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Abstract: Nanofiber membranes were successfully prepared with crown ether (CE) functionalized
graphene oxide (GO), chitosan (CS), and polyvinyl alcohol (PVA) by low-temperature thermally
induced liquid–liquid phase separation. The physical and chemical properties and adsorption
performance of nanofiber membrane were studied through SEM, FT-IR, XRD, and static adsorption
experiments. The results show that the specific surface area of the nanofiber membrane is as high
as 101.5 m2·g−1. The results of static adsorption experiments show that the maximum adsorption
capacity of the nanofiber membrane can reach 168.50 mg·g−1 when the pH is 7.0. In the selective
adsorption experiment, the nanofiber membrane showed high selectivity for Li+ in salt lake brine.
After five cycles, the material still retains 88.31% of the adsorption capacity. Therefore, it is proved
that the material has good regeneration ability.

Keywords: crown ether grafting; selective adsorption; composite membrane

1. Introduction

In recent years, with people’s increasing attention to environmental pollution and
the continuous advancement of science and technology [1], electrification has gradually
become a major trend in the development of the global automotive industry, coupled
with the popularization of consumer electronics such as mobile phones, tablets, and
computers [2]. Lithium, as the core material of electric vehicle power batteries and the key
material of lithium-ion batteries for consumer electronics products, has broad development
prospects [3]. The lithium material industry spans the three strategic emerging industries
of new materials, new energy vehicles, and new energy in China [4]. The development of
the new energy automobile industry requires speeding up the research and development,
promotion, and application of core technologies of key components and materials such
as high-performance power batteries and motors, forming an industrialized system. The
demand for lithium batteries will rise rapidly [5], and the market demand for lithium
will rise sharply. The development and utilization of large lithium resources has become
an important issue to ensure sufficient lithium resources [6]. Salt lake brine is the main
source of lithium extraction technology at present, and the common feature of salt lake
lithium resources in China is the high ratio of magnesium to lithium [7]. Therefore, the
development of lithium extraction and separation technology suitable for salt lake brines
with high magnesium-to-lithium ratio in China has very important economic value and
strategic significance [8].

At present, the common methods of extracting lithium are mainly the precipitation
method, solvent extraction method, electrodialysis method, and adsorption method [9].
Among them, the precipitation method is more suitable for the extraction of lithium from
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salt lake brines where the magnesium–lithium ratio is relatively low [10]. For the case
where the magnesium–lithium ratio is too high, the precipitant consumption is too large
and the economy is poor. The solvent extraction method represents the most in-depth
study of the neutral phosphorus-containing TBP extraction system, but it has not been
industrialized because of the serious corrosion of TBP to the equipment and the easy
dissolution during the stripping process [3]. The emerging electrodialysis technology also
needs to be improved owing to research work such as membrane life and operating costs
under long-term operating conditions [11]. In contrast, the adsorption method is widely
used because of its simple operation and high recovery rate. The adsorption material is the
core of the adsorption and extraction of lithium [12]. Many studies have found that ion
sieve adsorbents have high lithium adsorption capacity and selectivity, but they are usually
powdery, with poor fluidity and permeability, and a low dissolution rate during acid
elution regeneration, making them difficult to use for industrial applications. Therefore,
we are committed to finding a low-cost, selective, and stable lithium adsorbent [13].

The crown ether as the host has a certain dipole moment and can interact with the
guest ion to coordinate, owing to the existence of electron-donating oxygen atoms. The hole
diameter of the crown ether ligand is 1.223–1.534 Å, and the diameter of Li+ is 1.22 Å, which
matches the hole size, and can completely enter the hole and form a strong electrostatic
interaction force with the crown ether oxygen [14]. However, crown ethers usually exist in
the form of small molecules in liquid form, and they are usually introduced as ligands into
functional groups, so that they are easily connected to the matrix through chemical bonds
to form a composite adsorbent with a stable structure [15].

