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When compared to adipocytes in other anatomical sites, the interaction of bone marrow
resident adipocytes with the other cells in their microenvironment is less well understood.
Bone marrow adipocytes originate from a resident, self-renewing population of
multipotent bone marrow stromal cells which can also give rise to other lineages such
as osteoblasts. The differentiation fate of these mesenchymal progenitors can be
influenced to favour adipogenesis by several factors, including the administration of
thiazolidinediones and increased age. Experimental data suggests that increases in
bone marrow adipose tissue volume may make bone both more attractive to
metastasis and conducive to cancer cell growth. Bone marrow adipocytes are known
to secrete a variety of lipids, cytokines and bioactive signaling molecules known as
adipokines, which have been implicated as mediators of the interaction between
adipocytes and cancer cells. Recent studies have provided new insight into the impact
of bone marrow adipose tissue volume expansion in regard to supporting and
exacerbating the effects of bone metastasis from solid tumors, focusing on prostate,
breast and lung cancer and blood cancers, focusing on multiple myeloma. In this mini-
review, recent research developments pertaining to the role of factors which increase
bone marrow adipose tissue volume, as well as the role of adipocyte secreted factors, in
the progression of bone metastatic prostate and breast cancer are assessed. In particular,
recent findings regarding the complex cross-talk between adipocytes and metastatic cells
of both lung and prostate cancer are highlighted.

Keywords: bone, adipocyte, cancer, adipokine, metastasis
INTRODUCTION

Cancer is a leading cause of death worldwide that is attributable for an estimated 14 million incident
cases and 8 million deaths annually (1, 2). While obesity is now recognized as a risk factor for several
malignancies (3, 4), pathophysiological context and other biological factors modify the magnitude
of this effect. Obesity is characterized not only by adipose tissue expansion, but also a progressive
adipose tissue dysfunction resulting in profound alterations in the production of lipids, hormones,
inflammatory cytokines and adipose derived-signalling molecules termed adipokines (5). These
local and systemic physiologic alterations have the potential to impact cancer cells indirectly
through immunomodulation or modulation of the tumour microenvironment as well as directly via
effects on cancer cell growth (6). While considerable study has been devoted to the influence of
adipocytes localized in white adipose tissue (WAT) depots (e.g. subcutaneous) on cancer
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development and progression, comparatively little attention has
been paid to adipocytes resident within bone marrow. This is
important, as these adipocytes have unique metabolic and
paracrine/endocrine features as well as a developmental origin
distinct from peripheral white adipocytes. Moreover, given their
location within bone marrow, these adipocytes may be
particularly relevant to promoting bone metastases and/or
supporting the growth of metastatic cancer cells. This
minireview highlights recent findings regarding the role of
bone marrow adipocytes in the skeletal metastasis.
ORIGIN AND PHYSIOLOGICAL/
PATHOLOGICAL RELEVANCE OF BONE
MARROW ADIPOCYTES

The presence of fat within bone marrow has long been
recognized through gross anatomical and histological findings
(7). At birth, bone marrow is largely red in appearance owing to
the preponderance of hematopoietic and osteogenic cells (8).
Beginning in childhood, there is a gradual yellowing of the bone
marrow, first in the long bones, and eventually other skeletal
sites, due to an accumulation of adipocytes within the marrow
(8). While there is considerable individual variation, at the
population level there is in general a positive correlation
between the volume of bone marrow adipose tissue (BMAT)
and age (9). In particular, females experience a marked increase
of BMAT between the ages of 55-65 (10). Epidemiological
evidence supports a linkage between this increase in BMAT
and age-related bone loss (e.g. osteoporosis), particularly in post-
menopausal women (11, 12). In addition to age, commonly used
drugs such as glucocorticoids and thiazolidinediones have been
linked to increased BMAT and bone loss (13). Data regarding the
relationship between BMAT and total body fat or specific WAT
depots (e.g. visceral, subcutaneous) in humans is somewhat
inconsistent with some studies reporting a positive, and others
no association with amounts of BMAT (14, 15). Adding to the
complexity of this relationship, other studies have reported that
conditions characterized by decreased WAT, such as anorexia
nervosa and caloric restriction in rodents, are associated with
increase BMAT volume (16–18).

