismodeled
as convolution with the point spread function (PSF) of the microscope,
which in this work, we assume to be an Airy-Disk22 given by

PSF ðr; r0Þ ¼ Jinc
jr � r0j

λf

� �� �2

ð2Þ

where f = 1/(2NA) is the f-number, λ is the emission wavelength, and NA is
thenumerical aperture of the objective lens.Amore general PSF is also easily
incorporated into our current framework.

The mean number of photons detected by the camera for the lth
illumination pattern, μl, is the integral of the irradiance over the area of the
nth pixel,An, plus a background,μ

b, that is unmodulated by the illumination
pattern

μln ¼
Z

An

dr
Z

dr0 PSF ðr; r0Þ Ilðr0Þρðr0Þ þ μbn ð3Þ

which we write more compactly as

μl ¼ PSF� ðIlρðrÞÞ þ μb: ð4Þ

Here μl is the collection of expected brightness values on the camera for the
lth illumination pattern and⊗ is the convolution operation.

The number of photons detected on each pixel is Poisson-distributed

ϕln � Poisson μln
� 	

: ð5Þ

Finally, the camera electronics read out the pixel value and convert the
measurement to analog-to-digital units (ADU). The number of ADU are
related to the photon number by a gain factor, Gn, and an offset on. We
model the effect of readout noise as zeromeanGaussian noise with variance
σ2n. The final readout of the nth pixel, wl

n, is thus

wl
n � Normal Gnϕ

l
n þ on; σ

2
n

� 	
: ð6Þ

With this observationmodel for each pixel, we canwrite the likelihood for a
set of observations (raw images) as the product over probabilities of indi-
vidual raw images given the fluorescence intensity map and camera para-
meters as

Lðw;ϕ j ρðrÞ; μb;CÞ ¼
YL
l¼1

P wl;ϕl j ρðrÞ; μb;C� 	
; ð7Þ

wherew is the collection of readout values on the camera,ϕ is the collection
of photon counts detected by the camera,C is the collection of all the camera
parameters including the gain factor, offset, and readout noise variance for
each pixel, and the vertical bar “∣” denotes dependency on variables
appearing on the bar’s right-hand side.

Now, since the number of photons detected on the camera ϕ are
typically unknown, wemustmarginalize (sum) over these randomvariables
yielding the following likelihood

LðwjρðrÞ; μb;CÞ ¼P
ϕ
Lðw;ϕ j ρðrÞ; μb;CÞ

¼ QL
l¼1

P1
ϕl1:N¼0

P wl
1:N ; ϕ

l
1:N j ρðrÞ; μb;C1:N

� 	 !

¼ QL
l¼1

P1
ϕl1:N¼0

P wl
1:N jϕl1:N ;C1:N

� 	P ϕl1:N jρðrÞ; μb
� 	 !

;

ð8Þ

where, in the third line, we have used the chain rule for probabilities and
ignored any dependency of photon detections on the camera parameters in
the second term. Next, we note that expected values μl for Poisson dis-
tributed photon detections are deterministically given by the convolution in
Eq. (4). This constraint allows us to write down the final likelihood
expression as

LðwjρðrÞ; μb;CÞ ¼ R dμl
QL
l¼1

QN
n¼1

P1
ϕln¼0

P wl
njϕln;Cn

� 	P ϕlnjμln
� 	 !

δ μl � PSF � IlρðrÞ
� 	� μb

� 	

¼ R dμl
QL
l¼1

QN
n¼1

P1
ϕln¼0

Normal wl
n;Gnϕ

l
n þ on; σ

2
n

� 	
Poisson ϕln; μ

l
n

� 	 !

× δ μl � PSF � IlρðrÞ
� 	� μb

� 	
;

ð9Þ

where, assuming each camera pixel to be stochastically independent, we
multiply the individual probabilities for camera readout on each pixel. We
also note that we have not yet chosen a grid in the sample plane onwhich to
discretize the fluorescence intensity map ρ(r). Such a grid is chosen
according to convenience due to the simple additive property of the Poisson
distributions that dictate the photons entering a camera pixel. For
demonstration purposes, we assume that the fluorescence intensity map is
Nyquist sampled on a grid twice as fine as the camera pixel grid.We denote
thisfluorescence intensitymapon themthpoint on this gridwithρm and the
collection of these values with ρ.

Now, with the likelihood at hand, wemove on to the formulation of an
inverse strategy to estimate the fluorescence intensity map ρ.