Graphene oxide (GO) is a new type of carbon nanomaterial, which not only has
high mechanical strength and electron mobility, but also has a large specific surface area
and abundant oxygen-containing functional groups [16]. It not only provides effective
adsorption sites, but also can be used as a solid carrier for easy introduction of small
molecule ligands. Chitosan (CS) macromolecules are rich in functional groups such as
hydroxyl and amino groups [17], have strong coordination ability with heavy metal ions,
and have good adsorption performance for heavy metals. Chitosan is cheap and easy to
obtain, and it is a green and pollution-free material [18]. Polyvinyl alcohol (PVA) is used in
many biological materials because of its low cost, low toxicity, high mechanical strength,
excellent biocompatibility, and chemical stability [19]. Thanks to the good biocompatibility
of chitosan and polyvinyl alcohol, some studies have prepared it into a hydrogel, but this
structure has a small specific surface area and can easily to self-swell and shrink, thereby
reducing the active sites [20]. The preparation of nanofiber membranes by electrospinning
technology and the low-temperature thermally induced phase separation method seems to
be a good solution. However, electrospinning technology is usually combined with high
concentrations of toxic solvents.

Low temperature thermal induced liquid–liquid phase separation is a method used to
prepare porous nanofiber membranes [21]. The polymer is dissolved in the mixed solvent
and the temperature and time conditions are controlled. At the temperature below the
freezing point of the mixed solvent, the polymer will form two liquid phases. The polymer
is a continuous phase and the solvent is a dispersed phase after phase separation [22].
Therefore, it is very important to control the freezing point of mixed solvents [23]. It is
well known that adding ethylene glycol to the solvent can lower the freezing point of the
solvent and can initiate two-phase separation during the freeze-drying process to form a
nanofiber porous structure [24].

In this paper, a step-by-step method is used to first graft the crown ether onto the
surface of graphene oxide to obtain functioned graphene oxide (GO-CE). Then, GO-CE,
CS, and PVA were combined together, ethylene glycol was used to lower the freezing
point of the solvent, and a composite membrane with nanofiber structure was prepared
by low-temperature induced phase separation technology, which achieved high-efficiency
selectivity to Li+ adsorption separation. The composite film was characterized by scanning
electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR), N2 adsorption-
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desorption (BET), and thermogravimetric analyzer (TG). Moreover, through a series of static
and dynamic adsorption experiments and simulations of actual samples, the adsorption
and selection properties of Li+ on the material are studied.

2. Experimental Section
2.1. Materials

The reagents used in this experiment are as follows: graphene oxide and polyvinyl alco-
hol. Chitosan was purchased from Thane Chemical Technology Co., Ltd. (Shandong, China),
with a degree of deacetylation >95% and a viscosity of 100–200 mpa.s. 2-(Hydroxymethyl)-
12-crown 4-ether was purchased from TCI Chemical Industry Development Co., Ltd.
(Shanghai, China). Epichlorohydrin was purchased from Shanghai Lingfeng Chemical
Reagent Co., Ltd. (Shanghai, China). Sodium hydride (60% dispersed in mineral oil),
potassium bromide, and lithium chloride (anhydrous grade, 98%) were supplied by Al-
addin Reagent Co., Ltd. (Shanghai, China). Acetic acid was provided by Shanghai Shenbo
Chemical Co., Ltd. (Shanghai, China). Ethylene glycol, hydrochloric acid, and sodium
hydroxide were obtained from Sinochem Reagent Co., Ltd. (Beijing, China). In addition,
all reagents are analytically pure and can be used without further purification, and all
experimental water is distilled water.

2.2. Sample Preparation
2.2.1. Preparation of Graphene Oxide (GO−ECH)

Here, 0.07 g of graphene oxide (GO) was dispersed in 70 mL of distilled water and 0.5 g
of sodium hydroxide and 0.5 mL of epichlorohydrin were added, under N2 atmosphere, the
temperature was controlled at 60 ◦C, and the reflux reaction was performed 24 h. Finally,
a black mixture was obtained, and the black mixture was washed with distilled water to
neutrality, and finally vacuum dried to obtain GO−ECH. As shown in the first step in
Figure 1.
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2.2.2. Preparation of 2-(Hydroxymethyl)-12-Crown 4-Ether Graft Modified Graphene
Oxide (GO−ECH−CE)

Here, 0.5 mL of 2-(hydroxymethyl)-12-crown 4-ether (2H12C4) was dissolved in 10 mL
of N,N-dimethylformamide (DMF) at room temperature, and then 0.25 g of sodium hydride
was added, in an N2 atmosphere The temperature was controlled at 60 ◦C, and the reflux
reaction was carried out for 4 h to obtain a light brown mixed solution. Then, 0.05 g of the
GO−ECH prepared in step (1) was dispersed in DMF and added to the above light brown
mixed solution, continuing to control the temperature at 90 ◦C under N2 atmosphere, and
reflux for 72 h. Then, it was rinsed with DMF until the supernatant was colorless and dry
in vacuum to obtain GO−ECH−CE. As shown in the second step in Figure 1.