It is generally accepted that bone marrow adipocytes derive
from a self-renewing population of multipotent progenitor bone
marrow stromal cells (BMSCs) (19). Most evidence supports that
this developmental origin is distinct from other adipocytes (e.g.
subcutaneous white adipocytes) (20, 21) and contributes to the
unique role of bone marrow adipocytes in local processes such as
hematopoiesis (22) and osteogenesis (23) as well as energy
metabolism at both the local and systemic level (24). In
addition to adipocytes, BMSCs can also give rise to other bone
cell types including chondrocytes, myocytes, and osteoblasts (19)
depending upon the nature of the paracrine/endocrine stimulus.
Indeed, a shift in BMSC lineage allocation to favour adipogenic
versus osteogenic differentiation is believed to contribute to
aging and post-menopausal bone loss (25). Similar to white
adipocytes, bone marrow adipocytes secrete a variety of
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biologically active signalling molecules including pro-
inflammatory cytokines and adipokines with local and systemic
effects. For example, bone marrow adipocytes secrete tumour
necrosis factor-alpha and adiponectin, both of which have been
shown to inhibit bone marrow hematopoiesis (26). Also, in
common with WAT, BMAT serves as an energy reservoir,
largely in the form of triglycerides, that can be mobilized
through lipolysis and released as free fatty acids (FFAs) into
the extracellular environment. While these FFAs may serve as a
general energy source that is supportive of normal physiological
processes such as hematopoiesis and bone remodelling (24), they
may also have unique properties and pathological relevance to
the bone marrow microenvironment. For example, elevated
levels of certain bone marrow adipocyte-derived saturated
FFAs, such as lauric and palmitic acid, inhibit osteoblastic
differentiation of BMSCs, promote osteoclast survival and in
doing so, may contribute to the potential linkage between BMAT
and bone loss (27). Emerging evidence indicates that the
pathological relevance of BMAT may also extend to several
malignancies and that an adipocyte-rich bone marrow may be
both attractive and supportive of metastatic cancer cells (28).
This review will focus on prostate, breast and lung cancer and
multiple myeloma as the interaction between BMAT and the
metastasis of these malignancies has been the most widely
studied and thus, most amenable for summation and analysis.
PROSTATE CANCER

Bone is the most common metastatic site in prostate cancer
(PCa) (29). Several studies have implicated bone marrow
adipocytes as key facilitators of the progression and
exacerbation of these bone metastases, as summarized in
Figure 1 (30–34). Two recent preclinical trials have
emphasized the association between an increased number bone
marrow adipocytes, volume of BMAT and the progression of
PCa cells in the bone marrow niche (32, 33). High fat diet,
caprylic acid treatment and androgen depletion (castration)
enhanced the BMSC-to-adipocyte transition in vitro and in
mouse models (32, 33). Androgen deprivation therapy (ADT)
is a common treatment for prostate cancer. Clinical studies have
demonstrated an increase in BMAT and decrease of bone mineral
density in lower spinal vertebral bodies (35) as well as an increased
risk for the development of castrate-resistant bone metastases for
patients undergoing this treatment (36). Pan et al. (32) found that
the bone marrow of castrated mice compared to controls had
increased bone marrow adipocytes as well as increased levels of
adipocyte markers, most notably adiponectin, perilipin and
peroxisome proliferator-activated receptor-g (PPARg).
Moreover, treatment of BMSCs in vitro with androgens
suppressed adipogenesis and transient knockdown of the
androgen receptor inhibited this suppression (32). These
findings are consistent with previous clinical findings of
increased marrow fat fraction after ADT (35, 37). Interestingly,
treatment with statins, inhibitors of cholesterol biosynthesis,
suppressed adipogenesis in vitro and in vivo and reduced bone
July 2022 | Volume 13 | Article 903925
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metastatic PCa progression in a 22RV1/LT xenograft model with
castrated mice (32). These effects were found to be mediated in part
through a reduced expression of both PPARg - a pro-adipogenic
transcription factor – and leptin – an adipokine that was shown to
promote cell-cycle progression and proliferation of PCa cells – after
statin treatment.Thesedata suggest thepotential therapeuticutilityof
agents that interrupt the BMSC-to-adipocyte transition as a novel
approach to reduce PCa metastasis.