Inverse strategy
Using Bayes’ theorem, we now construct the posterior distribution over the
fluorescence intensity map and the unmodulated background
P ρ; μbjw;C� 	

from the product of the likelihood function and a suitably
chosen prior probability distribution. That is,

P ρ; μbjw;C� 	 / Lðwjρ; μb;CÞP ρ; μb
� 	

: ð10Þ

We have already described the likelihood in the last subsection.
In order to select priors, wenote that asmore observations (images) are

incorporated into the likelihood, the likelihood dominates over the prior. In
effect, Bayesian inference updates the prior through the likelihood yielding a
posterior. Therefore, priors and posterior distributions should have the
same support (parameter space domain). Empirically, we have found a
simple uniform prior with the same probability for every value in the
parameter space to work well. Such a prior avoids any tunable parameters.
Taken together, our full posterior becomes

P ρ; μbjw;C� 	 / R
dμl

QL
l¼1

QN
n¼1

P1
ϕln¼0

Normal wl
n;Gnϕ

l
n þ on; σ

2
n

� 	
Poisson ϕln; μ

l
n

� 	 !"

× δ μl � PSF� ðIlρÞ � μb
� 	

:

ð11Þ
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This posteriordoesnothave ananalytical formamenable todirect sampling.
Therefore, we employ iterative Monte Carlo techniques such as Markov
Chain Monte Carlo (MCMC) to generate samples from this posterior. We
now describe our MCMC strategy below.

Sampling strategy: parallelization
Naively, one may employ the most basic MCMC technique where samples
forfluorescence intensity ρm at eachpixel on the SIMgrid and unmodulated
background μbn on the camera grid are generated sequentially and separately
using a Gibbs algorithm. To do so, we typically first expand the posterior of
equation (11) using the chain rule as

P ρ; μbjw;C� 	 ¼ P ρmjρnρm; μb;w;C
� 	P ρnρmjμb;w;C

� 	
; ð12Þ

where the backslash after ρ indicates the exclusion of the immediately fol-
lowing parameter ρm. In this last equation, the first term on the right is the
conditional posterior for ρm and the second term is considered a pro-
portionality constant for the Gibbs step as it is independent of ρm. Plugging
these decompositions into equation (11), we arrive at the conditional pos-
terior for ρm as

P ρmjρnρm; μb;w;C
� 	 / Lðwjρ; μb;CÞ; ð13Þ

where the first term on the right-hand side is the likelihood of Eq. (9) as
before. Plugging the expression for the likelihood function into this
equation, we get

P ρmjρnρm; μb;w; λ;G;O; σ2
� 	

/ R
dμl

QL
l¼1

QN
n¼1

P1
ϕln¼0

P wl
njϕln;Gn; on; σ

2
n

� 	P ϕlnjμln
� 	 !"

ð14Þ

× δ μl � PSF� ðIlρÞ � μb
� 	�

: ð15Þ

A similar procedure can be repeated to formulate the conditional posterior
for the unmodulated background, P μbnjμbnμbn; ρ;w; λ;G;O; σ2

� 	
. Now,

since direct summation over the unobserved photon emissions ϕln in the
likelihood above is intractable, we again may use Monte Carlo techniques
and simulate the probabilistic effect of this summation by sampling these
intermediate (latent) variablesϕln. In otherwords,we further decompose the
conditional posterior in the Gibbs step of equation (15) into two steps:

1) sample ϕln from its conditional posterior

P ϕlnjwl
n;Cn

� 	 / Z dμl P wl
njϕln;Cn

� 	P ϕlnjμln
� 	

δ μl � PSF� ðIlρÞ � μb
� 	

; and ð16Þ

2) sample μbn from its conditional posterior

P μbnjμbnμbn; ρ;ϕ
� 	 / Z

dμl
Y
l

Y
n

P ϕlnjμln
� 	 !

δ μl � PSF� ðIlρÞ � μb
� 	" #

;

ð17Þ
3) sample ρm from its conditional posterior

P ρmjρnρm; μb;ϕ
� 	 / Z

dμl
Y
l

Y
n

P ϕlnjμln
� 	 !

δ μl � PSF� ðIlρÞ � μb
� 	"

;

ð18Þ
where terms involvingw have disappeared as they only depend onϕ, which
is a fixed quantity in this step. Since these conditional posteriors are again
not amenable to direct sampling, we may employ Metropolis-Hastings to
accept or reject randomly proposed samples. For instance, a new sample for

fluorescence intensity ρpropm may be proposed from a proposal distribution
Qðρoldm Þ and accepted based on the acceptance probability

αðρpropm ; ρoldm Þ ¼ min 1;
P ρpropm jρnρm; μb;ϕ
� 	Qðρoldm jρpropm Þ

P ρoldm jρnρm; μb;ϕ
� 	Qðρpropm jρoldm Þ

( )
: ð19Þ

Based on this sampling strategy above, a chain of MCMC samples, initi-
alized with a randomly generated fluorescence intensity map, can be gen-
erated.However, this strategy is prohibitively expensive for large images. For
instance, sampling a fluorescence intensity map defined on a 2048 × 2048
pixel grid once would require computing convolution integrals of Eq. (4)
approximately 4 million times.