2.2.3. Preparation of Crown Ether Grafted Graphene Oxide/Chitosan/Polyvinyl Alcohol
Nanofiber Composite Film (GO–CE–CS–PVA)

Here, 1.0 g of polyvinyl alcohol (PVA) was dissolved in 20 mL of distilled water at
90 ◦C, and then 0.4 g of chitosan (CS) was dissolved in 20 mL of 2% (v/v) acetic acid
solution at room temperature. The prepared PVA aqueous solution and chitosan solution
were stirred at 60 ◦C for 1 h, so that the bubbles in the solution disappeared, and a uni-
formly mixed CS–PVA solution was obtained. Then, 0.2 g of the GO–CE prepared in step
(2) was dispersed in 20 mL of distilled water, and the above-mentioned CS–PVA mixed
solution was gradually added to the GO–CE dispersion, adding ethylene glycol (ethylene
glycol/distilled water = 3/7) and stirring at 60 ◦C for 1 h, then cooling. Ultrasound was
used to eliminate air bubbles in the solution. The solution was poured into a polytetraflu-
oroethylene mold and allowed stand at 253 K for 8 h to form a soft gel. Subsequently,
the coagulant (1% NaOH solution) precooled at 273 K and was slowly added, and it was
allowed to stand at 273 K for 12 h to grow and form a thin film. Then, the film was washed
with distilled water, and the distilled water was replaced every 8 h until the supernatant
became neutral. After freezing at 253 K for 2 h, it was freeze-dried at 223 K for 24 h to
obtain GO-CE-CS-PVA. As shown in the third step in Figure 1.

2.2.4. Preparation of Graphene Oxide/Chitosan/Polyvinyl Alcohol Nanofiber Composite
Membrane (GO–CS–PVA) Membrane

The process was the same as that of crown ether grafted graphene oxide/chitosan/
polyvinyl alcohol nanofiber composite film (GO–CE–CS–PVA), but with no grafting modi-
fication CE, GO.

2.2.5. Repeat the Elution Procedure

The Li+ in the adsorbed composite film was eluted with 0.5 M hydrochloric acid and
distilled water for two weeks. After elution, the composite membrane was vacuum-dried
for the next adsorption cycle.

2.3. Adsorption Experiment

We performed pH, kinetics, isotherm, thermodynamics, selective adsorption, and
repeatability experiments on GO–CE–CS–PVA and its control material GO−CS−PVA.
All experimental results were measured by inductively coupled plasma optical emission
spectrometer (ICP) to measure the concentration of Li+.

2.4. Characterization Instruments

A series of characterizations were carried out on the successfully prepared GO–CE–
CS–PVA material. The morphology and microstructure of GO–CE–CS–PVA material were
observed by scanning electron microscope (SEM, Xiemei Electronics Co., Ltd., Dongwan,
Japan). The infrared spectrum (400–4000 cm−1) was recorded on a Fourier transform
infrared spectrometer (FTIR, Xiou Technology Co., Ltd., Shanghai, China) to observe the
functional groups in the GO–CE–CS–PVA material molecule. X-ray photoelectron spec-
troscopy (XPS, Kratos, Manchester, UK) was used to characterize the chemical elements
of the GO–CE–CS–PVA material. The specific surface area of GO–CE–CS–PVA material
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under the N2 adsorption-desorption method was tested with a physical adsorption instru-
ment. The thermal stability of GO–CE–CS–PVA material is measured by thermogravimetric
analyzer (TG, TA Instruments Corporation USA, New Castle, DE, USA). Using the above-
mentioned instruments, it is verified that GO–CE–CS–PVA material has good structural
characteristics and ensures that the material has excellent adsorption performance for Li+.