Previous studies have suggested that high fat diets can
promote adipogenesis in bone and thereby contribute to a pro-
tumor environment (31, 38). However, the mechanisms
underlying this effect remain unclear. Wang et al. (33) found
that mice on a high fat diet exhibited increased marrow adiposity
and FFA levels. Following from this, they identified caprylic acid
as a specific FFA with levels higher in the blood of patients with
PCa bone metastasis versus that of PCa patients without bone
metastasis or that of healthy controls. However, it should be
noted that these data are derived from a relatively small sample
size with 16 controls, 8 patients with PCa and 8 patients with PCa
bone metastasis. While it is unclear as to whether the relationship
of the elevated caprylic acid levels in patients was causative or
correlational with PCa bone metastasis, in vivo treatment of
BMSCs with caprylic acid increased the adipocyte differentiation
and the protein expression of PPARg, while subsequently
reducing the number of osteoblasts. Treatment of bone
marrow adipocytes with caprylic acid also induced higher
expression of cyclooxygenase 2 (COX-2) (33), which has been
implicated in several pro-tumor pathways (39). Thus, elevated
levels of caprylic acid may support PCa bone metastasis through
the promotion of adipogenesis over osteoblastogenesis. Similar
results have been reported for arachidonic acid (40), suggesting
that elevated FFA levels due to high fat diets may contribute to
PCa bone metastasis by promoting a pro-tumor environment via
increased bone marrow adipocytes and BMAT volume.
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It is well established that certain factors secreted by white
adipocytes, such as interleukin-6 (IL-6), contribute to primary
PCa progression (41). Less well defined is the contribution of
adipocyte secreted factors to the pro-tumor microenvironment
within bone marrow. Both bone marrow adipocyte-derived lipids
(38) and certain adipokines (42) have been shown to have several
pro-tumor actions with respect to PCa cells including
stimulating cell cycle progression, proliferation (32), migration,
invasion (30, 33), abnormal morphology (43) and promoting
oxidative stress (30). For example, in a 3D in vitro co-culture
model of bone marrow adipocytes and PCa cells, inhibitors of
fatty acid-binding protein 4 and adipocyte triglyceride lipase,
used in combination, reduced the invasiveness of PCa cells (43).
While it is unclear if the effect of fatty acid-binding protein 4
inhibition was a consequence of effects in the adipocytes and/or
PCA cells, given the high levels of adipocyte triglyceride lipase
expression in adipocytes, it is likely that reduced PCa
invasiveness was indirectly liked to inhibition of adipocyte
lipolysis. Overall, these data are consistent with previous
findings from a 2D co-culture model that lipolysis and
subsequent uptake of bone marrow adipocyte-derived lipids by
PCa cells may be a key mediator of the interaction between these
cell types (38). The adipokine leptin was found to be increased in
bone marrow adipocyte-conditioned media and treatment with
recombinant leptin stimulated PCa cell cycle progression and
proliferation, possibly mediated by activation of STAT3, a
transcription factor that has been implicated in promoting the
survival, growth and metastasis of cancer cells (32, 44). While
these initial findings are informative, the identities and
mechanisms of action of secreted factors that mediate the
interactions between bone marrow adipocytes and PCa cells
require further investigation.