A more reasonable approach follows by first realizing that pixels far
apart are uncorrelatedwhen the PSF is only a fewpixels wide. This allows us
to reasonably assume that the fluorescence intensity at a pixel only con-
tributes to light in its neighborhood. Consequently, the likelihood ratios in
the Metropolis-Hastings step are now approximated using ratios of local
likelihoods. This procedure reduces the computational cost by allowing
parallelization of the sampling method. More formally,

P ρpropm jρnρm; μb;ϕ
� 	

P ρoldm jρnρm; μb;ϕ
� 	 �

Q
l

Q
nP ϕlnjρprop; μb;ϕ
� 	� 	neighborhoodP ρpropm

� 	
Q

l

Q
nP ϕlnjρold; μb;ϕ
� 	� 	neighborhoodP ρoldm

� 	 ;

ð20Þ

where the superscript “neighborhood” indicates that the likelihood is
computed only using pixels in the neighborhood of the fluorescence
intensity ρm. This procedure now allows us to replace the convolution of a
2048 × 2048 fluorescence intensity map with a much smaller integral per-
formed on a small grid determined by the size of the PSF, typically of order
24 × 24 for Nyquist sampled images.When implementing this strategy on a
computer, appropriate padding, zeros in this paper, must be added as well
beyond the boundaries of the image and the parallelized chunks to facilitate
the computation of convolution integrals for boundary pixels. To validate
this strategy, in Supplementary Fig. S9, we show posteriors for five MCMC
chains with increasing parallelization, generated by B-SIM for the same set
of raw images to demonstrate no significant deviations in posteriors for the
parallelized versions from the posterior for the non-parallelized version.

Finally, it is well-known that MCMC samples remain correlated for a
significant number of iterations62,63. Therefore, to efficiently collect uncor-
related samples, we repeatedly apply simulated annealing64 where we arti-
ficially widen the shape of the posterior distribution at regular intervals and
perturb the MCMC chain of samples by accepting improbable samples, as
shown in Supplementary Fig. S10. The samples at the end of each annealing
cycle are then collected together for further analysis.

Computational expense
For all the examples presented here, we used a 64-core computer where
B-SIM takes about a couple of hours to compute an 800 × 800-pixel super-
resolved initial fluorescence intensity map, which can be easily utilized for
biological analyses. To smoothen and improve the quality of results even
further, more uncorrelated Monte Carlo samples can be generated to
compute the average. Lastly, the major portion of the computational cost
comes fromperformingFourier transformswhich the current versionofour
code performs on CPU cores. Fourier transforms can be computed much
more quickly on GPUs. Furthermore, using GPUs, parallelized Fourier
transforms can be performed for very large images without real-time
increase in cost. We leave such an implementation for future development.

3D-SIM
The inference strategy presented above for 2D-SIM largely applies directly
to 3D-SIMthough the convolution operation in the image formationmodel
needsmodification to allow for the generation of a stack of images along the
microscope’s axial direction65. Briefly, we consider a fluorescent sample
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moved to different locations along the axial direction for patterned illumi-
nation generated by three-beam interference, fixed with respect to the
microscope objective65. Consequently, in the convolution appearing in the
image formation model, the illumination pattern now cannot naively be
multiplied with the fluorescence intensity ρ in a point-by-point manner as
was previously done, c.f., Eq. (4). Instead, the axial component of the illu-
mination pattern now multiplies the PSF, as follows

μlnðzÞ ¼
X
i

Z
An

drxy

Z
dr0 PSF ðr; r0Þ I l;iz ðz � z0Þρðr0Þ I l;ixyðx0; y0Þ;

ð21Þ
where x and y are the coordinates in the camera plane as before, however, z
represents the axial location of the sample. Furthermore, we have assumed
that each illumination pattern can bewritten as a sumof separable axial and
lateral sinusoidal components, that is, Ilðx; y; zÞ ¼PiI

l;i
z I

l;i
xy

65. Fifteen such
illumination patterns are generated by using three-beam interference at 3
different angles and 5 phase shifts65. Finally, we canwrite the equation above
more compactly as

μlðzÞ ¼
X
i

ðIl;iz PSFÞ � ðIl;ixyρÞ: ð22Þ

As a proof of principle, we show the 3D-SIM reconstruction of simulated
spherical shells in Supplementary Fig. S12.