3. Results and Discussion
3.1. Characterization Results
3.1.1. Scanning Electron Microscope (SEM)

The surface morphology and structural characteristics of GO–CE–CS–PVA were stud-
ied by SEM observation. As shown in Figure 2, it can be seen that the inside of the
composite membrane material is composed of nanofibers of different lengths, with an
average diameter between 60 and 100 nm. From Figures (a) and (b), it can be observed that
the obvious GO film is doped or covered on the nanofibers. In addition, we amplified (a)
and (b) and obtained (c) and (d), which can more clearly and accurately observe that GO
films are doped or covered on nanofibers. The formation of these heterogeneous nanofiber
structures is attributed to the fact that glycol in the mixed solution can effectively reduce
the freezing point of the solution, and the CS–PVA polymer was induced to undergo liquid–
liquid phase separation instead of liquid–solid phase separation. In other words, at a low
temperature, the thermodynamically unstable CS–PVA homogeneous polymer solution
will be separated into polymer-rich phase and polymer-poor phase. In the polymer-rich
phase, the polymer chains are folded and arranged to form a unique nanofiber structure.
The formation of nanofiber structure and the doping of GO film increase the specific surface
area of the composite membrane, increase the active adsorption sites on the adsorbent sur-
face, and improve the mass transfer efficiency, which is helpful to improve the adsorption
capacity of the composite membrane.
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3.1.2. Fourier Infrared Spectroscopy (FTIR)

In order to observe the changes of surface chemical groups of GO-CE during the
grafting modification, the FTIR spectra of GO-CE and its control materials in the range of
400–4000 cm−1 were characterized. As shown in Figure 3, it can be seen that the infrared
spectrum of each material has a wide and strong absorption peak at 3430 cm−1, which is the
characteristic absorption peak of -OH, confirming that both GO and CE surfaces contain
a large amount of -OH. The characteristic absorption peaks of pure GO at 1741 cm−1,
1630 cm−1, and 1060 cm−1 are attributed to the stretching vibration of C = O, C = C, and
C-O, respectively. By epichlorohydrin, we first epoxidize the GO; compared with GO,
GO-ECH new characteristic peaks appear at 771 cm−1. This peak is the characteristic
absorption peak of epoxy group, explaining that the GO surface successfully connected to
the epoxy ring. In addition, the characteristic peak of GO at 1741 cm−1 almost disappeared,
indicating that the reaction took place on the carboxyl group. In the 2H12C4 spectrum,
the strong absorption peak of 2800–3000 cm−1 comes from the stretching vibration of C-H,
which is consistent with the result of GO–CE. In addition, 1460 cm−1 and 1370 cm−1 on GO–
CE are the bending vibration peaks of C-H, and 1110 cm−1 is the characteristic absorption
peak of C-O-C on crown ether ring. In conclusion, the FTIR curves analysis showed that
2H12C4 was successfully grafted on the GO surface through epichlorohydrin [25].
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3.1.3. N2 Adsorption-Desorption (BET)

The adsorption mechanism and specific surface area of the material were studied
by the N2 adsorption-desorption analysis method. As shown in Figure 4, the adsorption
isotherm of GO-CE-CS-PVA belongs to the IV type adsorption isotherm of the six adsorp-
tion isotherms classified by IUPAC. At a low relative pressure (0.0–0.05 P/P0), owing to the
strong interaction on the surface of the adsorbent, the adsorption capacity rises rapidly, and
the curve is upwardly convex, forming a single-layer adsorption [26]. After the adsorbent
reaches the saturated adsorption capacity, multi-layer adsorption is gradually formed, and
the relative pressure of the multi-layer adsorption is between 0.05 and 0.75 P/P0. As the
pressure of the gas continues to increase, the pores of the gas agglomerates become larger
and larger. The adsorption branch measured when the equilibrium pressure increases and
the desorption branch measured when the pressure decreases, at certain relative pressure
ranges, do not overlap and separate to form a ring. Under the same relative pressure,
the adsorption capacity of the desorption branch is greater than the adsorption capacity
of the adsorption branch, so the desorption isotherm will form a hysteresis loop above
the adsorption isotherm. It can be seen from Figure 4 that the hysteresis loop belongs
to the H3 type. When the relative pressure is close to the saturated vapor pressure, the
adsorbate does not show adsorption saturation and cannot reach equilibrium. The pores
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of the material include flat slit structure, crack, and wedge structure. In addition, the BET
specific surface area of the material is 101.5 m2·g−1, and the pore size of GO–CE–CS–PVA
is concentrated in 0–10 nm, which belongs to micropore or mesoporous. This is attributed
to the nanofiber structure constructed by the liquid–liquid phase separation technology
realized by freeze-drying, and the larger BET specific surface area is beneficial to increase
the adsorption capacity.
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3.1.4. Thermogravimetric Analysis (TG/DTG)