Although increased levels of reactive oxygen species are
generally detrimental to cells, persistent activation of oxidative
FIGURE 1 | Summary of recent findings regarding the interactions between bone marrow adipocytes and PCa cells in the bone marrow microenvironment. Bone marrow
adipogenesis promoted by high fat diet, caprylic acid and inhibited by statins and androgens. Caprylic acid increases adipocyte markers (adiponectin, PPARg, perilipin),
MCP-1 and COX-2 expression in the bone marrow adipocytes. COX-2 subsequently increases PGE-2 which activates pro-survival pathways in the bone metastatic PCa
cells. Secreted factors, which potentially include leptin and lipids, stimulate oxidative stress, cell cycle progression, migration, invasion, abnormal morphology, and secretion
of IL-1b in the PCa cells. This IL-1b acts to further increase COX-2. While this figure highlights empirical findings from PCa studies, it is likely that several of these mechanisms
are also relevant to the interaction of bone marrow adipocytes with other cancer cell types.
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stress pathways by bone marrow adipocytes, may promote tumor
progression in a tissue-selective manner (30, 45). For example,
heme oxygenase 1 (HO-1) was reported to be upregulated in PCa
bone tumors but not in subcutaneous tumors of mice with diet
induced marrow adiposity, indicating an effect specific to the
bone marrow environment (30). Upon review of ONCOMINE, a
cancer microarray database, Herroon et al. subsequently
reported (30) that HO-1 is elevated in metastatic human PCa
tumors compared to primary tumors. However, they were not
able to distinguish between bone metastases and other metastatic
sites using that database. Based on investigation of metastatic
PCa cells in co-culture with bone marrow adipocytes, HO-1
overexpression was linked to pro-survival pathways in PCa cells,
an effect which was significantly reduced by treatment with an
HO-1 inhibitor (30). Moreover, consistent with other findings
(38), bone marrow adipocytes increased the invasive potential of
PCa cells. This effect was reduced by antioxidant treatment and
subsequently recovered by forced overexpression of HO-1 in PCa
cells (30). While these data point to antioxidants as a potential
strategy for treating bone metastasis in PCa, a recent systematic
review indicated that the efficacy of antioxidant supplements
taken by cancer patients remains unclear (46). In addition to
oxidative stress, two recent studies from Heroon et al. (30, 34)
have examined the upregulation of markers of endoplasmic
reticulum (ER) stress in PCa cells upon interaction with bone
marrow adipocytes. Their findings suggest that ER chaperone
glucose regulated protein 78 (BIP), may be involved in
facilitating bone marrow adipocyte-mediated ER stress in
metastatic PCa cells which may help them survive in the bone
marrow environment.

Emerging evidence indicates that the interaction between PCa
cells and bonemarrow adipocytes is not one sided, but rather entails
a complex cross talk involving multiple paracrine factors.
Interleukin 1b (IL-1b) was reported to be upregulated in bone
metastatic PCa cells in mice with diet induced bone marrow
adiposity (38). Another study found that this cytokine
upregulated the expression of COX-2, as was also observed with
caprylic acid treatment (33), and macrophage chemoattractant
protein (MCP-1) in bone marrow adipocytes (31). This COX-2
upregulation was further linked to an increase in the production of
prostaglandin-2 (PGE-2) by bone marrow adipocytes which was
proposed to reciprocally act on PCa to activate pro-survival
pathways (31, 33). Interestingly, PCa cells co-cultured with bone
marrow adipocytes exhibited a reduced sensitivity to docetaxel, a
drug used to treat metastatic PCa (31). The response to docetaxel
was partially restored by inhibition of IL-1b or lipolysis, suggesting
that BMA-PCa cross talk may be linked to drug resistance. Further
investigation is needed in order to determine the implications of
these findings.
BREAST CANCER