Calibrating camera parameters
We precalibrate the illumination and camera parameters in Eq. (11). To
determine the read noise, offset, and gain we collect uniform illumination
profiles at several different intensity levels and apply the approach in ref. 66.

Decorrelation analysis
We performed decorrelation analysis using the imageJ plugin provided in
ref. 54. We used default settings: sampling of decorrelation curve Nr = 50,
number of high-pass images considered Ng = 10, radius min = 0,
radius max = 1.

HiFi-SIM
HiFi-SIM reconstructions were performed using the Matlab GUI29 using
default attenuation strength of 0.9 in the “non-Pro”mode.

For the low SNRArgo-SIMdata, HiFi-SIMdid not accurately estimate
the illuminationpattern parameters,most likely due to the highly structured
Fourier domain structure of the line pairs image.

Sample preparation
Simulated line pairs. Simulated line pairs separated by 0–390 nm were
generated on a grid with a pixel size of 30 nm. Line pairs were separated by
2.1 μm, and each individual line had a flat-top fluorescence intensity profile
with awidthof onepixel. For convenience, line pairswere generated parallel
to the pixel grid.We assumed sinusoidal SIMpatterns rotated at angles θ of
31.235°, 91.235°, and 121.235°. At each angle, the SIM phases were 0°, 120°,
and 240°. The SIM frequencies were set at 90% of the detection band-pass
frequency ðf x; f yÞ ¼ ðcos θ; sin θÞ × 0:9× λ=2NA.Herewe takeλ = 500 nm
and NA = 1.49.

To generate the simulated data, we multiplied the ground truth image
with the SIM patterns and a scaling factor to give the desired final photon
number, then convolved the result with a PSF generated from a vectorial
model using custom Python tools67,68. The pixel values of this image
represent the mean number of photon counts that would be collected on
that pixel. To generate a noisy image, we draw from an appropriate Poisson
distribution on each pixel. Next, we apply a camera gain of 0.5 e−/ADU,
offset of 100 ADU, and Gaussian read-out noise of standard deviation 4
ADU. Finally, we quantize the image by taking the nearest integer value.We
generated simulated images at a range of maximum photon numbers ran-
ging from 1 photon to 10,000 photons.

In the main text, we display datasets with nominal photon numbers
10,000 and 300. We performed Wiener SIM reconstruction using the

Wiener parameter w = 0.318. For the FISTA-SIM, the total variation reg-
ularization strength was 1 × 10−6 and 1.7 × 10−7 39.

Argo-SIM calibration slide. Argo-SIMv1 (Argolight) slide SIM images
were acquired on a custom Structured IlluminationMicroscope18 using a
100x 1.3 NA oil immersion (Olympus, UPlanFluor) objective and
465 nm excitation light derived from a diode laser (Lasever, OEM
470 nm–2W). The effective pixel size was 0.065 μm. The SIM patterns
are generated using a digital micromirror device (DMD) in a conjugate
imaging plane. The DMD does not fill the camera field of view. The
illumination profile is nominally flat because the DMD is illuminated by
the excitation light after it passes through a square-core fiber. Laser
speckle is suppressed by rapidly shaking the optical fiber using a fiber
shaker based on the design of ref. 69. Images were acquired on an Orca
Flash4.0 v2 (C11440-22CU) Hamamatsu sCMOS camera with gain of
≈0.51 e−/ADU, offset of 100 ADU, and RMS readout noise of 2e−. The
camera exposure time was fixed at 100 ms, and the signal level was varied
by changing the illumination time using the DMD as a fast shutter. The
illumination times used were 100, 30, 10, 3, 1, and 0.3 ms.

In the main text, the high SNR dataset used 100ms illumination time,
while the low SNR dataset used 3ms. We performed Wiener SIM recon-
struction using w = 0.1 and 0.2, respectively. We performed FISTA-SIM
with TV strength 1 × 10−7 and 1.7 × 10−8.

The “gradually spaced line” test patterns were selected from the many
available patterns on the Argo-SIM slide. These patterns consist of 14 line
pairs with spacings of 0–390 nm in 30 nm steps which are arranged in a
≈36 × 36 μm square.

The SIM patterns are generated using lattice vectors a!1 ¼
ð�3; 11Þ; ð�11; 3Þ; ð�13;�12Þ and a!2 ¼ ð3; 12Þ; ð12; 3Þ; ð12; 3Þ respec-
tively. This results in SIM patterns at ≈71% of the excitation pupil18. Once
the Stokes shift is accounted for, this allows for resolution enhancement by a
factor of ≈1.8.