In order to study the thermal stability of the material, we conducted a TG test under
N2 atmosphere to analyze the relationship between the quality of the material and the
temperature change in the temperature range of 30–800 ◦C. The thermogravimetric results
of GO–CS–PVA and GO–CE–CS–PVA are shown in Figure 5. The weight loss at 100 ◦C in
the figure is the loss of crystal water in the film. The weight loss of the material starts at
about 250 ◦C and ends at about 500 ◦C. The weight lost at this stage is mainly chitosan
and polyvinyl alcohol. In addition, it can be seen from the calculus curve DTG of TG,
namely the curve obtained by the first derivative of each time coordinate on TG curve,
that the weight change rate of GO–CE–CS–PVA at this stage is generally lower than that
of GO–CS–PVA, which is owing to the modification of the carbon material GO. At the
same time, after 800 ◦C high temperature treatment, the quality of GO–CE–CS–PVA still
retains 22%. Therefore, compared with GO–CS–PVA, GO–CE–CS–PVA has relatively higher
thermal stability.
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3.2. Adsorption Experimental Analysis
3.2.1. pH Experiment

Because the surface properties of the adsorbent will be different under different pH
conditions, the pH in the solution will have a great impact on the adsorption effect. In this
work, under the condition that the initial concentration of Li+ is 1000 mg/L, the adsorption
time is 24 h, and the adsorbent is 10 mg; we reacted two adsorbents, GO–CS–PVA and GO–
CE–CS–PVA, in seven lithium ion solutions with different pH values. Taking into account
the actual acidity and alkalinity of the salt lake brine, the pH range of this experiment
is set to 2.0–10.0. It can be seen from Figure 6 that, with the increase in pH value, the
overall trend of the adsorption capacity of GO–CS–PVA and GO–CE–CS–PVA on Li+ also
increases. Under acidic conditions, there is a large amount of H+ in the solution, and it is
easy to combine with the lone pair of electrons of –NH2 through the coordination bond
to form –NH3+. When the –NH2 of CS is protonated to –NH3+, the chelating ability with
metal ions is reduced. In addition, the –O roots and –OH roots of graphene oxide are also
easy to combine with H+ under acidic conditions, which will strengthen the reduction and
reduce the effective adsorption sites on the surface of the graphene oxide. In addition,
under alkaline conditions, when the pH value is greater than 8.0, the adsorption capacity
of GO–CS–PVA and GO–CE–CS–PVA on Li+ drops significantly. This is because of the fact
that lithium ions easily combine with –OH radicals to form lithium hydroxide inorganic
compounds under alkaline conditions. Therefore, we choose pH = 7.0 as the best condition
for subsequent experiments.
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3.2.2. Adsorption Kinetics Experiment

We examined the adsorption performance of GO–CE–CS–PVA for Li+ in different
contact times to explore when the membrane can reach adsorption equilibrium during the
adsorption process. We used the quasi-first-order kinetic model (PFOKM) and the quasi-
second-order kinetic model (PSOKM) to perform nonlinear fitting to the experimental data
of kinetic adsorption. We are under the conditions of 298 K, pH = 7.0, and 1000 mg L−1, and
eight sets of experimental sampling points were set up within 0–140 min. After sampling,
ICP was used to determine the concentration of remaining Li+ in the solution. The specific
experimental results are shown in Figure 7.
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From Figure 7, we can see that the adsorption capacity of GO–CE–CS–PVA on Li+

is generally higher than that of GO–CS–PVA. This shows that the unique selectivity of
the added crown ether helps the synergistic adsorbent to capture the target metal ion Li+