Similar to PCa, bone is the most common metastatic site for
breast cancer (47). The primary site of breast cancer growth is in
close vicinity to the mammary fat pad and there is a well-
Frontiers in Endocrinology | www.frontiersin.org 4
established link between these local white adipocytes and
breast cancer development (48). It has been proposed that this
connection also holds true with respect to the interaction
between bone marrow adipocytes and bone metastatic breast
cancer cells (48). However, this notion is challenged somewhat
by known phenotypic distinctions between white adipocytes and
bone marrow adipocytes (49), as well as the limited number of
bone marrow adipocyte-specific studies addressing this
relationship. Recent data has demonstrated that there is
preferential migration of breast cancer cells towards bone
marrow adipocytes occupied components when compared to
the mineralized component of bone in a human bone tissue
explant model (50). This behaviour was exhibited by two
different breast cancer cell lines (MCF-7 and MDA-MB-231)
and there was extensive direct contact between the breast cancer
cells and the bone marrow adipocytes (50). MDA-MB-231 cells,
a bone-trophic line, were found to overexpress HO-1 after co-
culture with bone marrow adipocytes (30). Similarly, increased
proliferation and invasion of MDA-MB-231 cells after exposure
to bone marrow adipocyte-conditioned media was also
associated with HO-1 induction in a previous study (38).While
there is evidence that HO-1 upregulation led to the activation of
pro-survival pathways in PCa cells, a similar mechanism remains
to be demonstrated in breast cancer cells. In an analysis of 56
breast cancer patients and 56 controls, high BMAT volume was
found to be an independent risk factor for breast cancer (51).
However, while it was strongly associated with lymph node
metastasis, the study did not include bone metastasis as a
parameter (51).

While bone marrow adipocyte-secreted factors have been
suggested as mediators of the interaction between this cell type
and breast cancer cells, empirical evidence to support this is
currently limited. Cytoplasmic lipid accumulation and
upregulation of lipid transport proteins was reported for
MDA-MB-231 cells exposed to either bone marrow adipocyte-
conditioned media or in transwell co-culture with bone marrow
adipocytes (38). Increased uptake of bone marrow adipocyte-
derived FFAs by via fatty acid binding protein-4 was proposed as
a means of energy provision to support the increased
proliferation and invasiveness of breast cancer cells observed
under these conditions (38). However, there have been no
further studies supporting this hypothesis. Breast cancer cells
have been observed to exhibit increased migration toward the
bone marrow adipocytes in an explant model in which MCF-7 or
MDA-MB-231 cells were co-cultured with cancellous bone tissue
fragments isolated from hip arthroplasties (50). Analysis of the
supernatants of the explants revealed a significant association
between increasing levels of IL-1b and leptin with MDA-MB-231
migration in the bone microenvironment and implicate these
factors as potential mediators by which bone marrow adipocytes
encourage breast cancer cell migration to bone marrow (50).
However, there are some limitations to this conclusion, as it was
assumed that bone marrow adipocytes were the main source of
leptin and IL-1b in the bone marrow environment. These
findings, support that increased BMAT volume in post-
menopausal women (10) may contribute to breast cancer bone
July 2022 | Volume 13 | Article 903925
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metastasis and other clinical findings indicative of a poorer
prognosis for post- versus pre-menopausal breast cancer
patients (52). However, other clinical data suggests that there is
a lower incidence of bone metastasis in post- versus pre-
menopausal women (53). As such, this relationship remains
unclear at present and further clinical investigation of the
impact of increased post-menopausal marrow adiposity on
bone metastasis of breast cancer is needed.
LUNG CANCER

As bone metastasis is less common in lung cancer than in breast
and prostate cancer, there has been little investigation regarding
the role of bone marrow adipocytes in the progression of lung
cancer (47). However, a recent study investigated the cross talk
between bone marrow adipocytes and small cell lung carcinoma
cells (54). Rosiglitazone maleate, a thiazolidinedione, was used to
induce increased BMAT volume in mice. Compared to controls
that did not receive rosiglitazone treatment, the treated mice
exhibited augmented osteolytic destruction when SBC-5 cells, a
small cell lung carcinoma cell line with bone metastatic potential,
were injected into their femurs (54). S100A8/A9 is a
heterodimeric calcium binding protein that is highly expressed
in several cancer types and is involved in the regulation
inflammatory processes and immune response (54, 55). In
comparing SBC-5 to SBC-3 (a small cell lung carcinoma cell
line without bone metastatic potential), increased S100A8/A9
expression was the predominant difference identified in the SBC-
5 versus -3 transcriptome (54). These data suggest that S100A9/
A8 expression levels may be a determinant of the bone tropism of
certain lung cancers. Moreover, co-culture of bone marrow
adipocytes and SBC-5 cells, was associated with elevated
expression of IL-6 in the former and the cognate receptor (IL-
6R) in the latter. Conditioned media from BMSCs enhanced the
migration of both SBC-3 and SBC-5 cells, whereas conditioned
media from bone marrow adipocytes enhanced the invasion of
SBC-5 cells only. Reciprocally, SBC-5 conditioned media
inhibited the adipogenic differentiation of BMSCs and
promoted de-differentiation and decreased adipogenic marker
expression in mature bone marrow adipocytes. This effect was
reduced when toll-like receptor 4, which can be activated by
S100A8/A9 (56), was inhibited, further implicating S100A8/A9
in this cross talk. More research is required to better understand
these findings and their implications for the progression and
maintenance of bone metastatic lung cancer.
MULTIPLE MYELOMA