Live HeLa cells with labeled mitochondria. HeLa cells (Kyto strain)
were grown in 60 mm glass petri dishes on Poly-D-lysine coated 40 mm
#1.5 coverslips (Bioptechs, 40-1313-03192) for a minimum of 48 h in
DMEMmedia (ATCC 30-2002) supplementedwith 10% FBS (ATCC30-
2020) and 1% Penicillin–Streptomycin solution (ATCC, 30-2300) at
37 °C and 5%CO2. Cells were live stained with 200 nMMitotracker Deep
Red (ThermoFisher, M22426) for 660 nm emission peak or PKmito Red
for 569 nm emission peak in DMEM medium for 15 min in the same
incubation environment. The staining solutionwas then aspirated off and
freshDMEMmediumwas added for 5 min to rinse. The sample coverslip
was then transferred to an open-top Bioptechs FCS2 chamber and
imaged in a pre-warmed (37 °C) DMEM culture medium.

HeLa cells with labeled mitochondria were imaged on the same
instrument described for the Argo-SIM calibration slide using 635 nm
excitation light derived from a diode laser (Lasever, LSR635-500). The
camera integration time was fixed at 100ms, and the signal level was varied
by changing the illumination time using the DMD as a fast shutter. Illu-
mination times were 100, 10, 1, and 0.2ms.

In the main text, the high SNR dataset used 100ms illumination time,
while the low SNR dataset used 10ms. We performedWiener SIM recon-
struction using w = 0.1 and 0.3, respectively. We performed FISTA-SIM
with TV strength 1 × 10−7 and 5.5 × 10−8.

The SIM patterns are generated using lattice vectors a!1 ¼
ð�5; 18Þ; ð�18; 5Þ; ð�11;�10Þ; and a!2 ¼ ð�15; 24Þ; ð�24; 15Þ; ð15; 3Þ
respectively. This results in SIM patterns at ≈71% of the excitation pupil18.
Once the Stokes shift is accounted for, this allows for resolution enhance-
ment by a factor of ≈1.8.

Microtubules. SUM159 was maintained in a tissue culture incubator at
37 °C with 5% CO2. The culturing media comprised F-12/Glutamax
(Thermo Fisher Scientific) medium supplemented with 5% fetal bovine
serum (Gibco), 100 U/mL penicillin and streptomycin (Thermo Fisher
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Scientific), 1 μg mL−1 hydrocortisone (H-4001; Sigma-Aldrich),
5 μg mL−1 insulin (Cell Applications), and 10 mM4-(2-hydroxyethyl)-1-
piperazine-ethane-sulfonic acid (HEPES).

For imaging microtubules, SUM159 cells were seeded onto a 35mm
#1.5 glass bottom dish (MatTek Life Sciences) and, once reached 60%
confluency, treatedwithSPY555-tubulin (Cytoskeleton Inc.,Cat:Cy-SC203)
following the manufacturer’s instructions. Live cell imaging experiments
were performed in an L15 imaging medium (Thermo Fisher Scientific)
supplemented with 5% serum and 100 U/ml penicillin/streptomycin.

Microtubuleswere imagedusing aTIRF-SIMsystemcustom-built on a
Nikon Inverted Eclipse TI-E microscope70. Briefly, the structured illumi-
nation is generated using 488 nm and 561 nm (300mW, Coherent, SAP-
PHIRE LP) lasers, an acousto-optic tunable filter (AOTF; AAQuanta Tech,
AOTFnC-400.650-TN), an achromatic half-wave plate (HWP; Bolder
Vision Optik, BVO AHWP3), a ferroelectric spatial light modulator (SLM;
Forth Dimension Displays, QXGA-3DM-STR) and a 100× 1.49NA objec-
tive (OlympusUAPON100XOTIRF). The images are acquired using Prime
BSIExpress sCMOScamera (TeledynePhotometrics) at an18 frames/s rate,
using 20ms/frame exposure.

Data availability
Simulation data, experimental data, and scripts used to perform the mcSIM
Wiener and FISTA-SIM reconstructions are available online at https://doi.
org/10.5281/zenodo.10037823.Wiener andFISTA-SIMreconstruction code
is available online, and the versionused in thiswork is archived at https://doi.
org/10.5281/zenodo.10037896 and https://github.com/QI2lab/mcsim.
B-SIM code is available online at https://github.com/LabPresse/B-SIM71–73.
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