quickly and efficiently. In addition, within 0–60 min, the adsorption capacity of either GO–
CE–CS–PVA or GO–CS–PVA for Li+ increases rapidly. At the same time, the adsorption
reached equilibrium in about 120 min. The related kinetic fitting parameters are shown in
Table 1. It can be seen from the table that the correlation coefficients of the quasi-second-
order kinetic model of the two materials are higher than those of the quasi-first-order kinetic
model, which are 0.996 and 0.998, respectively. This shows that chemical adsorption is the
mainstay in the whole adsorption process, and physical adsorption caused by electrostatic
force is the auxiliary function.

Table 1. PFOKM and PSOKM parameters of GO–CE–CS–PVA and GO–CS–PVA.

Adsorbents
Qe,exp

(mg g−1)

PFOKM PSOKM

Qe,c
(mg g−1)

k1
(min−1) R2 Qe,c

(mg g−1)
K2 × 10−2

(g mg−1 min−1)
h

(mg g−1 min−1)
t1/2

(min) R2

GO-CS-PVA 92.82 88.49 0.028 0.983 95.42 0.041 3.77 25.28 0.996
GO-CE-CS-PVA 97.23 90.76 0.032 0.954 97.83 0.046 4.43 22.07 0.998

3.2.3. Adsorption Isotherm Experiment

In order to explore the maximum adsorption capacity of the prepared adsorbent for
Li+, we carried out adsorption isotherm experiments in different concentrations of Li+

solution to obtain its maximum adsorption capacity. The Langmuir isotherm model and
the Freundlich isotherm model were used to fit the experimental data. The specific fitting
results are shown in Figure 8. It can be clearly seen from the figure that the fitting results of
the adsorption isotherms of GO–CE–CS–PVA and GO–CS–PVA are more in line with the
Langmuir isotherm model. The correlation coefficients are 0.994 and 0.992, respectively
(see Table 2). This shows that the entire adsorption is a process dominated by single-layer
chemical adsorption, all adsorption sites have the same probability, and the adsorbed
lithium ions are completely independent. In addition, it can be seen from Table 2 that the
maximum adsorption capacity of GO–CE–CS–PVA is 168.50 mg·g−1, which is higher than
that of GO–CS–PVA, which confirms that crown ether can effectively help the adsorbent
improve the adsorption capacity in the adsorption process.
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Table 2. Langmuir and Freundlich parameters of GO–CE–CS–PVA and GO–CS–PVA.

Adsorbents

Langmuir Isotherm Equation Freundlich Isotherm
Equation

R2 KL
(L mg−1)

Qm
(mg g−1) RL R2 KF

(mg g−1) 1/n

GO-CS-PVA 0.992 0.007 148.75 0.069 0.900 9.69 0.366
GO-CE-CS-PVA 0.994 0.004 168.50 0.117 0.933 6.46 0.427

3.2.4. Adsorption Thermodynamics Experiment

In order to explore the thermodynamic properties of adsorption, we observed the
change in adsorption efficiency of GO–CE–CS–PVA and GO–CS–PVA at different tempera-
tures. Three temperatures of 308.15 K, 318.15 K, and 328.15 K were selected for thermody-
namic experiments. The linear fitting of specific experimental data is shown in Figure 9.
From the figure, we can see that, as the temperature increases, the adsorption capacity of
the two materials decreases accordingly, which may be caused by the instability of CS at
high temperatures. In addition, Table 3 shows that ∆H < 0 for both materials, indicating
that the adsorption process is an exothermic reaction, and ∆G < 0, indicating that the
adsorption reaction is spontaneous. The a and b diagrams in Figure 9 also confirm that the
adsorption process of lithium ions by GO–CE–CS–PVA and GO–CS–PVA is a spontaneous
exothermic reaction.

Table 3. The adsorption thermodynamic parameters of GO–CE–CS–PVA and GO–CS–PVA for Li+.