Oncolytic bone loss is a frequent occurrence with multiple
myeloma and while several comprehensive reviews (57–59)
have addressed and summarized findings regarding the
complex cross-talk between marrow adipocytes and myeloma
cells, recent studies further characterizing this relationship are
worth highlighting. For example, while it has been variously
Frontiers in Endocrinology | www.frontiersin.org 5
reported that multiple myeloma cells can promote the
adipogenic versus osteoblastogenic differentiation of MSCs, the
mechanisms underlying this effect have been unclear. Liu et al.
(60, 61) recently described a mechanism by which the integrin
alpha4 subunit expressed on the surface of multipole myeloma
cells stimulated vascular cell adhesion molecule 1 on MSCs
leading to repression of muscle ring-finger protein-1 mediated
ubiquitination of PPARg. The resultant stabilization and
accumulation of PPARg levels in turn promoted adipogenesis
and reduced osteoblastogenesis of MSCs, suppressing bone
formation in vitro and in vivo. Another recent study (60)
reported that conditioned media prepared from adipocytes
isolated from bone marrow aspirates collected from myeloma
patients (newly diagnosed or in complete remission) promoted
the development of prominent osteolytic lesions in a humanized
murine fetal bone chip model when compared to media prepared
from adipocytes of normal subjects. Interestingly, co-culture of
multiple myeloma cells with MSC-derived adipocytes resulted in
the development of a “senescence-associated secretory”
phenotype characterized by alterations in the release of
adipose-derived cytokines, adipokines and other signalling
molecules associated the promotion and survival of tumour
cells (62). Consistent with a tumour supportive relationship
between BMAT and multiple myeloma, clinical studies have
found that inclusion of bone marrow fat fraction improved both
the discrimination of healthy controls from multiple myeloma
patients by MRI and further, those patients with diffuse versus
focal lesions (63). Taken together, these findings are consistent
with a complex cross-talk between multiple myeloma cells and
adipocytes. This may entail a reprogramming of MSCs and
adipocytes, that persists even with remission, to repress bone
formation and promote oncolytic lesions as well as to support
tumour growth and survival.
DISCUSSION

The prognosis for cancer patients with bone metastasis remains
poor. Currently, most research investigating the interactions
between bone marrow adipocytes and bone metastasis has
focused on prostate cancer and multiple myeloma. However,
given the high incidence of bone metastasis in breast cancer
patients, as well as the clear relationship between white
adipocytes and primary breast tumors, this is an important
area of future study. Despite the lower incidence of bone
metastasis in lung cancer compared to that seen in breast and
prostate cancer, it has a shorter median survival (47),
illustrating the need for a greater understanding of the role of
bone marrow adipocytes in lung cancer bone-tropism. In
addition to further research into specific cancer types,
identification of which secreted factors mediate these
interactions and the elucidation of the underlying
mechanisms is needed. Based on the current research, there
could be potential therapeutic implications if strategies to
reduce the BMSC-to-adipocyte transition or to interrupt
adipocyte-tumor cross talk are more clearly defined.
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