Adsorbents ∆H
(kJ mol−1)

∆S
(J mol−1) T (K) Ko ∆G

(kJ mol−1)

GO-CS-PVA −1.28 10.49
308.15 5.83 −4.516
318.15 5.74 −4.624
328.15 5.65 −4.725

GO-CE-CS-PVA −3.44 3.52
308.15 5.91 −4.551
318.15 5.50 −4.511
328.15 5.45 −4.625
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3.2.5. Selective Adsorption Experiment

In China, rich salt lake brine resources have become the main direction of lithium ex-
traction. However, the composition of salt lake brine is usually complex, and there are many
interfering ions. Therefore, it is necessary to conduct selective adsorption experiments on
adsorption materials. In this study, we selected four common interfering ions in salt lake
brines—Na+, Mg2+, K+, and Ca2+—for adsorption selectivity experiments. It can be clearly
seen from Figure 10 that the selectivity of GO–CE–CS–PVA nanofiber membrane to the
target ion Li+ is significantly higher than that of GO–CS–PVA. The separation coefficients
of Li+/Na+, Li+/Mg2+, Li+/K+, and Li+/Ca2+ are 2.51, 2.27, 4.19, and 2.55, respectively. It
is about twice that of GO–CS–PVA (see Table 4). This is attributed to the GO–CE–CS–PVA
surface grafted with a crown ether with a unique cavity structure, and the hole diameter
of 2H12C4 (1.2–1.5 Å) is very close to the ion radius of Li+ (0.68 Å), which can be highly
efficient to quickly capture Li+. Therefore, the above results indicate that GO–CE–CS–PVA
has the strongest affinity for Li+ in the mixed solution with other interfering ions.
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Table 4. The selective adsorption parameters of GO–CE–CS–PVA and GO–CS–PVA for Li+ and other ions.

Metal Ions

GO-CS-PVA GO-CE-CS-PVA

Cf
(mg·L−1)

Kd
(mL·g−1) k Cf

(mg·L−1)
Kd

(mL·g−1) k

Li+ 865.38 0.156 / 847.13 0.180 /
Na+ 860.35 0.162 0.96 933.08 0.072 2.51

Mg2+ 899.08 0.112 1.39 926.49 0.079 2.27
K+ 950.56 0.052 3.00 958.81 0.043 4.19

Ca2+ 928.48 0.077 2.03 933.96 0.071 2.55

3.2.6. Repeatable Adsorption Experiment

In order to further verify the stability of the material in practical industrial applications,
we conducted five repeated experiments on the adsorption performance of GO–CE–CS–
PVA nanofiber membranes. The adsorption film was removed by acid pickling, adsorbed
under the same conditions after elution. The cycle was repeated five times, and the
adsorption amount was recorded each time. The specific results are shown in Figure 11.
It can be seen from the figure that, after five cycles, the adsorption performance of the
GO–CE–CS–PVA nanofiber membrane decreases slightly. It may be because of incomplete
desorption of lithium ions or loss of adsorption sites during the elution process, which
affects the cycle performance. However, after five cycles, the GO–CE–CS–PVA nanofiber
membrane still maintains 88.31% of the adsorption capacity, which shows that the GO–CE–
CS–PVA nanofiber membrane still has promising industrial application prospects.
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4. Conclusions

In summary, we adopted a step-by-step method, combined with CE modified func-
tionalized GO, CS, and PVA macromolecular materials, and the GO–CE–CS–PVA nanofiber
membrane with excellent performance was successfully prepared by low temperature ther-
mally induced liquid–liquid phase separation technology, which achieved high-efficiency
and selective adsorption and separation of Li+. A series of characterizations proved the
superior mechanical properties of the GO–CE–CS–PVA nanofiber membrane. The specific
surface area of the GO–CE–CS–PVA nanofiber membrane is as high as 101.5 m2 g−1. A
series of static and dynamic adsorption experiments and simulated adsorption results of ac-
tual interference ions show that the maximum adsorption capacity of the GO–CE–CS–PVA
nanofiber membrane can reach 168.50 mg g−1 when the pH is 7.0. The adsorption kinetics
and isotherm fitting results show that the adsorption mechanism of the GO–CE–CS–PVA
nanofiber membrane to Li+ belongs to single-layer chemical adsorption. In addition, the
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excellent selective adsorption of Li+ and good reusability are affirmation of the stability
of the GO–CE–CS–PVA nanofiber membrane, which also makes it more valuable in the
application of lithium extraction from salt lake brine.
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